Kun Li / Perfil
La regresión polinomial es un modelo flexible diseñado para resolver de forma eficiente problemas que un modelo de regresión lineal no puede gestionar. En este artículo, aprenderemos a crear modelos polinómicos en MQL5 y a sacar provecho de ellos.
El área de la aplicación de la diferenciación fraccionada es bastante amplia. Por ejemplo, los algoritmos del aprendizaje automático normalmente reciben una serie diferencial en la entrada. El problema es que es necesario mostrar los datos nuevos de acuerdo con la historia existente para que el modelo del aprendizaje automático pueda reconocerlos. En este artículo, se considera un enfoque original en la diferenciación de una serie temporal, además, se muestra el ejemplo de un sistema comercial auto-optimizable a base de una serie diferencial obtenida.
La clasificación de los datos es un punto crucial para los tráders algorítmicos y los programadores. En este artículo, nos centraremos en uno de los algoritmos logísticos de clasificación que podría ayudarnos a identificar los síes o los noes, las subidas y bajadas, las compras y las ventas.
El siguiente algoritmo que analizaremos será la optimización de la búsqueda de cuco usando los vuelos de Levy. Este es uno de los últimos algoritmos de optimización, así como el nuevo líder en la clasificación.
Hoy analizaremos uno de los algoritmos de optimización más modernos: la Optimización del Lobo Gris. El original comportamiento de las funciones de prueba hace que este sea uno de los algoritmos más interesantes entre los analizados anteriormente. Uno de los líderes para la aplicación en el entrenamiento de redes neuronales y funciones suaves con muchas variables.
Hoy estudiaremos el algoritmo de colonia artificial de abejas. Asimismo, complementaremos nuestros conocimientos con nuevos principios para el estudio de los espacios funcionales. En este artículo hablaremos sobre mi interpretación de la versión clásica del algoritmo.
En este artículo, analizaremos varios enfoques posibles en la creación de indicadores adaptativos. Los indicadores adaptativos se distinguen por la presencia de retroalimentación entre los valores de las señales de entrada y salida. Esta relación permite que el indicador se ajuste de forma independiente al procesamiento óptimo de los valores de las series temporales financieras.
En este artículo, intentaremos analizar algunas formas de construir indicadores no lineales, así como su uso en el trading. Existen bastantes indicadores en la plataforma comercial MetaTrader que utilizan enfoques no lineales.
En el artículo se analiza la aplicación de la fórmula bayesiana para aumentar la fiabilidad de los sistemas comerciales usando las señales de varios indicadores independientes. Los cálculos teóricos se comprueban con la ayuda de un sencillo experto universal, adaptable para trabajar con indicadores aleatorios.
Este artículo es una guía paso a paso para crear un bot para Telegram en el lenguaje MQL5 El material será de interés para aquellos que quieren vincular un bot comercial a su dispositivo móvil. En el artículo se dan ejemplos de bots que envían señales comerciales, buscan información en páginas web y mandan información sobre el estado de la cuenta comercial, cotizaciones y capturas de pantalla de gráficos a su teléfono inteligente.
Continuamos analizando los métodos de aprendizaje por refuerzo. En el artículo anterior, nos familiarizamos con el método de aprendizaje Q profundo, en el que entrenamos un modelo para predecir la próxima recompensa dependiendo de la acción realizada en una situación particular. Luego realizamos una acción según nuestra política y la recompensa esperada, pero no siempre es posible aproximar la función Q, o su aproximación no ofrece el resultado deseado. En estos casos, los métodos de aproximación no se utilizan para funciones de utilidad, sino para una política (estrategia) de acciones directa. Precisamente a tales métodos pertenece el gradiente de políticas o policy gradient.
En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.
Continuamos estudiando los métodos de aprendizaje automático. En este artículo, iniciaremos otro gran tema llamado «Aprendizaje por refuerzo». Este enfoque permite a los modelos establecer ciertas estrategias para resolver las tareas. Esperamos que esta propiedad del aprendizaje por refuerzo abra nuevos horizontes para la construcción de estrategias comerciales.
Este artículo presenta una clase diseñada para dar un cálculo rápido preliminar de características de varias series cronológicas. Mientras esto se lleva a cabo se calculan parámetros estadísticos y la función de autocorrelación, se lleva a cabo un cálculo espectral de series cronológicas y se construye un histograma.