从价格BP中获得静止的BP - 页 7 1234567891011121314...39 新评论 [删除] 2009.11.16 22:32 #61 faa1947 >> : 所以.....?那又怎样?频谱功率密度对交易者来说是没有必要的,因为它不允许预测(合成)未来的信号形状。 不一定--对于趋势交易来说,反转的预测就足够了 这只是你从神话领域的*假设。你甚至不能说明你如何用频谱功率密度来做到这一点(预测反转)。 Vladimir 2009.11.17 06:23 #62 Reshetov писал(а)>> 我们知道,静止的BPs如果不是白噪声,是可以预测的。 因此,迫切需要将非稳态价格BP转换为稳态,但有可能进行逆向转换。 最原始的变体。大概的价格VR。推断。外推的BP和真实的BP之间的差异也是BP,但是是静止的。让我们把这个新的BP称为合成。 推断合成BP。我们用价格VR的推断来总结。如果合成BP不是白噪声,则输出是预测--两个外推的结果之和。 我懒得读这里的所有帖子。所以我想问一个可能已经在我之前被问过的问题。近似的标准是什么?被测试的区间的最小标准差是多少?那么我们如何选择模型的长度呢? 要想知道我的问题是什么,以AR模型为例。为了适应它,将过去的数据划分为训练样本,即输入和输出。通过线性回归、Burg方法或其他线性预测方法将模型与该数据进行拟合。你建议在拟合这个AR模型后,我们应该计算过去数据的预测误差(即我们在拟合过程中试图减少的相同误差),并对一个误差范围拟合另一个AR模型,如此循环。这样做没有什么意义,因为应该选择AR模型的长度,使近似误差具有白噪声的特性。否则,你有一个短小的模型,它的误差表现得不像白噪声,而是可预测的东西。但在一系列误差下拟合第二个模型,然后是第三个,以此类推,其结果与增加第一个AR模型的阶数(长度)相同。 更正确的做法是分步建立第一个模型,增加模型的长度,直到近似误差表现得像噪音。书籍和文章中已经写了很多这方面的内容。 [删除] 2009.11.17 07:14 #63 gpwr >> : 我懒得读这里的所有帖子。所以我想问一个可能已经在我之前被问过的问题。什么是近似标准?被测试的区间的最小标准差是多少?那么我们如何选择模型的长度呢? 要想知道我的问题是什么,以AR模型为例。为了适应它,将过去的数据划分为训练样本,即输入和输出。通过线性回归、Burg方法或其他线性预测方法将模型与该数据进行拟合。你建议在拟合这个AR模型后,我们应该计算过去数据的预测误差(即我们在拟合过程中试图减少的相同误差),并在误差范围内拟合另一个AR模型,如此反复。这样做没有什么意义,因为应该选择AR模型的长度,使近似误差具有白噪声的特性。否则,你有一个短小的模型,它的误差表现得不像白噪声,而是可预测的东西。但在一系列误差下拟合第二个模型,然后是第三个,以此类推,其结果与增加第一个AR模型的阶数(长度)相同。 更正确的做法是分步建立第一个模型,增加模型的长度,直到近似误差表现得像噪音。书籍和文章中已经写了很多这方面的内容。 哦,伙计! 哦,来吧,同事们!?这里甚至没有人知道这样聪明的词(如你写的:"标准"、"近似"),但确切知道3-4个人。而他们显然已经厌倦了向所有人解释这些朴素的事实,所以他们保持沉默。 Hide 2009.11.17 08:33 #64 faa1947 >> : 将非稳态序列转换为稳态序列是某种与利润无关的练习。 >> 没有这样的事。在最广泛的意义上,正在讨论的是,从一个非平稳的价格序列中得到一个平稳的利润序列。 Stanislav Korotky 2009.11.17 10:32 #65 neoclassic >> : 在grasn的鼓动下(为此我感谢他),我开始发展以下想法。 3.我们预测ZZ分两步走--完成当前浪潮和下一个浪潮。也许,有可能使用一个棘手的回归模型,目前我只限于通常的统计。 这一点是最重要的一点,因为它给出了最大的振幅。你能不能说得更具体一点?;-)显然,这不是一个统计数字,也就是说,它不仅仅是步长的平均数,甚至也不是从前一个步长的下一个步长的分布。 СанСаныч Фоменко 2009.11.17 10:39 #66 HideYourRichess писал(а)>> 没有这样的事。在最广泛的意义上,正在讨论的是,从一个非平稳的价格序列中得到一个平稳的利润序列。 我不明白。TS赚了钱,我没有看到关于TS的一个字。 Hide 2009.11.17 11:03 #67 faa1947 >> : 我不明白。TS赚了钱,而我没有看到关于TS的任何消息 利润=f(价格系列) Олег 2009.11.17 11:08 #68 marketeer >> : 这一点是最重要的,因为它的操作振幅最大。你能说得更具体些吗?;-)这显然不是指通常的统计,即不是简单的步骤ZZ的平均大小,甚至不是下一个步骤的大小与前一个步骤的分布。 唉,现在--分配。我打算按预测误差对分布进行分类,也许那里会有一个模式。 vladimir11 2009.11.17 12:48 #69 Reshetov писал(а)>> 没有。 1.首先,我们对价格系列进行近似。我们得到价格BP的近似公式:price_appr(time) 推断价格_appr(时间+i)。 3.获得合成delta(时间+i) = Open[时间+i] - price_appr(时间+i)。 4.检查delta(x)的白噪声。如果它有噪音,那就太可惜了,奶奶。如果它不发出声音,就继续。 5.近似合成并得到公式:delta_appr(time) 6.预测:预测(时间+i+j)=价格_应用(时间+i+j)+delta_应用(时间+i+j)。 其中:i和j是前几步的OOS。时间,i和j是不重叠的时间集。 这是一个有趣的建议。 虽然预测方法不太清楚。实际上预测的是什么? 但有相当多的另一项任务要先解决。 如何检查白噪声与否? СанСаныч Фоменко 2009.11.17 12:51 #70 HideYourRichess писал(а)>> 利润=f(价格系列) 将BP转换为更像样的东西是很多的--所有(或几乎)的指标,但看不到利润。一直以来,在制定指标时,总是先有想法,后有实施。这里他们说 "如果VR是静止的而不是非静止的就好了"。什么是好的?所有指标的制定都是以反映初始BP的某些特征为目的。这里根本没有设置这样的任务,任务是统计结果的特征,而这个结果将显示初始BP的内容是未知的。 顺便说一下,在论坛上看到一个图表,显示蜡烛的长度取决于一天中的时间。 1234567891011121314...39 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
所以.....?那又怎样?频谱功率密度对交易者来说是没有必要的,因为它不允许预测(合成)未来的信号形状。
不一定--对于趋势交易来说,反转的预测就足够了
这只是你从神话领域的*假设。你甚至不能说明你如何用频谱功率密度来做到这一点(预测反转)。
我们知道,静止的BPs如果不是白噪声,是可以预测的。
因此,迫切需要将非稳态价格BP转换为稳态,但有可能进行逆向转换。
最原始的变体。大概的价格VR。推断。外推的BP和真实的BP之间的差异也是BP,但是是静止的。让我们把这个新的BP称为合成。
推断合成BP。我们用价格VR的推断来总结。如果合成BP不是白噪声,则输出是预测--两个外推的结果之和。
我懒得读这里的所有帖子。所以我想问一个可能已经在我之前被问过的问题。近似的标准是什么?被测试的区间的最小标准差是多少?那么我们如何选择模型的长度呢?
要想知道我的问题是什么,以AR模型为例。为了适应它,将过去的数据划分为训练样本,即输入和输出。通过线性回归、Burg方法或其他线性预测方法将模型与该数据进行拟合。你建议在拟合这个AR模型后,我们应该计算过去数据的预测误差(即我们在拟合过程中试图减少的相同误差),并对一个误差范围拟合另一个AR模型,如此循环。这样做没有什么意义,因为应该选择AR模型的长度,使近似误差具有白噪声的特性。否则,你有一个短小的模型,它的误差表现得不像白噪声,而是可预测的东西。但在一系列误差下拟合第二个模型,然后是第三个,以此类推,其结果与增加第一个AR模型的阶数(长度)相同。
更正确的做法是分步建立第一个模型,增加模型的长度,直到近似误差表现得像噪音。书籍和文章中已经写了很多这方面的内容。
我懒得读这里的所有帖子。所以我想问一个可能已经在我之前被问过的问题。什么是近似标准?被测试的区间的最小标准差是多少?那么我们如何选择模型的长度呢?
要想知道我的问题是什么,以AR模型为例。为了适应它,将过去的数据划分为训练样本,即输入和输出。通过线性回归、Burg方法或其他线性预测方法将模型与该数据进行拟合。你建议在拟合这个AR模型后,我们应该计算过去数据的预测误差(即我们在拟合过程中试图减少的相同误差),并在误差范围内拟合另一个AR模型,如此反复。这样做没有什么意义,因为应该选择AR模型的长度,使近似误差具有白噪声的特性。否则,你有一个短小的模型,它的误差表现得不像白噪声,而是可预测的东西。但在一系列误差下拟合第二个模型,然后是第三个,以此类推,其结果与增加第一个AR模型的阶数(长度)相同。
更正确的做法是分步建立第一个模型,增加模型的长度,直到近似误差表现得像噪音。书籍和文章中已经写了很多这方面的内容。
哦,伙计!
哦,来吧,同事们!?这里甚至没有人知道这样聪明的词(如你写的:"标准"、"近似"),但确切知道3-4个人。而他们显然已经厌倦了向所有人解释这些朴素的事实,所以他们保持沉默。
将非稳态序列转换为稳态序列是某种与利润无关的练习。
>> 没有这样的事。在最广泛的意义上,正在讨论的是,从一个非平稳的价格序列中得到一个平稳的利润序列。
在grasn的鼓动下(为此我感谢他),我开始发展以下想法。
3.我们预测ZZ分两步走--完成当前浪潮和下一个浪潮。也许,有可能使用一个棘手的回归模型,目前我只限于通常的统计。这一点是最重要的一点,因为它给出了最大的振幅。你能不能说得更具体一点?;-)显然,这不是一个统计数字,也就是说,它不仅仅是步长的平均数,甚至也不是从前一个步长的下一个步长的分布。
没有这样的事。在最广泛的意义上,正在讨论的是,从一个非平稳的价格序列中得到一个平稳的利润序列。
我不明白。TS赚了钱,我没有看到关于TS的一个字。
我不明白。TS赚了钱,而我没有看到关于TS的任何消息
利润=f(价格系列)
这一点是最重要的,因为它的操作振幅最大。你能说得更具体些吗?;-)这显然不是指通常的统计,即不是简单的步骤ZZ的平均大小,甚至不是下一个步骤的大小与前一个步骤的分布。
唉,现在--分配。我打算按预测误差对分布进行分类,也许那里会有一个模式。
没有。
1.首先,我们对价格系列进行近似。我们得到价格BP的近似公式:price_appr(time)
推断价格_appr(时间+i)。
3.获得合成delta(时间+i) = Open[时间+i] - price_appr(时间+i)。
4.检查delta(x)的白噪声。如果它有噪音,那就太可惜了,奶奶。如果它不发出声音,就继续。
5.近似合成并得到公式:delta_appr(time)
6.预测:预测(时间+i+j)=价格_应用(时间+i+j)+delta_应用(时间+i+j)。
其中:i和j是前几步的OOS。时间,i和j是不重叠的时间集。
这是一个有趣的建议。
虽然预测方法不太清楚。实际上预测的是什么?
但有相当多的另一项任务要先解决。
如何检查白噪声与否?
利润=f(价格系列)
将BP转换为更像样的东西是很多的--所有(或几乎)的指标,但看不到利润。一直以来,在制定指标时,总是先有想法,后有实施。这里他们说 "如果VR是静止的而不是非静止的就好了"。什么是好的?所有指标的制定都是以反映初始BP的某些特征为目的。这里根本没有设置这样的任务,任务是统计结果的特征,而这个结果将显示初始BP的内容是未知的。
顺便说一下,在论坛上看到一个图表,显示蜡烛的长度取决于一天中的时间。