交易中的机器学习:理论、模型、实践和算法交易 - 页 948

 
桑桑尼茨-弗门科
一般来说,针对3个班级并不是很好。最好分成两个目标类:(-1,0)和(0.1),然后在决定位置时将它们结合起来。

是我要求上三节课的。几页之前,有一个类似的文件,只有两个目标。两个目标我无法处理(其中一个班级的人数严重倾斜,所以也很难),我现在正在尝试三个。

 

我等待着随机森林,尽管我取了原始文件的10%作为训练文件。

下面是结果。

Number of observations used to build the model: 20276
Missing value imputation is active.

Call:
 randomForest(formula = as.factor(arr_Buy) ~ .,
              data = crs$dataset[crs$sample, c(crs$input, crs$target)],
              ntree = 500, mtry = 7, importance = TRUE, replace = FALSE, na.action = randomForest::na.roughfix)

               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 7

        OOB estimate of  error rate: 11.22%
Confusion matrix:
     -1    0    1 class.error
-1 5335  314   21  0.05908289
0    95 8712  480  0.06191450
1     2 1363 3954  0.25662719

Variable Importance
===================

                                 -1      0      1 MeanDecreaseAccuracy MeanDecreaseGini
arr_Sell                     223.88 208.20 164.24               216.84          3073.97
arr_DonProcVisota             25.86  57.39  53.05                57.46           203.17
Levl_Close_MN1                21.45  51.65  52.89                58.17           140.68
Levl_High_H4                  22.35  51.81  50.33                58.17           118.24
Levl_Close_W1                 20.11  48.85  49.94                52.90           145.82
arr_LastBarPeresekD_Down_M15  22.38  49.70  49.39                57.02           129.74
arr_Den_Nedeli                21.46  44.74  49.06                49.48           129.12
Levl_Low_H4                   20.55  47.30  47.49                50.63           126.02
arr_Regresor                  23.40  46.78  46.25                50.94           126.67
Levl_Close_D1                 21.03  42.44  44.51                47.91           164.55
Levl_Support_D1               22.47  47.09  44.35                51.17           153.52
Levl_Low_H1                   20.62  47.36  43.94                50.02           132.55
Levl_Support_W1               18.05  47.42  43.40                47.19           134.89
arr_DonProc_M15               23.81  50.52  42.83                52.10           184.02
arr_TimeH                     20.55  41.15  42.07                42.59           109.51
arr_LastBarPeresekD_Up_M15    22.46  43.85  41.64                47.63           134.78
arr_DonProc                   21.88  56.26  41.49                50.51           228.07
Levl_High_W1                  20.78  40.34  41.27                45.67            91.07
Levl_Low_D1                   18.87  39.05  40.81                42.30           116.54
Levl_Support_MN1              18.99  39.66  40.36                41.64           122.87
Levl_High_MN1                 17.25  36.97  39.62                40.44            88.72
Levl_first_H4                 18.77  38.39  38.71                42.28            70.63
arr_LastBarPeresekD_Down      19.31  42.64  37.27                44.06           150.78
Levl_Low_MN1                  17.96  37.24  36.40                37.83            92.71
Levl_first_H1                 14.43  35.64  34.62                37.45            78.99
Levl_High_D1                  19.35  34.28  34.48                36.43           106.69
Levl_Close_H4                 19.72  39.58  33.59                39.85           170.80
X_USE_Filter_MA_02            15.76  33.70  33.01                38.00            50.89
Levl_Support_H4               16.71  39.24  32.66                36.73           152.03
Levl_Low_W1                   16.72  34.05  32.47                33.22           111.06
Levl_High_H1                  17.58  33.14  31.93                33.90           117.74
Levl_Close_H1                 19.09  35.94  30.80                35.35           160.90
Levl_first_W1                 12.82  30.50  30.57                31.63            51.57
X_Use_Donchianf               13.69  28.78  30.46                31.47            59.44
Levl_first_MN1                13.94  27.58  30.02                29.14            59.58
arr_LastBarPeresekD_Up        15.96  31.32  28.67                30.59           142.72
Use_Filter_MA_Prirost         11.99  27.62  26.88                33.29            38.78
arr_Vektor_Don_M15            13.70  26.01  25.25                29.80            32.87
X_Use_BarPeresek_iMA_TF       11.40  18.48  25.17                25.30            20.57
Levl_first_D1                 14.97  28.47  24.99                29.17            46.49
X_Use_Filter_Fibo_in_Day      12.43  24.34  24.84                29.00            45.29
Levl_Support_H1               17.57  29.98  24.77                28.92           141.18
arr_Vektor_Week                7.99  19.81  24.10                21.56            27.30
arr_RSI_Open_H1               10.31  25.18  23.80                29.74            27.62
X_USE_Filter_MA               12.64  22.15  22.22                25.99            41.49
arr_Vektor_Don                10.20  19.81  15.88                17.82            41.06
arr_Vektor_Day                11.65  15.07  15.62                16.44            25.24
arr_BB_Center                 10.41  15.87  14.93                15.48            38.40
arr_BB_Up                      7.78  10.50  14.74                13.99            17.23
X_Use_ChanelEvaProc            4.30  13.36  12.15                17.63            67.45
arr_RSI_Open_M1                7.45  12.63  10.49                13.56            25.92
arr_BB_Down                    5.47  14.77   7.02                14.50            16.72
USE_Filter_MA_Donchian         0.72   0.10   4.71                 3.29             1.78

Time taken: 2.29 mins
 

这里有一个有趣的图表


它表明,增加树的数量到50棵左右,误差会减少,但之后增加树的数量超过100棵,绝对是浪费时间。

 

这是关于验证和测试块的结果。我有大的,是原来的45%。

Error matrix for the Random Forest model on Pred_027_2016_H2_T.csv [validate] (counts):

      Predicted
Actual    -1     0     1 Error
    -1 24023  1523    70   6.2
    0    473 39706  1964   5.8
    1     10  5858 17615  25.0

Error matrix for the Random Forest model on Pred_027_2016_H2_T.csv [validate] (proportions):

      Predicted
Actual   -1    0    1 Error
    -1 26.3  1.7  0.1   6.2
    0   0.5 43.5  2.2   5.8
    1   0.0  6.4 19.3  25.0

Overall error: 10.9%, Averaged class error: 12.33333%


Error matrix for the Random Forest model on Pred_027_2016_H2_T.csv [test] (counts):

      Predicted
Actual    -1     0     1 Error
    -1 23847  1502    73   6.2
    0    455 39677  1984   5.8
    1      7  6024 17673  25.4

Error matrix for the Random Forest model on Pred_027_2016_H2_T.csv [test] (proportions):

      Predicted
Actual   -1    0    1 Error
    -1 26.1  1.6  0.1   6.2
    0   0.5 43.5  2.2   5.8
    1   0.0  6.6 19.4  25.4

Overall error: 11%, Averaged class error: 12.46667%
 

如果没有什么期待的话,是非常体面的。

M1的TC并不明确:我们将在价差范围内预测。

 
桑桑尼茨-弗门科

我等待着随机森林,尽管我取了原始文件的10%作为训练文件。

以下是结果。

谢谢,从结果来看,事情进展并不糟糕?

然而,从预测器重要性表来看,似乎arr_Sell被用作了预测器?如果是这样,那就不对了。

桑桑-弗门科

这里有一个有趣的图表


它表明,增加树的数量到大约50棵会减少误差,但之后增加树的数量到100棵是绝对浪费的活动。

所以这一定是符合逻辑的,预测因素越多,解决方案越多,还是我错了?

 
桑桑尼茨-弗门科

如果没有什么期待的话,是非常体面的。

我不明白M1的TS:我们将在价差范围内预测。

这是一个趋势性的策略,在MOEX的Si上工作,也就是说,点差在那里并不重要。

 

为了做出最后的判断,有必要。

  • 在非常具体的输入文件条件下测试预测器的预测能力
  • 将输入文件物理地分成两部分:在一部分上做我所做的事,在第二部分上运行完成的森林。如果错误吻合,那么就是百万富翁或亿万富翁!

 
阿列克谢-维亚兹米 金。

有一个趋势策略,它在MOEX交易所的Si上工作,也就是说,点差在那里并不重要。

分类中还有什么趋势?预测错误将撕裂趋势--趋势将不复存在。

 
阿列克谢-维亚兹米 金。


然而,从预测器重要性表来看,arr_Sell似乎被用作了预测器?如果是这样,那就不对了。


当然是这样,看在上帝的份上!

哪些人?

让我重新计算一下。