Vladimir Skorina / プロファイル
- 情報
|
9+ 年
経験
|
2
製品
|
109
デモバージョン
|
|
0
ジョブ
|
0
シグナル
|
0
購読者
|
Большой интерес к работе с тиками и нейронными сетями(в часности третьего поколения).
本稿では、未知の確率密度関数のカーネル密度推定を可能にするプログラム作成に取り組みます。そしてタスク実行のためにカーネル密度推定法を選択しました。本稿にはメソッドのソフトウェア実装コード、その使用例、説明が述べられています。
この記事では、未処理のオーダーを有効に活用するストラテジーや、それを表すためのメタ言語やそれに基づき動作する多目的ExpertAdvisorを中心に見ていきます。
たとえファンダメンタル分析支持者であったとしても、すべてのトレーダーは、特定の統計的な計算を使用し作業を行います。この記事は、統計の基礎、基礎的な要素を紹介し、意思決定における統計の重要性を示します。
この記事は、読者がボックスーコックス変換について詳しく知ることができることを意図されています。使用方法に関して取り組まれ、ランダムなシーケンスと実際の取引価格での変換率を評価を行うものに関しての例がいくつか提示されています。
トレーディングシステムを開発するとき、たいていインディケータとそのシグナルの最良の組合せを選ぶのに問題が起こります。判別分析はそのような組合せを見つける方法の一つです。本稿では、マーケットデータ収集のための EA 開発例を提供し、f Statistica ソフトウェアにおいてFOREXマーケットに対する予測モデル構築のための判別分析の使用を解説します。
複雑なトレーディングシステムも、よく見てみると複数の簡単な取引シグナルに基づいていることがわかります。ですから、開発の初心者はすぐに複雑なアルゴリズムを書き始める必要はありません。この記事ではセマフォインディケーターを使って取引を行うトレーディングシステムの例を紹介します。
この記事では、オブジェクト指向プログラミングを使うMetaTrader 5のマルチタイムフレームとマルチ通貨パネルの作成の仕方を解説します。主な目的は、パネルのコードを変更することなく、価格や価格の変化、インディケーターの値や売買条件のカスタマイズなど 多くの異なった種類のデータを表示することのできる汎用パネルの作成です。
本稿ではMetaTrader 5 の ENCOGへの連携をご紹介します。これは発展したニューラルネットワークとマシン学習のフレームワークです。 標準的テクニカルインディケータを基にしたシンプルなニューラルネットワークインディケータとニューラルインディケータを基にしたExpert Advisor についても語ります。ソースコード、コンパイルされたバイナリ、 DLL、トレーニングされたネットワークはすべて添付があります。
本稿は AutoElliottWaveMakerのレビューを行います。 - 手動と自動の組合せの波形ラベリングを表す MetaTrader 5 におけるElliott Wave分析に対する初めての開発です wave labeling. 波形分析ツールは包括的に MQL5 で書かれており、外部 dll ライブラリはインクルードしていません。これは MQL5で洗練されたおもしろいプログラムが開発できる(するべきである)というもうひとつの証明です。
本稿は MQL4 および MQL5で EA、インディケータ、スクリプトを作成するまったく新しい方向にわれわれを導きます。将来、このプログラミングパラダイムが EAを実装するすべてのトレーダーにとってしだいに基本となり標準となることでしょう。オートマタ準拠プログラミングパラダイムを使用することで MQL5 および MetaTrader 5 の開発者は新しい言語MQL6、そして新しいプラットフォームMetaTrader 6を作成に近づくのです。
MQL5 言語機能がタスク遂行に十分でなければMQL5 プログラマーは別のツールを使用する必要があります。別のプログラム言語によって仲介DLL を作成する必要があります。MQL5 にはさまざまなデータタイプを表示し、それを API に転送する機能がありますが、残念ながら MQL5 は受け付けられたポインタからデータを抽出することに関する問題を解決することはできません。本稿ではすべての "i" にドットを打ち、複雑なデータタイプを交換し、それと連携するメカニズムを示していきます。
この記事は、経験的モード分解メソッド(EMD)に読者が慣れ親しむことが目的です。Hilbert-HUang変換の基礎部分であり、非定常・非線形的プロセスからデータを分析することを意図されています。この記事はこのメソッドの実装について紹介し、また、その特徴や使用例も提示しています。
「EA 階層」は最初のドラッグアンドドロップ MetaTrader MQL5 Expert Advisor ビルダーです。使用法がひじょうに簡単なグラフィックユーザーインターフェースを用いて複雑な MQL5 を作成することが可能です。「EA 階層」ではボックスをつなぐことによってExpert Advisors を作成します。ボックスには MQL5 関数、テクニカルインディケータ、カスタムインディケータ、値などが入っています。『ボックス階層』を利用して「EA 階層」は Expert Advisor の MQL5 コードを作成します。
本稿ではトレーディングシステム開発のために重回帰分析を利用する方法を述べます。戦略検索自動化のための回帰分析の利用法を示します。例としてプログラミングに高い技能を要求せず作成され統合される回帰式を提供します。
この記事は、読者に短期間の時系列分析にて使用される指数平滑法モデルに馴染みを持ってもらうことを目的としています。加えて、最適化や予測結果の評価に関連する問題も扱い、スクリプトやインジケーターのいくつかの例を提供します。この記事は、指数平滑法モデルに基づいた予測の原則の初歩の知識として役に立つと思います。
本稿はすでに作成済みのインディケータをグレードアップを模索し、 またブート処理と変位値を利用して予測信頼区間を推定するための手法を簡単に取り上げます。その結果、予測精度を推定するために用いる予測インディケータおよびスクリプトを手にすることになります。
市場サイクルの確率密度関数(PDF)がガウス性では残らず、むしろ正弦波のPDGとして維持され、大半のインジケーターがその市場サイクルPDFがガウス性であると想定しています。その解決策は、フィッシャートランスフォームを使用することです。フィッシャートランスフォームは、いかなる波形のPDFをガウス性に変換します。この記事は、フィッシャートランスフォームの裏にある数学と、対するフィッシャートランスフォーム、トレーディングへの適用例を紹介します。反対のフィッシャートランスフォームに基づく所有のトレーディングシグナルモジュールが紹介され、評価されます。
シーケンスの統計的パラメータの推定はたいへん重要なものです。それはたいていの数学的モデルと手法が異なる前提に基づいているからです。たとえば、分布法則の正常化、分散値、その他パラメータです。よって時系列を分析し推定するとき、主要な統計的パラメータを素早く明確に推定できるシンプルで使い勝手のよいツールが必要です。本稿では、もっともシンプルなランダムシーケンスの統計パラメータとビジュアル分析のメソッドをいくつか取り上げ述べていきます。それにより MQL5 でこれらメソッド、またニュープロットアプリケーションを用いて計算した結果の視覚化メソッドを実装します。
市場分析の最も人気なメソッドの一つとして、エリオット波動法則があります。しかし、このプロセスは、かなり複雑であり、追加ツールを使用せざるをえません。その一つとして、自動マーカーがあります。この記事は、MQL5言語でのエリオット波動の自動分析ツールの作成を紹介します。
本稿ではさまざまな時系列特性を予めすばやく判断するために設計されるクラスを紹介します。これを行うにあたり、統計的パラメータと自己相関関数を決め、時系列のスペクトル推定を実行し、ヒストグラムを作成します。