Yevgeniy Koshtenko
Yevgeniy Koshtenko
3.6 (6)
  • Informations
2 années
expérience
7
produits
67
versions de démo
0
offres d’emploi
0
signaux
0
les abonnés
Greetings to the world of professional algorithmic trading!

I develop highly effective trading indicators and expert advisors based on cutting-edge machine learning technologies and quantum computing, which help traders achieve stable profits in financial markets.
My journey: In the market since 2016. Went through numerous losses and mistakes. Currently specializing in trading robot development and applying machine learning in trading. Actively investing in Russian and Kazakhstani markets.

Qualified investor of the Republic of Kazakhstan. Qualified foreign investor of the Russian Federation.
For hedge funds and family offices, I also have MIDAS — an institutional complex multi-agent neural architecture + quantum layer + multidimensional self-learning AI agent. I've been creating this system for a year and a half, and it contains nearly 80,000 lines of code: it uses the best of everything I know.

Custom development:

In addition to ready-made solutions, I adapt any models from scientific papers to specific client tasks. I create custom trading robots according to specific requirements, integrate modern machine learning methods, and provide consultations on algorithmic trading.

Useful links:

AI Trading Group: https://vk.com/altradinger
AI Trading Channel: https://www.mql5.com/ru/channels/aitradinger
Monitoring: https://share.kz/g7vJ
GitHub: https://github.com/Shtenco
My site: https://shtencoquantai.tech/

Ready to discuss your tasks and offer optimal solutions for trading automation!
Risk Warning: Trading in financial markets involves high risk of capital loss. Past performance does not guarantee future profits.
Yevgeniy Koshtenko
Article publié Forex arbitrage trading: A simple synthetic market maker bot to get started
Forex arbitrage trading: A simple synthetic market maker bot to get started

Today we will take a look at my first arbitrage robot — a liquidity provider (if you can call it that) for synthetic assets. Currently, this bot is successfully operating as a module in a large machine learning system, but I pulled up an old Forex arbitrage robot from the cloud, so let's take a look at it and think about what we can do with it today.

4
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Наконец допилил Нексус. Полноценный биржевой ИИ на чистом языке MQL5 на DQN обучении + Casual многомерный причинно следственный вывод + теория игр Нэша.

В отличие от остальных моих алгоритмов, не требует обучения и оптимизации, обучается на лету и за пару дней выходит в прибыль. Постоянно дообучается на лету. Выходит в прибыль с любой точки графика на любой паре.

Осталось совместить это с арбитражным Сварогом и поставкой данных из Мидаса, и с удаленным риск менеджером. Но эта часть системы самодостаточна.
Yevgeniy Koshtenko
Article publié Forex Arbitrage Trading: Relationship Assessment Panel
Forex Arbitrage Trading: Relationship Assessment Panel

This article presents the development of an arbitrage analysis panel in MQL5. How to get fair exchange rates on Forex in different ways? Create an indicator to obtain deviations of market prices from fair exchange rates, as well as to assess the benefits of arbitrage ways of exchanging one currency for another (as in triangular arbitrage).

3
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Мой робот-маркетмейкер, торгует у тещи.
Yevgeniy Koshtenko
Article publié Build a Remote Forex Risk Management System in Python
Build a Remote Forex Risk Management System in Python

We are making a remote professional risk manager for Forex in Python, deploying it on the server step by step. In the course of the article, we will understand how to programmatically manage Forex risks, and how not to waste a Forex deposit any more.

2
Yevgeniy Koshtenko
Article publié Currency pair strength indicator in pure MQL5
Currency pair strength indicator in pure MQL5

We are going to develop a professional indicator for currency strength analysis in MQL5. This step-by-step guide will show you how to develop a powerful trading tool with a visual dashboard for MetaTrader 5. You will learn how to calculate the strength of currency pairs across multiple timeframes (H1, H4, D1), implement dynamic data updates, and create a user-friendly interface.

2
Yevgeniy Koshtenko
Article publié Capital management in trading and the trader's home accounting program with a database
Capital management in trading and the trader's home accounting program with a database

How can a trader manage capital? How can a trader and investor keep track of expenses, income, assets, and liabilities? I am not just going to introduce you to accounting software; I am going to show you a tool that might become your reliable financial navigator in the stormy sea of trading.

2
Yevgeniy Koshtenko
Article publié Analyzing all price movement options on the IBM quantum computer
Analyzing all price movement options on the IBM quantum computer

We will use a quantum computer from IBM to discover all price movement options. Sounds like science fiction? Welcome to the world of quantum computing for trading!

3
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Пока что наш портфель обгоняет чуть ли не все фонды мира.

Огонь. Нраицца. Портфель собрала нейросеть. Есть ещё портфель на Мосбирже, ещё не смотрел результаты, и два глобальных портфеля - инновационный с результатом +154% без плеча, и вечный, из ETF.

Все это без плеча. Шарп под четверочку)
Aleksandr Seredin
Aleksandr Seredin 2025.02.24
Огонь! Отличный результат, так держать!
Yevgeniy Koshtenko Produits publiés

Indicator Description: "Currency Strength Panel with Trend Analysis" This indicator is designed for analyzing the strength of currency pairs and determining their current trends, helping traders make more informed trading decisions. It displays a panel on the chart that shows the strength of each currency pair based on price movements across different timeframes (H1, H4, D1) and identifies whether the pair is in a trend or counter-trend. How to Use this Indicator: Currency Pair Strength Analysis

Yevgeniy Koshtenko
Yevgeniy Koshtenko
Пилю уникальное решение. Суть: я создаю единый сервер коллективного биржевого дохода. Сервер удаленный, постоянно включенный, где постоянно работает Python риск-менеджер.

Риск-менеджер удаленно подключается ко всем советникам (роботам), которые с ним связаны, хоть сколько, связаны через сокеты.

А советники (роботы) - будете использовать вы, бесплатно, за процент от прибыли. У нас будет чат, у нас будет команда. Риск контролируется всей командой и сервером (система коллективной ответственности).

Робот сам, рабоотает вот так примерно - это полуавтомат на моем исследовании 3D баров.

Есть тройной риск-менеджмент, как с вашей стороны (закрытие позиций вручную), так и со стороны самого советника (он закрывает как РМ определенный процент просадки), так и со стороны сервера (он удаленно видит ваш советник, и рубит риски).

Если откатаем систему, и все будем получать доход - начнем брать проп-счета, и слить вы их не сможете по причинам удаленного риск-менеджмента.

Как вам идея?
Михалыч Трейдинг
Михалыч Трейдинг 2025.02.22
Идея отличная! Если контроль рисков сервера настраиваемый.
Yevgeniy Koshtenko
Article publié Fibonacci in Forex (Part I): Examining the Price-Time Relationship
Fibonacci in Forex (Part I): Examining the Price-Time Relationship

How does the market observe Fibonacci-based relationships? This sequence, where each subsequent number is equal to the sum of the two previous ones (1, 1, 2, 3, 5, 8, 13, 21...), not only describes the growth of the rabbit population. We will consider the Pythagorean hypothesis that everything in the world is subject to certain relationships of numbers...

2
Yevgeniy Koshtenko
Code publié Calculateur avancé d'intérêts composés pour le trader
Une calculatrice d'intérêts composés pour le trader. Calcule, en fonction de vos paramètres, votre risque de ruine et le risque optimal par transaction. Donne une prévision de la taille de votre capital dans un an, un mois et à la fin de la période.
Yevgeniy Koshtenko
Article publié Analyzing binary code of prices on the exchange (Part II): Converting to BIP39 and writing GPT model
Analyzing binary code of prices on the exchange (Part II): Converting to BIP39 and writing GPT model

Continuing tries to decipher price movements... What about linguistic analysis of the "market dictionary" that we get by converting the binary price code to BIP39? In this article, we will delve into an innovative approach to exchange data analysis and consider how modern natural language processing techniques can be applied to the market language.

1
Aleksandr Seredin
Aleksandr Seredin 2025.02.13
Очень интересная идея. Спасибо большое автору за этот уникальный материал!
Yevgeniy Koshtenko
Article publié Biological neuron for forecasting financial time series
Biological neuron for forecasting financial time series

We will build a biologically correct system of neurons for time series forecasting. The introduction of a plasma-like environment into the neural network architecture creates a kind of "collective intelligence," where each neuron influences the system's operation not only through direct connections, but also through long-range electromagnetic interactions. Let's see how the neural brain modeling system will perform in the market.

1
Yevgeniy Koshtenko
Article publié Creating volatility forecast indicator using Python
Creating volatility forecast indicator using Python

In this article, we will forecast future extreme volatility using binary classification. Besides, we will develop an extreme volatility forecast indicator using machine learning.

1
Yevgeniy Koshtenko
Article publié Evolutionary trading algorithm with reinforcement learning and extinction of feeble individuals (ETARE)
Evolutionary trading algorithm with reinforcement learning and extinction of feeble individuals (ETARE)

In this article, I introduce an innovative trading algorithm that combines evolutionary algorithms with deep reinforcement learning for Forex trading. The algorithm uses the mechanism of extinction of inefficient individuals to optimize the trading strategy.

3
Yevgeniy Koshtenko
Article publié Price movement discretization methods in Python
Price movement discretization methods in Python

We will look at price discretization methods using Python + MQL5. In this article, I will share my practical experience developing a Python library that implements a wide range of approaches to bar formation — from classic Volume and Range bars to more exotic methods like Renko and Kagi. We will consider three-line breakout candles and range bars analyzing their statistics and trying to define how else the prices can be represented discretely.

2
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Новый модуль в Мидасе!!!👻👻👻🤖🤖🤖Скоро выйдет в виде статьи!

ETARE (Эволюционный Торговый Алгоритм с Подкреплением и Вымиранием) – революционная торговая система, которая переосмысливает принципы теории эволюции Дарвина в контексте финансовых рынков. Как в природе выживают наиболее приспособленные организмы, так и в ETARE процветают только самые эффективные торговые стратегии.

В основе системы лежит принцип естественного отбора: множество торговых стратегий конкурируют между собой, подобно видам в экосистеме. Успешные стратегии "выживают" и передают свои характеристики (гены, веса нейросетей) следующим поколениям через механизм генетического наследования, в то время как неэффективные – отсеиваются. Этот процесс, реализованный через передовые алгоритмы машинного обучения, обеспечивает постоянную адаптацию к меняющимся рыночным условиям.
Периодически электронная популяция вымирает, остаются сильнейшие!

Подобно тому, как биологические виды развивают иммунитет к неблагоприятным факторам среды, ETARE формирует устойчивость к различным рыночным условиям. Система использует многоуровневый механизм управления рисками, включающий стратегию динамического усреднения позиций и адаптивное распределение капитала.

Ключевой особенностью ETARE является её способность к самообучению через механизм подкрепления. Каждая торговая операция, независимо от результата, обогащает "генетический код" системы, улучшая качество будущих решений. Это напоминает процесс эволюционной адаптации, где каждое поколение становится более приспособленным к своей среде.

Инвестиционная эффективность ETARE базируется на трех фундаментальных принципах эволюционной теории: наследственности (передача успешных торговых паттернов), изменчивости (постоянная адаптация стратегий) и естественном отборе (выживание наиболее прибыльных подходов). Это делает систему особенно привлекательной для институциональных инвесторов, стремящихся к стабильной доходности при контролируемых рисках в долгосрочной перспективе.

Касаемо фич и признаков: они поступают одновременно со всех остальных модулей внутрь генетической системы. В том числе и сигналы от других модулей (арбитражные, экономические, анализа новостей и позиций фондов, по чистому МО), Плюс, двухканально: при мере набора статистики и торговой истории также поступает торговая история счета через TradingHistory. В итоге получается уже по-настоящему многомерная и эволюционирующая система!
Yevgeniy Koshtenko
Article publié Neuro-symbolic systems in algorithmic trading: Combining symbolic rules and neural networks
Neuro-symbolic systems in algorithmic trading: Combining symbolic rules and neural networks

The article describes the experience of developing a hybrid trading system that combines classical technical analysis with neural networks. The author provides a detailed analysis of the system architecture from basic pattern analysis and neural network structure to the mechanisms behind trading decisions, and shares real code and practical observations.