Discusión sobre el artículo "Aprendizaje Automático: Cómo usar las Máquinas de Vectores de Soporte en Trading"

Para añadir comentario, por favor Autorícese o regístrese
MetaQuotes
Moderador
216513
MetaQuotes  

Artículo publicado Aprendizaje Automático: Cómo usar las Máquinas de Vectores de Soporte en Trading:

Las máquinas de vectores de soporte se usan desde hace mucho tiempo en campos como la bioinformática y matemáticas aplicadas para estudiar conjuntos de datos complejos y extraer patrones que se pueden usar para clasificar datos. Este artículo examina qué es una máquina de vectores de soporte, cómo funciona y por qué puede resultar muy útil a la hora de extraer patrones complejos. Después investigaremos cómo se puede aplicar al mercado y usar potencialmente para tomar decisiones de trading. Usando la Herramienta de Aprendizaje de Máquina de Vectores de Soporte, el artículo facilitará ejemplos listos que permitirán a los lectores experimentar con sus propias operaciones de trading.

¿Qué es una máquina de vectores de soporte?

Una máquina de vectores de soporte es un método de aprendizaje automático que intenta tomar datos de entrada y clasificarlos en una de dos categorías. Para que una máquina de vectores de soporte sea efectiva, es necesario usar primero un conjunto de datos de formación de entrada y salida (datos "input" y datos "output") para construir el modelo de máquina de vectores de soporte que se pueda usar para clasificar nuevos datos.

Una máquina de vectores de soporte desarrolla este modelo tomando los datos de formación, dibujándolos en un espacio multidimensional, y después usando regresión para encontrar un hiperplano (una superficie en un espacio dimensional n que separa el espacio en dos semi espacios) que separa de la mejor manera las dos clases de inputs. Una vez que la máquina de vectores de soporte se ha formado, es capaz de estudiar nuevos inputs con respecto al hiperplano separador y clasificarlos en una de las dos categorías.

Una máquina de vectores de soporte es esencialmente una máquina de entrada/salida de datos (input/output). Un usuario podrá introducir unos inputs y, basándose en el modelo desarrollado a través de la formación, devolverá unos outputs. El número de inputs para cualquier máquina de vectores de soporte teóricamente puede ir del uno al infinito, pero en términos prácticos, el poder de computación limita la cantidad de inputs que se pueden usar. Si, por ejemplo, se usan N inputs para una máquina de vectores de soporte concreta (el valor íntegro de N puede variar entre uno e infinito), la máquina de vectores de soporte debe dibujar cada conjunto de inputs en un espacio dimensional N y encontrar un hiperplano dimensional (N-1) que separe de la mejor manera los datos de formación.

Máquina Input/Output

Autor: Josh Readhead

Para añadir comentario, por favor Autorícese o regístrese