已发布文章 "按记录过滤"。

本文描述了使用虚拟交易作为交易开仓过滤器不可或缺的一部分。
文章涉及在 MetaTrader 4 程序中探明和指示支撑/阻力位。 方便又通用的指标基于简单的算法。 本文同时探讨了一个有用的主题,即创建能够在一个工作空间显示不同时间范围结果的简单指标。
本文描述了用于检测支撑/阻力位的简单脚本的创建过程。 由于面向的对象为初学者,你可以找到过程中每个步骤的详细解释。 然而,尽管脚本非常简单,本文对于高级交易者和MetaTrader 4 平台用户也非常有帮助。 其中包含了数据导出至表格格式、表格导入 Microsoft Excel 和绘制便于更加详细分析图表的示例。
您现在已经成为程序的幸运拥有者——该程序可以在几分钟内为您建立一套可盈利的自动交易系统(ATC),不得不说这听起来很诱人。 您需要做的只是输入想要的数值并按回车键。 此刻,赶紧测试您的自动交易系统并获取预期的收益吧。 成千上万人花费数千小时的时间开发了这套独特的自动交易客户端,从此将能一劳永逸,这听起来多少有些空洞。 一方面,这听起来的确有点不实际。 但是,我认为这个问题可以解决。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文介绍纺锤形图表的绘制及其在交易策略和智能交易系统中的应用。首先我们讨论图表的展现,绘制记忆和日本蜡烛图的关系。其次我们分析下指标在MQL5语言中的实现源代码。最后我们测试基于该指标和由此构建的交易策略的EA。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
一幅金融市场上交易者的行为画像. 作者自己的菜单是来自于A.Elder的书 "怎样在股票交易中投机取胜" ("How to speculate on stock exchange and win").
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
本文讲述了使用非模拟器wine软件在Linux桌面系统上运行MetaTrader 4客户终端的详细设置步骤.
本文中我们将讲述编写一个简单而功能强大的制作html文件的实例, 在过程中我们会学习调整它们的显示, 以及如何在您的EA交易和脚本程序中轻松实现和使用它们.
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
本文阐述了如何参考价格行为以及监控支撑位和阻力位来选择合适的入场时机。详细描述了一个交易系统如何有效结合两种交易策略。相应的MQL4代码可用于实现基于这些交易理念的EA策略。
本文证实了, 构造一个随意的交易系统, 它只是进行一系列的建仓和平仓而不论现实情况如何 - 价格以及当前每个订单的盈利/亏损, 而它和传统的"提醒"交易系统结果差别并不大. 我们会给出一个这样基本交易系统的典型实现.
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
交易首先是对可能性的计算. 有一句谚语, 懒惰是进步的引擎, 这也揭示了指标以及交易系统被开发出来的原因. 绝大多数交易新手学习的都是"成型"的交易理论. 但是, 如果够幸运的话, 还有更多的没有被发现的市场奥秘和用于分析价格走向的工具, 例如那些还没有实现的技术指标或者数学和统计学工具包. 非常感谢比尔.威廉姆斯对市场运行理论的贡献. 虽然,也许现在休息是太早了些.
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文阐述了如何参考价格行为以及监控支撑位和阻力位来选择合适的入场时机。详细描述了一个交易系统如何有效结合两种交易策略。相应的MQL4代码可用于实现基于这些交易理念的EA策略。
逻辑上完整的市场理论应该包含所有品类的商品和服务市场,像外汇这种微观和宏观市场到目前为止还不包括其中。本文介阐释基于盈利分析的新市场理论的精髓。揭示了当前价格变化的运行机制和原则,即通过形成能对实际价格产生控制影响的虚拟价格链,来找到最优定价。市场趋势的形成和改变机制在这里将得到阐释。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
本文介绍的是使用编程方法追踪MetaTrader 4客户终端中的事件, 它的目标读者是对终端的操作和MQL4编程具有基本知识和技能的人员.
本文阐述了如何参考价格行为以及监控支撑位和阻力位来选择合适的入场时机。详细描述了一个交易系统如何有效结合两种交易策略。相应的MQL4代码可用于实现基于这些交易理念的EA策略。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文阐述了如何参考价格行为以及监控支撑位和阻力位来选择合适的入场时机。详细描述了一个交易系统如何有效结合两种交易策略。相应的MQL4代码可用于实现基于这些交易理念的EA策略。
本文提出一种基于价格运动方向和速度的分析方法。我们已经将此想法用MQL4语言实现了一个EA,来研究此策略的效果。我们也将通过测试、检验和优化本文的一个例子来确定最优的参数。
为何在 MetaTrader 4 与 MetaTrader 5 上的虚拟托管优于一般的 VPS
虚拟托管云网络是专为 MetaTrader 4 和 MetaTrader 5 平台研发的,并拥有许多本地解决方案。获得我们的 24 小时免费服务 - 现在即可测试一台虚拟服务器。
本文展示了如何利用市场深度 (DOM) 编程, 并介绍了 CMarketBook 类的操作原理, 它可扩展 MQL5 标准库的类, 并提供使用 DOM 的便利方法。
本文描述了基于吞噬模式创建MetaTrader 4 EA 交易的过程, 以及模式识别的原则, 还有设置挂单和止损单的规则. 同时提供了测试和优化的结果用以参考.
这篇文章讲述了通过动态链接库(DLL)来管理MetaTrader的用户界面元件, 它使用的实例是对推送通知的传输设置做出修改. 库的代码以及例子脚本在文章的附件中.
在本文中, 我们将测试拉布谢尔(Labouchere)资金管理系统的统计学属性. 它可以看作是一种不那么激进的马丁格尔(Martingale), 因为它不是加倍下注, 而是提高一定的量下注.