本周阅读最多文章
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。

使用 bagging 的随机森林(Random Forest, RF) 是最强大的机器学习方法之一, 它略微弱于梯度 boosting,这篇文章尝试开发了一个自我学习的交易系统,它会根据与市场的交互经验来做出决策。

当做交易决定时,我们经常必须在多个时段分析图表,同时,这些图表常常包含着图形对象,把相同的对象应用到所有图表中会不大方便,在本文中,我提出了一种自动克隆将要显示在图表中对象的方法。












