文章 "利用 MQL5 矩阵的反向传播神经网络"

 

新文章 利用 MQL5 矩阵的反向传播神经网络已发布:

本文讲述在 MQL5 中利用矩阵来应用反向传播算法的理论和实践。 它还提供了现成的类,以及脚本、指标和智能交易系统的示例。

正如我们将在下面看到的,MQL5 提供了大量的内置激活函数。 函数的选择应基于特定问题(回归、分类)。 通常,可以选择几个函数,然后经由验正找到最优的一个。

流行的激活函数

流行的激活函数

激活函数可以具有不同的数值范围、有限或无限。 特别是,sigmoid(3) 将数据映射到范围 [0,+1],这对于分类问题更好;而双曲正切将数据映射到范围 [-1,+1],假设范围,推测这对于回归和预测问题更佳。

作者:Stanislav Korotky