Ana fikrin hala geleceği tahmin etmek olduğunu ve geçmişin tahmininin yalnızca doğrulama için gerekli olduğunu anlıyorum.
TE hipotezi, geçmişin tahmini yakınsadığında, geleceğin tahminine güvenebileceğinizdir (değilse düzeltin).
Bu nedenle , geçmişin tahminleri birbirine yakınsa, son segmentin ömrü boyunca piyasanın ruh halini değiştirmediğinin garantisi nerededir?
geleceğin tahmini yakınsama ?
Öte yandan, seçenekler arasında muhtemelen çok fazla fark olmadığını düşündüm:
1. FFT'yi 1200 - 0 segmentinde gerçekleştirin
2. veya FFT'yi (RMS kullanarak) 1000 - 0 aralığında gerçekleştirin ve ardından 1200 - 1000 aralığındaki sonuçlara göre optimize edin (aynı RMS'yi kullanarak).
Burada kütüphaneler olduğu için programlamaya çalışacağım, sonuçlara bakacağım.
Ve eğer bir tahmin oluşturmak için ihmal edilebilecek çarpıtmalarınızın minimum olacağını varsayarsak, o zaman tahmin süreci mümkün mü?
Bir hipotez var: Son 1000 bar için bir fiyat segmenti alırsak ve FFT'yi kullanarak ona yaklaşırsak, o zaman FFT'yi kullanarak ana ritimleri doğru bir şekilde yakalarsak, fiyatları yalnızca geleceğe değil, aynı zamanda eşit olarak tahmin edebiliriz. geçmişe.
Meslektaşlarım, herhangi biri hipotezi test etmeye yardımcı olabilir mi?
Yapabilir. Matematiğin çok, çok temellerini hatırlamak yeterlidir.
Güvenlik sorusu, hatta üç (öncü sorular ;)).
1. Fourier yöntemiyle geri yüklenen işlevin değerine tahmin edilebilecek maksimum ileri/geri çubuk sayısı (örneğinize göre) nedir ve neden?
2. Serinin sonsuz sayıda terimini alırsak hangi çubuklarda hangi değerler elde edilir (bunu genişleme uygulamadan tahmin etmek mümkün müdür ;) ) ?
3. Periyodik fonksiyon nedir ;)...
İyi şanlar.
Henüz Fourier'i terk etmemiş herkese PS 2 - yöntemlerin temellerini öğrenerek başlayın ve hemen vahşi doğaya acele etmeyin - çok zaman kazanabilirsiniz;) ...
Ve eğer bir tahmin oluşturmak için ihmal edilebilecek çarpıtmalarınızın minimum olacağını varsayarsak, o zaman tahmin süreci mümkün mü?
1. Doğru FFT'de neredeyse sıfır bozulma vardır, bu nedenle büyük sayıları (yüzlerce megabit mertebesinde) çarpmak için kullanılır ve çok nadiren bir hata vardır. 4-5 basamaklı alıntıların doğruluğu için bu bozulmaların hiçbir etkisi olmayacaktır.
2. PF, periyodik fonksiyonların spektral bir analizidir. Onlar. 1000 barlık bir BP Fourier genişlemesi alırsanız, sonraki 1000 bar için önceki 1000 barlık dönemin tam bir kopyasını alırsınız. Çünkü PF, bir ekstrapolasyon değil, periyodik fonksiyonların bir tahminidir.
Ekstrapolasyon için yapılabilecek tek şey, örneğin, önceki iki periyodu bir spektral analizde N çubuklarına ayrıştırmaktır. Ardından, sonraki (henüz mevcut olmayan) N çubuklarını tahmin etmek için, harmonik genliklerin aritmetik ortalamasını alın ve her bir harmoniğin fazlarını, incelenen önceki iki dönemdeki karşılık gelen harmonikler arasındaki fark kadar tam olarak radyan kadar kaydırın.
- Ücretsiz alım-satım uygulamaları
- İşlem kopyalama için 8.000'den fazla sinyal
- Finansal piyasaları keşfetmek için ekonomik haberler
Gizlilik ve Veri Koruma Politikasını ve MQL5.com Kullanım Şartlarını kabul edersiniz
Bir hipotez var: Bir fiyat segmenti alırsak, son 1000 bar için varsayalım ve FFT'yi kullanarak yaklaşık olarak tahmin edersek, o zaman FFT'yi kullanarak ana harmonikleri doğru bir şekilde yakalarsak, fiyatları yalnızca geleceğe eşit olarak tahmin edebiliriz, ama aynı zamanda geçmişe.
Bu, örneğin şu şekilde yapılabilir: böyle bir FFT parametresi seti seçin (harmonik sayısı, yaklaşık doğruluk). böylece seçilenden önceki segmentte (örneğin, 1200'den 1000 bar'a kadar), minimum RMS'yi verir. Bu durumda, iyi seçilen katsayıların yalnızca önceki segmente değil, aynı zamanda 0'dan 200'e gelecek segmente de yaklaşması muhtemeldir (elbette, ana piyasa ritimleri önemli ölçüde değişmedikçe).
Meslektaşlarım, herhangi biri hipotezi test etmeye yardımcı olabilir mi?