通过专业交易者编写的大型文章库来学习如何创建您自己的技术指标和自动交易。
与算法交易的新手共享您的交易和编程经验,编写一篇相关内容的文章来赚取200美金。另外,我们还会将您的文章翻译成六种语言。
在本文中,我将着手开发操控市场深度的功能。 我还将创建市场深度抽象订单对象,及其衍生类。
在本文中,我将实现即时报价数据的实时更新,并为操控市场深度的品种对象类(DOM 本身将在下一篇文章中实现)做准备。
鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。
这两种方法的普及性日益增加,因此在 Matlab、R、Python、C++ 等领域开发了大量的库,它们接收到一个训练集作为输入,并自动为问题创建合适的网络。让我们试着理解基本的神经网络类型是如何工作的(包括单神经元感知机和多层感知机)。我们将探讨一个令人兴奋的算法,它负责网络训练 - 梯度下降和反向传播。现有的复杂模型往往基于这样简单的网络模型。
在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。
如果采用基于历史数据的优化方法来选择参数,就不可能得到真正稳定的算法。一个稳定的算法应该知道在任何时候操作任何交易工具时需要哪些参数。它不应该预测或猜测,它应该确定知道。
我们以前曾研究过神经网络中的自关注机制。 在实践中,现代神经网络体系结构会采用多个并行的自关注线程来查找序列元素之间的各种依存关系。 我们来研究这种方法的实现,并评估其对整体网络性能的影响。
利用计算机视觉可以训练神经网络对价格图表和指标的直观表示。这种方法可以对整个复杂的技术指标进行更广泛的操作,因为不需要将它们以数字形式输入神经网络。
我们已经经历了很长一段路,并且函数库中的代码越来越庞大。 这令跟踪所有连接和依赖性变得难以维护。 因此,我建议为先前创建的代码创建文档,并保持伴随每个新步骤进行更新。 正确准备的文档将有助我们看到操作的完整性。