Lorentzos Roussos / 个人资料
- 信息
10+ 年
经验
|
7
产品
|
451
演示版
|
214
工作
|
0
信号
|
0
订阅者
|
💎 The simplest Neural Network Coding Guide : https://www.mql5.com/en/blogs/post/752324
💎 The simplest DLL for mql5 Coding Guide : https://www.mql5.com/en/blogs/post/753426
💎 Harmonic patterns scanner for MT5 : https://www.mql5.com/en/market/product/51212
💎 Similar price action candlestick patterns indicator for MT5 : https://www.mql5.com/en/market/product/133318
💎 Fibonacci Sonar indicator : https://www.mql5.com/en/market/product/133627
💎 Chart projection indicator : https://www.mql5.com/en/market/product/5569
💎 Youtube : https://www.youtube.com/@lorentzor1938

斐波那契声纳 斐波那契声纳有一个内部价格行为模式库,收集自 28 个符号和 7 个时间范围。 每个模式分为两面。前侧和后侧。斐波那契声纳使用前侧来识别相似的模式。最近的价格行为(任何时刻)直到最新条的开盘价是用作搜索库的前侧。 后侧保存每个模式所见的所有活动的汇总。这就是斐波那契术语的用武之地。从过去每个模式的所有实例的开盘价中,我们以斐波那契序列部署了开盘价上方和下方的价格水平。然后,我们测量了达到价格水平的次数。如果将达到价格水平的次数除以单个价格模式存在的实例数,则可以将其提取为百分比 (%) 当然,对于每个模式,您可以想象在顶部斐波那契价格和底部斐波那契价格上都有一个百分比。这允许使用给定百分比值来查找价格的方法。例如,使用此方法,我们可以要求达到 50% 的时间的水平,该方法将返回价格水平。 这些水平就是您在图表上看到的。虽然它们是由斐波那契价格范围与其发生可能性相结合而创建的,但它们并不位于与每个模式的开盘价之间的斐波那契距离。 这些水平的预定发生百分比为: 75% 50% 33% 10% 0% 其中有 5 个高于开盘价,5 个低于开盘价。这些水平并不围绕开盘价对称。高于
相似价格行为指标 相似价格行为将查找与您选择的图表区域尽可能相似的过去烛台图案序列。 该指标将从您选择的价格行为区域的第一个烛台之前开始搜索,直到图表的第一个最旧条。 评估两个序列之间的相似性有几个标准: 序列的长度必须相同,如果您选择的区域是 20 个烛台宽,那么任何匹配的结果也必须是 20 个烛台宽。您可以选择任意数量的蜡烛。 将根据序列的高低大小进行视觉比较 将根据序列的开盘价和收盘价大小和方向进行视觉比较。如果蜡烛图对一个序列来说是看涨的,而对另一个序列来说是看跌的,则得分设置为 0.0 序列有一组快速和慢速移动平均线,它们根据其增量进行比较。增量可以在该区域内相对比较,也可以在整个资产范围内绝对比较(相对和绝对模式) 序列有一组快速和慢速 ATR,用于比较其波动性。同样,比较可以是相对的,也可以是绝对的。 序列有一组快速和慢速 RSI,用于比较其局部强度。 以上所有内容混合在一起以获得最终评级,其中每个组件都由一个系数加权。指标的输入中提供了系数和比较方法。 指标的搜索引擎 simipac 将扫描过去所有可能的蜡烛图序列,而不会破坏蜡烛的顺序。
相似价格行为指标 相似价格行为将查找与您选择的图表区域尽可能相似的过去烛台图案序列。 该指标将从您选择的价格行为区域的第一个烛台之前开始搜索,直到图表的第一个最旧条。 评估两个序列之间的相似性有几个标准: 序列的长度必须相同,如果您选择的区域是 20 个烛台宽,那么任何匹配的结果也必须是 20 个烛台宽。您可以选择任意数量的蜡烛。 将根据序列的高低大小进行视觉比较 将根据序列的开盘价和收盘价大小和方向进行视觉比较。如果蜡烛图对一个序列来说是看涨的,而对另一个序列来说是看跌的,则得分设置为 0.0 序列有一组快速和慢速移动平均线,它们根据其增量进行比较。增量可以在该区域内相对比较,也可以在整个资产范围内绝对比较(相对和绝对模式) 序列有一组快速和慢速 ATR,用于比较其波动性。同样,比较可以是相对的,也可以是绝对的。 序列有一组快速和慢速 RSI,用于比较其局部强度。 以上所有内容混合在一起以获得最终评级,其中每个组件都由一个系数加权。指标的输入中提供了系数和比较方法。 指标的搜索引擎 simipac 将扫描过去所有可能的蜡烛图序列,而不会破坏蜡烛的顺序。









Brightness 14
Contrast 20
Red 91
Green 79
Blue 52
You are welcome
💚☕️











I won't be able to answer you but you can imagine that it can't be terrible. On the other hand, here is how I see this mediocre tool: If I'm looking for a profitable strategy or out of simple curiosity I first test on time frames of 15 or 5 minutes. If the strategy works or my curiosity is satisfied I already consider it extraordinary compared to manual trading. Then if the stakes are worth it and the strategy can work in shorter UTs I will probably switch to MT5 or something else. You will therefore conclude that this has never happened to date. The ''RENKO style'' strategy was not a great success. Maybe there are errors on my part or other indicators to add. To have. I no longer have the exact reason for my disappointment with the coding of my strategy in RENKO equivalent but it didn't work like on paper. So whatever the quality of the data, it was not at fault or only partially. I did not have the availability to dig in and better exploit this robot and insist on the RENKO equivalent as a strategy but I will surely come back to it at the beginning of 2024 when I have more availability because on paper it had potential. I will contact you by message for the code.


Let's say you buy a pair , and it goes down (trade 1) VS buying a pair -> it arrives one _Point before your take profit level and then goes down (trade 2). Both those trades hit stop loss .
Now let's say you are optimizing this strategy . The more pointers toward an outcome you leave inside the "virtual environment" for the genetic algorithm the more the genetic algorithm will consider the outcome.I call this making the terrain more "walkable".
So , if you are formulating the reward yourself , and , the reward varies between -1.0 -> +1.0 , are these 2 trades equally bad ? Are they both -1 ? I mean if one day you make pizza and you burn it but the other day you make pizza you taste one piece and its good but your girlfriend steals it from you , breaks up with you and leaves (with the pizza) does that mean you will discard both pizza recipes and start over ?☕️




⚠️The average publication date is 9th December 2022
⚠️78% of products have at least one backtest screenshot
⚠️64% of products have a live signal
⚠️The average duration of the signals is 30 weeks
⚠️The average price is 972 $
⚠️64% of products will increase the price after some sales , or the price is a discount
⚠️Theres almost 61 reviews per product with 202 comments and 3170 demo downloads
⚠️36% is using keywords for ai , neural networks , intelligence gpt etc
⚠️You can get an idea of what the product is from the logo in 8% of cases , and from the title in 19%
Interesting observations :
There's products that have fresh live signals but were not published recently
There's an ea that uses chat gpt (which came out 2023) but showcases a backtest from 2019
There's an ea sporting a funded challenge certificate which links out to a different name than the sellers BUT that name appears to be his/hers employee . The employee also has an mql5.com account and has not posted a review on any of the products . Honorable mention . i got curious 😂😂😂🍻




