文章 "种群优化算法:微人工免疫系统(Micro-AIS)" - 页 3 12345 新评论 Andrey Dik 2024.01.20 21:54 #21 Vladimir Suslov #:max = pi/2 + n*2*pi其中 n 为任意整数 限制条件在哪里?袋子的周期可以是负数吗? 不可以,这是下面的限制条件。飞轮的周期可以大于 10000 吗?可以,但没有意义,所以这是上面的限制条件。等等。实际问题都有限制条件,这就是为什么它们是 N-完备的(当然不仅如此),否则应用优化算法就没有实际意义了--会花很长时间。 Vladimir Suslov 2024.01.20 21:59 #22 Andrey Dik #: 马赫周期可以是负数吗? 检查器的周期能否大于 10000? 可以,但没有意义,这是上面的限制。 等等。实际问题都有限制条件,这就是为什么它们是 N-完备的(当然不仅如此) 实际上,我是在跟fxsaber 专门讨论他的 FF,他不想用 mashka 来切换... fxsaber 2024.01.20www.mql5.com Профиль трейдера Andrey Dik 2024.01.20 22:11 #23 Vladimir Suslov #:实际上,我是在和fxsaber 谈论他的 FF,而不是想改用 mashki...啊,对不起。继续说,抱歉打断了你们的谈话。 fxsaber 2024.01.20 22:49 #24 关于将优化技术应用于技术合作的问题。我很难想象同时优化十个以上输入的 TS 是合理的。 因此,TS 的 "自由度 "似乎不到十个。这包括对优化算法的一些要求--"酷 "不再是普遍性(优化具有大量输入的超级复杂事物)。 也就是说,对于 TC 来说,你需要了解你真正想从优化中得到什么。 Andrey Dik 2024.01.20 23:00 #25 fxsaber #:关于将优化应用于 TC 的问题。我很难想象同时对十多个输入进行优化是合理的。因此,TS 的 "自由度 "似乎不足一打。因此,对优化算法提出了一些要求--其酷炫之处不再是多功能性(优化具有大量输入的超级复杂事物)。也就是说,对于 TC 来说,你需要了解你真正想从优化中得到什么。超过 10 个参数的优化应用领域非常广泛。首先是模式。第二是实时投资组合。第三--神经网络和组合、实时 "硬件"。第四--现在能在屏幕后与我们对话的一切,不久都将变得更加智能,这要归功于拥有数千乃至数十亿个参数的自适应系统。生命是通过优化氨基酸产生的,就像第一....。这也是优化,第一个通过全球优化测试的优化。 fxsaber 2024.01.20 23:31 #26 Andrey Dik #:对 10 多个参数进行优化的应用领域非常广泛。 我说的是 TC。 Andrey Dik 2024.01.20 23:33 #27 fxsaber #:我说的是 TC。我也是。 fxsaber 2024.01.21 01:38 #28 Andrey Dik #:某些类型的算法在使用多重复制(模拟多维性)的基准上可能会高估结果。 根据这种方法,可以使用 Hilly 函数进行测试。 #define dInput01 X1 #define dInput02 Y1 #define dInput03 X2 #define dInput04 Y2 #define dInput05 X3 #define dInput06 Y3 #include <fxsaber\Input_Struct\Input_Struct.mqh> //https://www.mql5.com/zh/code/47932 INPUT_STRUCT inInputs; MACROS_INPUT(double, X1, 0); MACROS_INPUT(double, Y1, 0); MACROS_INPUT(double, X2, 0); MACROS_INPUT(double, Y2, 0); MACROS_INPUT(double, X3, 0); MACROS_INPUT(double, Y3, 0); #include <Math\Functions.mqh> //https://www.mql5.com/zh/articles/13951 double OnTester() { static C_Hilly Hilly; double Arg[]; const int Amount = inInputs.ToArray(Arg) >> 1; return(Hilly.CalcFunc(Arg, Amount)); } #include <fxsaber\Optimization\Optimization_Addon.mqh> //https://www.mql5.com/ru/blogs/post/755815 设置。 自定义。 自定义 PSO Finished 5580 of 30000 planned passes: true BestResult = 0.7742122055850458: X1 = -1.48, Y1 = 0.63, X2 = -1.48, Y2 = 0.63, X3 = 2.5100000000000002, Y3 = -3.0 Check = 0.7742122055850458: X1 = -1.48, Y1 = 0.63, X2 = -1.48, Y2 = 0.63, X3 = 2.5100000000000002, Y3 = -3.0 01: OPTIMIZATION_METHOD_AO_Micro_AIS OPTIMIZATION_METHOD_AO_Micro_AIS BestResult = 0.859449852020672: X1 = -1.51, Y1 = 0.5800000000000001, X2 = -1.4, Y2 = 0.5700000000000003, X3 = 0.52, Y3 = -0.48999999999999977 Check = 0.859449852020672: X1 = -1.51, Y1 = 0.5800000000000001, X2 = -1.4, Y2 = 0.5700000000000003, X3 = 0.52, Y3 = -0.48999999999999977 02: OPTIMIZATION_METHOD_AO_POES OPTIMIZATION_METHOD_AO_POES BestResult = 0.9647613369275468: X1 = -1.49, Y1 = 0.6499999999999999, X2 = -1.41, Y2 = 0.56, X3 = -1.54, Y3 = 0.6499999999999999 Check = 0.9647613369275468: X1 = -1.49, Y1 = 0.6499999999999999, X2 = -1.41, Y2 = 0.56, X3 = -1.54, Y3 = 0.6499999999999999 03: OPTIMIZATION_METHOD_AO_P_O_ES OPTIMIZATION_METHOD_AO_P_O_ES BestResult = 0.9858374371924213: X1 = -1.48, Y1 = 0.5800000000000001, X2 = -1.46, Y2 = 0.5800000000000001, X3 = -1.47, Y3 = 0.6499999999999999 Check = 0.9858374371924213: X1 = -1.48, Y1 = 0.5800000000000001, X2 = -1.46, Y2 = 0.5800000000000001, X3 = -1.47, Y3 = 0.6499999999999999 04: OPTIMIZATION_METHOD_AO_SC OPTIMIZATION_METHOD_AO_SC BestResult = 0.46044186528197245: X1 = -1.66, Y1 = 0.6499999999999999, X2 = 2.7300000000000004, Y2 = 1.9699999999999998, X3 = 2.24, Y3 = -1.3599999999999999 Check = 0.46044186528197245: X1 = -1.66, Y1 = 0.6499999999999999, X2 = 2.7300000000000004, Y2 = 1.9699999999999998, X3 = 2.24, Y3 = -1.3599999999999999 05: OPTIMIZATION_METHOD_AO_SIA OPTIMIZATION_METHOD_AO_SIA BestResult = 0.5396179505233242: X1 = -1.33, Y1 = 0.5100000000000002, X2 = -1.49, Y2 = 1.4900000000000002, X3 = -1.8, Y3 = 0.56 Check = 0.5396179505233242: X1 = -1.33, Y1 = 0.5100000000000002, X2 = -1.49, Y2 = 1.4900000000000002, X3 = -1.8, Y3 = 0.56 06: OPTIMIZATION_METHOD_AO_SA OPTIMIZATION_METHOD_AO_SA BestResult = 0.5321147995285683: X1 = 1.38, Y1 = -1.58, X2 = -1.38, Y2 = 0.45999999999999996, X3 = 2.46, Y3 = 1.2800000000000002 Check = 0.5321147995285683: X1 = 1.38, Y1 = -1.58, X2 = -1.38, Y2 = 0.45999999999999996, X3 = 2.46, Y3 = 1.2800000000000002 07: OPTIMIZATION_METHOD_AO_NMm OPTIMIZATION_METHOD_AO_NMm BestResult = 0.9920100032939798: X1 = -1.44, Y1 = 0.6099999999999999, X2 = -1.5, Y2 = 0.6000000000000001, X3 = -1.48, Y3 = 0.6200000000000001 Check = 0.9920100032939798: X1 = -1.44, Y1 = 0.6099999999999999, X2 = -1.5, Y2 = 0.6000000000000001, X3 = -1.48, Y3 = 0.6200000000000001 08: OPTIMIZATION_METHOD_AO_DE OPTIMIZATION_METHOD_AO_DE BestResult = 0.5455473633280449: X1 = -1.5, Y1 = 0.5700000000000003, X2 = -0.029999999999999805, Y2 = -0.8900000000000001, X3 = 1.42, Y3 = -1.3 Check = 0.5455473633280449: X1 = -1.5, Y1 = 0.5700000000000003, X2 = -0.029999999999999805, Y2 = -0.8900000000000001, X3 = 1.42, Y3 = -1.3 09: OPTIMIZATION_METHOD_AO_SDOm OPTIMIZATION_METHOD_AO_SDOm BestResult = 0.7851698884766712: X1 = -1.48, Y1 = 0.6099999999999999, X2 = -0.48999999999999977, Y2 = -2.57, X3 = -1.48, Y3 = 0.6099999999999999 Check = 0.7851698884766712: X1 = -1.48, Y1 = 0.6099999999999999, X2 = -0.48999999999999977, Y2 = -2.57, X3 = -1.48, Y3 = 0.6099999999999999 10: OPTIMIZATION_METHOD_AO_IWDm OPTIMIZATION_METHOD_AO_IWDm BestResult = 0.541122421125687: X1 = 1.6100000000000003, Y1 = 2.7300000000000004, X2 = -1.52, Y2 = 0.6299999999999999, X3 = -1.63, Y3 = 3.0 Check = 0.541122421125687: X1 = 1.6100000000000003, Y1 = 2.7300000000000004, X2 = -1.52, Y2 = 0.6299999999999999, X3 = -1.63, Y3 = 3.0 11: OPTIMIZATION_METHOD_AO_CSS OPTIMIZATION_METHOD_AO_CSS BestResult = 0.5193274099236366: X1 = -1.52, Y1 = 0.6699999999999999, X2 = 0.2400000000000002, Y2 = 2.24, X3 = -1.78, Y3 = -2.29 Check = 0.5193274099236366: X1 = -1.52, Y1 = 0.6699999999999999, X2 = 0.2400000000000002, Y2 = 2.24, X3 = -1.78, Y3 = -2.29 12: OPTIMIZATION_METHOD_AO_SDS OPTIMIZATION_METHOD_AO_SDS BestResult = 0.7382103272996998: X1 = -1.41, Y1 = 0.5899999999999999, X2 = 3.0, Y2 = 1.42, X3 = -1.43, Y3 = 0.6800000000000002 Check = 0.7382103272996998: X1 = -1.41, Y1 = 0.5899999999999999, X2 = 3.0, Y2 = 1.42, X3 = -1.43, Y3 = 0.6800000000000002 13: OPTIMIZATION_METHOD_AO_SDSm OPTIMIZATION_METHOD_AO_SDSm BestResult = 0.6404573711868022: X1 = -1.7, Y1 = 0.5999999999999996, X2 = -2.1, Y2 = -2.85, X3 = -1.55, Y3 = 0.5800000000000001 Check = 0.6404573711868022: X1 = -1.7, Y1 = 0.5999999999999996, X2 = -2.1, Y2 = -2.85, X3 = -1.55, Y3 = 0.5800000000000001 14: OPTIMIZATION_METHOD_AO_MEC OPTIMIZATION_METHOD_AO_MEC BestResult = 0.5746017381403192: X1 = -2.4299999999999997, Y1 = 1.4800000000000004, X2 = -1.47, Y2 = 0.6200000000000001, X3 = 0.52, Y3 = 2.4699999999999998 Check = 0.5746017381403192: X1 = -2.4299999999999997, Y1 = 1.4800000000000004, X2 = -1.47, Y2 = 0.6200000000000001, X3 = 0.52, Y3 = 2.4699999999999998 15: OPTIMIZATION_METHOD_AO_SFL OPTIMIZATION_METHOD_AO_SFL BestResult = 0.6012543161639043: X1 = -1.48, Y1 = 0.71, X2 = -1.48, Y2 = 0.9300000000000002, X3 = -1.18, Y3 = 1.4699999999999998 Check = 0.6012543161639043: X1 = -1.48, Y1 = 0.71, X2 = -1.48, Y2 = 0.9300000000000002, X3 = -1.18, Y3 = 1.4699999999999998 16: OPTIMIZATION_METHOD_AO_EM OPTIMIZATION_METHOD_AO_EM BestResult = 0.49859345948875217: X1 = -1.26, Y1 = 1.37, X2 = 2.1799999999999997, Y2 = -0.5299999999999998, X3 = -1.5, Y3 = 0.5 Check = 0.49859345948875217: X1 = -1.26, Y1 = 1.37, X2 = 2.1799999999999997, Y2 = -0.5299999999999998, X3 = -1.5, Y3 = 0.5 17: OPTIMIZATION_METHOD_AO_SSG OPTIMIZATION_METHOD_AO_SSG BestResult = 0.9248462969380026: X1 = -1.42, Y1 = 0.6499999999999999, X2 = -1.58, Y2 = 0.54, X3 = -1.42, Y3 = 0.5500000000000003 Check = 0.9248462969380026: X1 = -1.42, Y1 = 0.6499999999999999, X2 = -1.58, Y2 = 0.54, X3 = -1.42, Y3 = 0.5500000000000003 18: OPTIMIZATION_METHOD_AO_MA OPTIMIZATION_METHOD_AO_MA BestResult = 0.5319860043547983: X1 = 0.6000000000000001, Y1 = 1.7800000000000002, X2 = -1.42, Y2 = 0.5500000000000003, X3 = -1.48, Y3 = -2.59 Check = 0.5319860043547983: X1 = 0.6000000000000001, Y1 = 1.7800000000000002, X2 = -1.42, Y2 = 0.5500000000000003, X3 = -1.48, Y3 = -2.59 19: OPTIMIZATION_METHOD_AO_HS OPTIMIZATION_METHOD_AO_HS Error optimization! 20: OPTIMIZATION_METHOD_AO_GSA OPTIMIZATION_METHOD_AO_GSA BestResult = 0.571513952024667: X1 = 1.5700000000000003, Y1 = -1.48, X2 = -1.39, Y2 = 0.71, X3 = 1.5499999999999998, Y3 = -0.040000000000000036 Check = 0.571513952024667: X1 = 1.5700000000000003, Y1 = -1.48, X2 = -1.39, Y2 = 0.71, X3 = 1.5499999999999998, Y3 = -0.040000000000000036 21: OPTIMIZATION_METHOD_AO_GSA_Stars OPTIMIZATION_METHOD_AO_GSA_Stars Error optimization! 22: OPTIMIZATION_METHOD_AO_BFO OPTIMIZATION_METHOD_AO_BFO BestResult = 0.673690532910006: X1 = 1.5499999999999998, Y1 = 1.3899999999999997, X2 = 0.5, Y2 = -0.52, X3 = -1.47, Y3 = 0.6400000000000001 Check = 0.673690532910006: X1 = 1.5499999999999998, Y1 = 1.3899999999999997, X2 = 0.5, Y2 = -0.52, X3 = -1.47, Y3 = 0.6400000000000001 23: OPTIMIZATION_METHOD_AO_IWO OPTIMIZATION_METHOD_AO_IWO BestResult = 0.5624806395733428: X1 = 1.4900000000000002, Y1 = 1.2999999999999998, X2 = 0.43999999999999995, Y2 = -0.48999999999999977, X3 = -1.42, Y3 = 0.6400000000000001 Check = 0.6266957817897628: X1 = 1.4900000000000002, Y1 = 1.2999999999999998, X2 = 0.43999999999999995, Y2 = -0.48999999999999977, X3 = -1.42, Y3 = 0.6400000000000001 24: OPTIMIZATION_METHOD_AO_BA OPTIMIZATION_METHOD_AO_BA BestResult = 0.5690853945437194: X1 = 0.48, Y1 = -1.54, X2 = -1.48, Y2 = 0.6200000000000001, X3 = -0.44999999999999973, Y3 = 2.5200000000000005 Check = 0.5690853945437194: X1 = 0.48, Y1 = -1.54, X2 = -1.48, Y2 = 0.6200000000000001, X3 = -0.44999999999999973, Y3 = 2.5200000000000005 25: OPTIMIZATION_METHOD_AO_FAm OPTIMIZATION_METHOD_AO_FAm BestResult = 0.5778309203162327: X1 = -1.47, Y1 = 0.6200000000000001, X2 = -1.47, Y2 = 2.5600000000000005, X3 = -2.54, Y3 = 2.3600000000000003 Check = 0.5778309203162327: X1 = -1.47, Y1 = 0.6200000000000001, X2 = -1.47, Y2 = 2.5600000000000005, X3 = -2.54, Y3 = 2.3600000000000003 26: OPTIMIZATION_METHOD_AO_FSS OPTIMIZATION_METHOD_AO_FSS BestResult = 0.4978927704570393: X1 = 0.010000000000000231, Y1 = 0.3200000000000003, X2 = -2.08, Y2 = -1.8, X3 = -1.48, Y3 = 0.6000000000000001 Check = 0.4978927704570393: X1 = 0.010000000000000231, Y1 = 0.3200000000000003, X2 = -2.08, Y2 = -1.8, X3 = -1.48, Y3 = 0.6000000000000001 27: OPTIMIZATION_METHOD_AO_COAm OPTIMIZATION_METHOD_AO_COAm BestResult = 0.6778174074019874: X1 = -2.2800000000000002, Y1 = 0.14000000000000012, X2 = -1.3499999999999999, Y2 = 0.6600000000000001, X3 = -1.55, Y3 = 0.54 Check = 0.6778174074019874: X1 = -2.2800000000000002, Y1 = 0.14000000000000012, X2 = -1.3499999999999999, Y2 = 0.6600000000000001, X3 = -1.55, Y3 = 0.54 28: OPTIMIZATION_METHOD_AO_GWO OPTIMIZATION_METHOD_AO_GWO BestResult = 0.542753660101771: X1 = -0.1299999999999999, Y1 = 0.14000000000000012, X2 = 1.5700000000000003, Y2 = -1.68, X3 = -1.5, Y3 = 0.7200000000000002 Check = 0.542753660101771: X1 = -0.1299999999999999, Y1 = 0.14000000000000012, X2 = 1.5700000000000003, Y2 = -1.68, X3 = -1.5, Y3 = 0.7200000000000002 29: OPTIMIZATION_METHOD_AO_ABC OPTIMIZATION_METHOD_AO_ABC BestResult = 0.49786755065740795: X1 = -0.040000000000000036, Y1 = 0.29000000000000004, X2 = -2.0300000000000002, Y2 = -1.76, X3 = -1.49, Y3 = 0.6099999999999999 Check = 0.49786755065740795: X1 = -0.040000000000000036, Y1 = 0.29000000000000004, X2 = -2.0300000000000002, Y2 = -1.76, X3 = -1.49, Y3 = 0.6099999999999999 30: OPTIMIZATION_METHOD_AO_ACOm OPTIMIZATION_METHOD_AO_ACOm BestResult = 0.8716708506315909: X1 = -1.49, Y1 = 0.6600000000000001, X2 = -1.51, Y2 = 0.6000000000000001, X3 = 0.54, Y3 = -0.48999999999999977 Check = 0.8716708506315909: X1 = -1.49, Y1 = 0.6600000000000001, X2 = -1.51, Y2 = 0.6000000000000001, X3 = 0.54, Y3 = -0.48999999999999977 31: OPTIMIZATION_METHOD_AO_PSO OPTIMIZATION_METHOD_AO_PSO BestResult = 0.5508486039662627: X1 = 1.4100000000000001, Y1 = 1.4400000000000004, X2 = -1.49, Y2 = 0.71, X3 = 2.38, Y3 = 1.5 Check = 0.5508486039662627: X1 = 1.4100000000000001, Y1 = 1.4400000000000004, X2 = -1.49, Y2 = 0.71, X3 = 2.38, Y3 = 1.5 32: OPTIMIZATION_METHOD_AO_RND OPTIMIZATION_METHOD_AO_RND BestResult = 0.5036403607427178: X1 = -2.96, Y1 = -0.54, X2 = 0.8799999999999999, Y2 = -1.64, X3 = -1.58, Y3 = 0.6200000000000001 Check = 0.5036403607427178: X1 = -2.96, Y1 = -0.54, X2 = 0.8799999999999999, Y2 = -1.64, X3 = -1.58, Y3 = 0.6200000000000001 Andrey Dik 2024.01.21 06:46 #29 fxsaber #:根据这种方法,可以进行希利功能测试。 在这里,情况发生了变化。 PSO 和 IWDm 在结果列表中名列前茅,显示的数值处于极限范围,这并不是很好。 OPTIMIZATION_METHOD_AO_GSA_Stars GSA_Stars 只是一个玩具,用于身体运动的视觉模拟,可以去掉。 而 HS 出于某种原因,是非常有趣的算法。 fxsaber 2024.01.21 11:12 #30 Andrey Dik #:由于某种原因,HS Erorit 的算法非常有趣。在 Optimisation.mqh 中就有相关介绍。 // 优化_C_AO_HS #define MACROS_OPTIMIZATION_INIT , 0.9, 0.1, 0.2, epochCount // 不能在不修改源代码的情况下进行调整。 // 名称匹配:C_AO_HS::h[] и S_Harmony::h. 如果您更改源代码(使名称不匹配),我可以对其进行改编。 12345 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
max = pi/2 + n*2*pi
其中 n 为任意整数
限制条件在哪里?
实际上,我是在跟fxsaber 专门讨论他的 FF
,他不想用 mashka 来切换...
实际上,我是在和fxsaber 谈论他的 FF
,而不是想改用 mashki...
关于将优化技术应用于技术合作的问题。我很难想象同时优化十个以上输入的 TS 是合理的。
因此,TS 的 "自由度 "似乎不到十个。这包括对优化算法的一些要求--"酷 "不再是普遍性(优化具有大量输入的超级复杂事物)。
也就是说,对于 TC 来说,你需要了解你真正想从优化中得到什么。
关于将优化应用于 TC 的问题。我很难想象同时对十多个输入进行优化是合理的。
因此,TS 的 "自由度 "似乎不足一打。因此,对优化算法提出了一些要求--其酷炫之处不再是多功能性(优化具有大量输入的超级复杂事物)。
也就是说,对于 TC 来说,你需要了解你真正想从优化中得到什么。
我说的是 TC。
我说的是 TC。
某些类型的算法在使用多重复制(模拟多维性)的基准上可能会高估结果。
根据这种方法,可以使用 Hilly 函数进行测试。
设置。
自定义。
自定义
根据这种方法,可以进行希利功能测试。
在这里,情况发生了变化。
PSO 和 IWDm 在结果列表中名列前茅,显示的数值处于极限范围,这并不是很好。
GSA_Stars 只是一个玩具,用于身体运动的视觉模拟,可以去掉。
而 HS 出于某种原因,是非常有趣的算法。
由于某种原因,HS Erorit 的算法非常有趣。
在 Optimisation.mqh 中就有相关介绍。