算法优化锦标赛。 - 页 20 1...131415161718192021222324252627...132 新评论 Dmitry Fedoseev 2016.06.16 11:07 #191 为了保持你的眼睛,只需想象它只是一个带有若干参数的函数。以下是同一条目中的内容。y=f(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10);这是否会导致你被洗脑? Реter Konow 2016.06.16 11:14 #192 Dmitry Fedoseev:...5维,6维,7维,8维,9维,10维,11维,12维...更多? 啊哈哈......))他们是这样叫的吗? Реter Konow 2016.06.16 11:16 #193 Dmitry Fedoseev:我已经写过,没有必要纠结于多维空间的表示。一个函数可以有任何数量的参数--很明显,很简单。为了准确表示二维图形和三维图形,请在上面寻找最大值或最小值。所有其余的必须通过编程中的正确方法来完成:一个定义参数数量的参数,按照这个数量的动态数组,按照这个参数重复的循环。将自己限制在一个或两个可优化的参数上,但要让它自动工作,只通过设置属性,定义参数的数量。从那里,可以分配任何数量的参数。 在我看来,你混淆了分析函数的参数数量和计算线坐标的测量数量。 Dmitry Fedoseev 2016.06.16 11:16 #194 Реter Konow: 啊哈哈......))他们是这样叫的吗? 这是没有名字的。我不认为他们已经想出了超出第四维度的任何名字。也许有名字,我不知道。这在原则上并没有改变什么。 Dmitry Fedoseev 2016.06.16 11:17 #195 Реter Konow: 在我看来,你似乎把分析函数的参数数量与计算线坐标的测量数量混为一谈了。 不,我不是。我对此没有意见。 Реter Konow 2016.06.16 11:20 #196 Dmitry Fedoseev: 这还不包括标题。我不认为他们已经想出了超出第四维度的任何名字。也许有名字,我不知道。这在原则上并没有改变什么。 好吧,如果在第四维度之后没有以下的名称,那么我们为什么还需要它们呢?让我们首先自信地在我们的三个空间维度和第四个时间维度上定位。))) Реter Konow 2016.06.16 11:22 #197 Dmitry Fedoseev: 不,我没有。我对这一点没有意见。 你看,当谈到FF参数的数量时,立即出现了额外的对象措施的问题。这里是混乱的根源。分析函数的参数数与坐标轴无关。而且它不会以任何方式增加它们。 Dmitry Fedoseev 2016.06.16 11:24 #198 Реter Konow: 你看,当涉及到FF参数的数量时,立即提出了额外的对象尺寸问题。这就是混乱的根源。分析函数的参数数与坐标轴无关。而且它不会以任何方式增加它们。 它确实如此。一个参数就是一个轴。另一个轴的价值。 Реter Konow 2016.06.16 11:27 #199 Dmitry Fedoseev: 它确实如此。一个参数就是一个轴。另一个轴为一个值。 用简单的语言解释一下你为什么这么想? Реter Konow 2016.06.16 11:38 #200 二次函数是一个抛物线。一个简单的解释。http://fizmat.by/math/function/quadratic_function即使你给它的函数添加一百万个额外的参数,抛物线仍然会出现在二维图形上。 1...131415161718192021222324252627...132 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
为了保持你的眼睛,只需想象它只是一个带有若干参数的函数。
以下是同一条目中的内容。
y=f(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10);
这是否会导致你被洗脑?
...5维,6维,7维,8维,9维,10维,11维,12维...
更多?
我已经写过,没有必要纠结于多维空间的表示。一个函数可以有任何数量的参数--很明显,很简单。为了准确表示二维图形和三维图形,请在上面寻找最大值或最小值。所有其余的必须通过编程中的正确方法来完成:一个定义参数数量的参数,按照这个数量的动态数组,按照这个参数重复的循环。
将自己限制在一个或两个可优化的参数上,但要让它自动工作,只通过设置属性,定义参数的数量。从那里,可以分配任何数量的参数。
啊哈哈......))他们是这样叫的吗?
在我看来,你似乎把分析函数的参数数量与计算线坐标的测量数量混为一谈了。
这还不包括标题。我不认为他们已经想出了超出第四维度的任何名字。也许有名字,我不知道。这在原则上并没有改变什么。
不,我没有。我对这一点没有意见。
你看,当涉及到FF参数的数量时,立即提出了额外的对象尺寸问题。这就是混乱的根源。分析函数的参数数与坐标轴无关。而且它不会以任何方式增加它们。
它确实如此。一个参数就是一个轴。另一个轴为一个值。
二次函数是一个抛物线。一个简单的解释。http://fizmat.by/math/function/quadratic_function
即使你给它的函数添加一百万个额外的参数,抛物线仍然会出现在二维图形上。