Discusión sobre el artículo "Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)" - página 3

 
Vladimir Suslov #:

max = pi/2 + n*2*pi

donde n es cualquier número entero


¿dónde está la restricción?


¿puede ser el período de la bolsa un número negativo? no? aquí está la restricción de abajo.
¿puede el periodo del volante ser mayor que 10000? puede, pero no tiene sentido, así que aquí está la restricción de arriba.
etc. los problemas prácticos tienen restricciones, por eso son N-completos (aunque no sólo eso), de lo contrario no tiene sentido práctico aplicar algoritmos de optimización - se tardaría mucho tiempo. piénsalo.
 
Andrey Dik #:

¿el periodo mach puede ser un número negativo? ¿no? he aquí la restricción de abajo.
¿puede ser el periodo del verificador mayor que 10000? puede, pero no tiene sentido, esa es la restricción de arriba.
etc. los problemas prácticos tienen restricciones, por eso son N-completos (aunque no sólo eso)

En realidad yo estaba hablando con fxsaber específicamente acerca de su FF

ningún deseo de cambiar a mashka con...

fxsaber
fxsaber
  • 2024.01.20
  • www.mql5.com
Профиль трейдера
 
Vladimir Suslov #:

en realidad yo estaba hablando con fxsaber específicamente acerca de su FF

ningún deseo de cambiar a mashki con...

Ah, lo siento. Sigue hablando, perdón por interrumpir tu conversación.
 

Sobre el tema de aplicar la optimización a las CT. Me resulta difícil imaginar una ST que sea razonable optimizar simultáneamente para más de diez entradas.

Por lo tanto, parece que los "grados de libertad" de una ST son menos de una docena. Esto incluye algunos requisitos para los algoritmos de optimización: lo genial ya no es la universalidad (optimizar algo supercomplejo con un número enorme de entradas).


Es decir, para la CT hay que entender lo que realmente se quiere obtener de la optimización.

 
fxsaber #:

Sobre el tema de aplicar la optimización a las TS. Me resulta difícil imaginar un ST en el que sea razonable optimizar simultáneamente más de diez entradas.

Por lo tanto, parece que los "grados de libertad" de una TS son menos de una docena. De ahí algunas exigencias a los algoritmos de optimización: la gracia ya no está en la versatilidad (optimizar una cosa supercompleja con un número enorme de entradas).


Es decir, para la CT hay que entender qué se quiere obtener realmente de la optimización.


El campo de aplicación de la optimización de más de 10 parámetros es muy amplio.
El primero son los patrones.
En segundo lugar, las carteras activas.
Tercero - redes neuronales y combina, "hardware" en vivo.
Cuarto: todo lo que ahora puede hablarnos desde detrás de una pantalla pronto será aún más inteligente gracias a sistemas autoadaptativos con miles o miles de millones de parámetros.

La vida surgió de la optimización de los aminoácidos, igual que el primer .... Eso también es optimización, la primera en pasar la prueba de la Optimización Global.
 
Andrey Dik #:
El campo de aplicación de la optimización de más de 10 parámetros es muy amplio.

Me refería a TC.

 
fxsaber #:

Hablaba de TC.


Yo también.
 
Andrey Dik #:

algunos tipos de algoritmos pueden sobrestimar los resultados en puntos de referencia que utilizan duplicación múltiple (para simular la multidimensionalidad).

Según esta metodología. pruebas con la función Hilly.

#define  dInput01 X1
#define  dInput02 Y1
#define  dInput03 X2
#define  dInput04 Y2
#define  dInput05 X3
#define  dInput06 Y3

#include <fxsaber\Input_Struct\Input_Struct.mqh> // https://www.mql5.com/es/code/47932

INPUT_STRUCT inInputs;

MACROS_INPUT(double, X1, 0);
MACROS_INPUT(double, Y1, 0);
MACROS_INPUT(double, X2, 0);
MACROS_INPUT(double, Y2, 0);
MACROS_INPUT(double, X3, 0);
MACROS_INPUT(double, Y3, 0);

#include <Math\Functions.mqh> // https://www.mql5.com/es/articles/13951

double OnTester()
{
  static C_Hilly Hilly;

  double Arg[];
  const int Amount = inInputs.ToArray(Arg) >> 1;
  
  return(Hilly.CalcFunc(Arg, Amount));
}

#include <fxsaber\Optimization\Optimization_Addon.mqh> // https://www.mql5.com/ru/blogs/post/755815


Configuración.


Personalizado.


Personalizado.

PSO Finished 5580 of 30000 planned passes: true
BestResult = 0.7742122055850458: X1 = -1.48, Y1 = 0.63, X2 = -1.48, Y2 = 0.63, X3 = 2.5100000000000002, Y3 = -3.0
Check = 0.7742122055850458: X1 = -1.48, Y1 = 0.63, X2 = -1.48, Y2 = 0.63, X3 = 2.5100000000000002, Y3 = -3.0

01: OPTIMIZATION_METHOD_AO_Micro_AIS
OPTIMIZATION_METHOD_AO_Micro_AIS
BestResult = 0.859449852020672: X1 = -1.51, Y1 = 0.5800000000000001, X2 = -1.4, Y2 = 0.5700000000000003, X3 = 0.52, Y3 = -0.48999999999999977
Check = 0.859449852020672: X1 = -1.51, Y1 = 0.5800000000000001, X2 = -1.4, Y2 = 0.5700000000000003, X3 = 0.52, Y3 = -0.48999999999999977

02: OPTIMIZATION_METHOD_AO_POES
OPTIMIZATION_METHOD_AO_POES
BestResult = 0.9647613369275468: X1 = -1.49, Y1 = 0.6499999999999999, X2 = -1.41, Y2 = 0.56, X3 = -1.54, Y3 = 0.6499999999999999
Check = 0.9647613369275468: X1 = -1.49, Y1 = 0.6499999999999999, X2 = -1.41, Y2 = 0.56, X3 = -1.54, Y3 = 0.6499999999999999

03: OPTIMIZATION_METHOD_AO_P_O_ES
OPTIMIZATION_METHOD_AO_P_O_ES
BestResult = 0.9858374371924213: X1 = -1.48, Y1 = 0.5800000000000001, X2 = -1.46, Y2 = 0.5800000000000001, X3 = -1.47, Y3 = 0.6499999999999999
Check = 0.9858374371924213: X1 = -1.48, Y1 = 0.5800000000000001, X2 = -1.46, Y2 = 0.5800000000000001, X3 = -1.47, Y3 = 0.6499999999999999

04: OPTIMIZATION_METHOD_AO_SC
OPTIMIZATION_METHOD_AO_SC
BestResult = 0.46044186528197245: X1 = -1.66, Y1 = 0.6499999999999999, X2 = 2.7300000000000004, Y2 = 1.9699999999999998, X3 = 2.24, Y3 = -1.3599999999999999
Check = 0.46044186528197245: X1 = -1.66, Y1 = 0.6499999999999999, X2 = 2.7300000000000004, Y2 = 1.9699999999999998, X3 = 2.24, Y3 = -1.3599999999999999

05: OPTIMIZATION_METHOD_AO_SIA
OPTIMIZATION_METHOD_AO_SIA
BestResult = 0.5396179505233242: X1 = -1.33, Y1 = 0.5100000000000002, X2 = -1.49, Y2 = 1.4900000000000002, X3 = -1.8, Y3 = 0.56
Check = 0.5396179505233242: X1 = -1.33, Y1 = 0.5100000000000002, X2 = -1.49, Y2 = 1.4900000000000002, X3 = -1.8, Y3 = 0.56

06: OPTIMIZATION_METHOD_AO_SA
OPTIMIZATION_METHOD_AO_SA
BestResult = 0.5321147995285683: X1 = 1.38, Y1 = -1.58, X2 = -1.38, Y2 = 0.45999999999999996, X3 = 2.46, Y3 = 1.2800000000000002
Check = 0.5321147995285683: X1 = 1.38, Y1 = -1.58, X2 = -1.38, Y2 = 0.45999999999999996, X3 = 2.46, Y3 = 1.2800000000000002

07: OPTIMIZATION_METHOD_AO_NMm
OPTIMIZATION_METHOD_AO_NMm
BestResult = 0.9920100032939798: X1 = -1.44, Y1 = 0.6099999999999999, X2 = -1.5, Y2 = 0.6000000000000001, X3 = -1.48, Y3 = 0.6200000000000001
Check = 0.9920100032939798: X1 = -1.44, Y1 = 0.6099999999999999, X2 = -1.5, Y2 = 0.6000000000000001, X3 = -1.48, Y3 = 0.6200000000000001

08: OPTIMIZATION_METHOD_AO_DE
OPTIMIZATION_METHOD_AO_DE
BestResult = 0.5455473633280449: X1 = -1.5, Y1 = 0.5700000000000003, X2 = -0.029999999999999805, Y2 = -0.8900000000000001, X3 = 1.42, Y3 = -1.3
Check = 0.5455473633280449: X1 = -1.5, Y1 = 0.5700000000000003, X2 = -0.029999999999999805, Y2 = -0.8900000000000001, X3 = 1.42, Y3 = -1.3

09: OPTIMIZATION_METHOD_AO_SDOm
OPTIMIZATION_METHOD_AO_SDOm
BestResult = 0.7851698884766712: X1 = -1.48, Y1 = 0.6099999999999999, X2 = -0.48999999999999977, Y2 = -2.57, X3 = -1.48, Y3 = 0.6099999999999999
Check = 0.7851698884766712: X1 = -1.48, Y1 = 0.6099999999999999, X2 = -0.48999999999999977, Y2 = -2.57, X3 = -1.48, Y3 = 0.6099999999999999

10: OPTIMIZATION_METHOD_AO_IWDm
OPTIMIZATION_METHOD_AO_IWDm
BestResult = 0.541122421125687: X1 = 1.6100000000000003, Y1 = 2.7300000000000004, X2 = -1.52, Y2 = 0.6299999999999999, X3 = -1.63, Y3 = 3.0
Check = 0.541122421125687: X1 = 1.6100000000000003, Y1 = 2.7300000000000004, X2 = -1.52, Y2 = 0.6299999999999999, X3 = -1.63, Y3 = 3.0

11: OPTIMIZATION_METHOD_AO_CSS
OPTIMIZATION_METHOD_AO_CSS
BestResult = 0.5193274099236366: X1 = -1.52, Y1 = 0.6699999999999999, X2 = 0.2400000000000002, Y2 = 2.24, X3 = -1.78, Y3 = -2.29
Check = 0.5193274099236366: X1 = -1.52, Y1 = 0.6699999999999999, X2 = 0.2400000000000002, Y2 = 2.24, X3 = -1.78, Y3 = -2.29

12: OPTIMIZATION_METHOD_AO_SDS
OPTIMIZATION_METHOD_AO_SDS
BestResult = 0.7382103272996998: X1 = -1.41, Y1 = 0.5899999999999999, X2 = 3.0, Y2 = 1.42, X3 = -1.43, Y3 = 0.6800000000000002
Check = 0.7382103272996998: X1 = -1.41, Y1 = 0.5899999999999999, X2 = 3.0, Y2 = 1.42, X3 = -1.43, Y3 = 0.6800000000000002

13: OPTIMIZATION_METHOD_AO_SDSm
OPTIMIZATION_METHOD_AO_SDSm
BestResult = 0.6404573711868022: X1 = -1.7, Y1 = 0.5999999999999996, X2 = -2.1, Y2 = -2.85, X3 = -1.55, Y3 = 0.5800000000000001
Check = 0.6404573711868022: X1 = -1.7, Y1 = 0.5999999999999996, X2 = -2.1, Y2 = -2.85, X3 = -1.55, Y3 = 0.5800000000000001

14: OPTIMIZATION_METHOD_AO_MEC
OPTIMIZATION_METHOD_AO_MEC
BestResult = 0.5746017381403192: X1 = -2.4299999999999997, Y1 = 1.4800000000000004, X2 = -1.47, Y2 = 0.6200000000000001, X3 = 0.52, Y3 = 2.4699999999999998
Check = 0.5746017381403192: X1 = -2.4299999999999997, Y1 = 1.4800000000000004, X2 = -1.47, Y2 = 0.6200000000000001, X3 = 0.52, Y3 = 2.4699999999999998

15: OPTIMIZATION_METHOD_AO_SFL
OPTIMIZATION_METHOD_AO_SFL
BestResult = 0.6012543161639043: X1 = -1.48, Y1 = 0.71, X2 = -1.48, Y2 = 0.9300000000000002, X3 = -1.18, Y3 = 1.4699999999999998
Check = 0.6012543161639043: X1 = -1.48, Y1 = 0.71, X2 = -1.48, Y2 = 0.9300000000000002, X3 = -1.18, Y3 = 1.4699999999999998

16: OPTIMIZATION_METHOD_AO_EM
OPTIMIZATION_METHOD_AO_EM
BestResult = 0.49859345948875217: X1 = -1.26, Y1 = 1.37, X2 = 2.1799999999999997, Y2 = -0.5299999999999998, X3 = -1.5, Y3 = 0.5
Check = 0.49859345948875217: X1 = -1.26, Y1 = 1.37, X2 = 2.1799999999999997, Y2 = -0.5299999999999998, X3 = -1.5, Y3 = 0.5

17: OPTIMIZATION_METHOD_AO_SSG
OPTIMIZATION_METHOD_AO_SSG
BestResult = 0.9248462969380026: X1 = -1.42, Y1 = 0.6499999999999999, X2 = -1.58, Y2 = 0.54, X3 = -1.42, Y3 = 0.5500000000000003
Check = 0.9248462969380026: X1 = -1.42, Y1 = 0.6499999999999999, X2 = -1.58, Y2 = 0.54, X3 = -1.42, Y3 = 0.5500000000000003

18: OPTIMIZATION_METHOD_AO_MA
OPTIMIZATION_METHOD_AO_MA
BestResult = 0.5319860043547983: X1 = 0.6000000000000001, Y1 = 1.7800000000000002, X2 = -1.42, Y2 = 0.5500000000000003, X3 = -1.48, Y3 = -2.59
Check = 0.5319860043547983: X1 = 0.6000000000000001, Y1 = 1.7800000000000002, X2 = -1.42, Y2 = 0.5500000000000003, X3 = -1.48, Y3 = -2.59

19: OPTIMIZATION_METHOD_AO_HS
OPTIMIZATION_METHOD_AO_HS

Error optimization!

20: OPTIMIZATION_METHOD_AO_GSA
OPTIMIZATION_METHOD_AO_GSA
BestResult = 0.571513952024667: X1 = 1.5700000000000003, Y1 = -1.48, X2 = -1.39, Y2 = 0.71, X3 = 1.5499999999999998, Y3 = -0.040000000000000036
Check = 0.571513952024667: X1 = 1.5700000000000003, Y1 = -1.48, X2 = -1.39, Y2 = 0.71, X3 = 1.5499999999999998, Y3 = -0.040000000000000036

21: OPTIMIZATION_METHOD_AO_GSA_Stars
OPTIMIZATION_METHOD_AO_GSA_Stars

Error optimization!

22: OPTIMIZATION_METHOD_AO_BFO
OPTIMIZATION_METHOD_AO_BFO
BestResult = 0.673690532910006: X1 = 1.5499999999999998, Y1 = 1.3899999999999997, X2 = 0.5, Y2 = -0.52, X3 = -1.47, Y3 = 0.6400000000000001
Check = 0.673690532910006: X1 = 1.5499999999999998, Y1 = 1.3899999999999997, X2 = 0.5, Y2 = -0.52, X3 = -1.47, Y3 = 0.6400000000000001

23: OPTIMIZATION_METHOD_AO_IWO
OPTIMIZATION_METHOD_AO_IWO
BestResult = 0.5624806395733428: X1 = 1.4900000000000002, Y1 = 1.2999999999999998, X2 = 0.43999999999999995, Y2 = -0.48999999999999977, X3 = -1.42, Y3 = 0.6400000000000001
Check = 0.6266957817897628: X1 = 1.4900000000000002, Y1 = 1.2999999999999998, X2 = 0.43999999999999995, Y2 = -0.48999999999999977, X3 = -1.42, Y3 = 0.6400000000000001

24: OPTIMIZATION_METHOD_AO_BA
OPTIMIZATION_METHOD_AO_BA
BestResult = 0.5690853945437194: X1 = 0.48, Y1 = -1.54, X2 = -1.48, Y2 = 0.6200000000000001, X3 = -0.44999999999999973, Y3 = 2.5200000000000005
Check = 0.5690853945437194: X1 = 0.48, Y1 = -1.54, X2 = -1.48, Y2 = 0.6200000000000001, X3 = -0.44999999999999973, Y3 = 2.5200000000000005

25: OPTIMIZATION_METHOD_AO_FAm
OPTIMIZATION_METHOD_AO_FAm
BestResult = 0.5778309203162327: X1 = -1.47, Y1 = 0.6200000000000001, X2 = -1.47, Y2 = 2.5600000000000005, X3 = -2.54, Y3 = 2.3600000000000003
Check = 0.5778309203162327: X1 = -1.47, Y1 = 0.6200000000000001, X2 = -1.47, Y2 = 2.5600000000000005, X3 = -2.54, Y3 = 2.3600000000000003

26: OPTIMIZATION_METHOD_AO_FSS
OPTIMIZATION_METHOD_AO_FSS
BestResult = 0.4978927704570393: X1 = 0.010000000000000231, Y1 = 0.3200000000000003, X2 = -2.08, Y2 = -1.8, X3 = -1.48, Y3 = 0.6000000000000001
Check = 0.4978927704570393: X1 = 0.010000000000000231, Y1 = 0.3200000000000003, X2 = -2.08, Y2 = -1.8, X3 = -1.48, Y3 = 0.6000000000000001

27: OPTIMIZATION_METHOD_AO_COAm
OPTIMIZATION_METHOD_AO_COAm
BestResult = 0.6778174074019874: X1 = -2.2800000000000002, Y1 = 0.14000000000000012, X2 = -1.3499999999999999, Y2 = 0.6600000000000001, X3 = -1.55, Y3 = 0.54
Check = 0.6778174074019874: X1 = -2.2800000000000002, Y1 = 0.14000000000000012, X2 = -1.3499999999999999, Y2 = 0.6600000000000001, X3 = -1.55, Y3 = 0.54

28: OPTIMIZATION_METHOD_AO_GWO
OPTIMIZATION_METHOD_AO_GWO
BestResult = 0.542753660101771: X1 = -0.1299999999999999, Y1 = 0.14000000000000012, X2 = 1.5700000000000003, Y2 = -1.68, X3 = -1.5, Y3 = 0.7200000000000002
Check = 0.542753660101771: X1 = -0.1299999999999999, Y1 = 0.14000000000000012, X2 = 1.5700000000000003, Y2 = -1.68, X3 = -1.5, Y3 = 0.7200000000000002

29: OPTIMIZATION_METHOD_AO_ABC
OPTIMIZATION_METHOD_AO_ABC
BestResult = 0.49786755065740795: X1 = -0.040000000000000036, Y1 = 0.29000000000000004, X2 = -2.0300000000000002, Y2 = -1.76, X3 = -1.49, Y3 = 0.6099999999999999
Check = 0.49786755065740795: X1 = -0.040000000000000036, Y1 = 0.29000000000000004, X2 = -2.0300000000000002, Y2 = -1.76, X3 = -1.49, Y3 = 0.6099999999999999

30: OPTIMIZATION_METHOD_AO_ACOm
OPTIMIZATION_METHOD_AO_ACOm
BestResult = 0.8716708506315909: X1 = -1.49, Y1 = 0.6600000000000001, X2 = -1.51, Y2 = 0.6000000000000001, X3 = 0.54, Y3 = -0.48999999999999977
Check = 0.8716708506315909: X1 = -1.49, Y1 = 0.6600000000000001, X2 = -1.51, Y2 = 0.6000000000000001, X3 = 0.54, Y3 = -0.48999999999999977

31: OPTIMIZATION_METHOD_AO_PSO
OPTIMIZATION_METHOD_AO_PSO
BestResult = 0.5508486039662627: X1 = 1.4100000000000001, Y1 = 1.4400000000000004, X2 = -1.49, Y2 = 0.71, X3 = 2.38, Y3 = 1.5
Check = 0.5508486039662627: X1 = 1.4100000000000001, Y1 = 1.4400000000000004, X2 = -1.49, Y2 = 0.71, X3 = 2.38, Y3 = 1.5

32: OPTIMIZATION_METHOD_AO_RND
OPTIMIZATION_METHOD_AO_RND
BestResult = 0.5036403607427178: X1 = -2.96, Y1 = -0.54, X2 = 0.8799999999999999, Y2 = -1.64, X3 = -1.58, Y3 = 0.6200000000000001
Check = 0.5036403607427178: X1 = -2.96, Y1 = -0.54, X2 = 0.8799999999999999, Y2 = -1.64, X3 = -1.58, Y3 = 0.6200000000000001
 
fxsaber #:

Según esta metodología, la prueba de la función Hilly.

Aquí, el panorama ha cambiado.

La parte superior en la lista de resultados PSO y IWDm mostró valores en los límites de la gama, esto no es muy bueno.

OPTIMIZATION_METHOD_AO_GSA_Stars

GSA_Stars es sólo un juguete, para la simulación visual del movimiento del cuerpo, se puede quitar.

Y HS por alguna razón, muy interesante algo.

 
Andrey Dik #:

HS erorit por alguna razón, muy interesante algo.

En Optimisation.mqh está escrito al respecto.

// Optimización_C_AO_HS
#define  MACROS_OPTIMIZATION_INIT , 0.9, 0.1, 0.2, epochCount
  // No se puede adaptar sin modificar la fuente.
  // Coincidencia de nombre: C_AO_HS::h[] и S_Harmony::h.
Si cambia la fuente (hacer que el nombre no coincide), puedo adaptarlo.