Diskussion zum Artikel "Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)"
Ich stoße auf den folgenden Fehler
2023.04.12 07:35:20.755 Core 01 2023.03.01 00:00:00 ungültiger Zeigerzugriff in 'NeuroNet.mqh' (2913,18)
2023.04.12 07:35:20.755 Core 01 OnInit kritischer Fehler
2023.04.12 07:35:20.755 Core 01 Tester angehalten, weil OnInit fehlgeschlagen ist
Intel UHD 730
Metatrader build 3661
Was ist mein Grund?
2023.04.13 11:46:35.381 Core 1 2023.01.02 12:00:00 Fehler bei der Ausführung Kernel bool CNeuronMLMHAttentionOCL::SumAndNormilize(CBufferFloat*,CBufferFloat*,CBufferFloat*) MatrixSum: unbekannter OpenCL-Fehler 132640
Was ist mein Grund?
2023.04.13 11:46:35.381 Core 1 2023.01.02 12:00:00 Fehler bei der Ausführung Kernel bool CNeuronMLMHAttentionOCL::SumAndNormilize(CBufferFloat*,CBufferFloat*,CBufferFloat*) MatrixSum: unbekannter OpenCL-Fehler 132640
Versuchen Sie, diese Bibliothek zu verwenden
- Freie Handelsapplikationen
- Über 8.000 Signale zum Kopieren
- Wirtschaftsnachrichten für die Lage an den Finanzmärkte
Sie stimmen der Website-Richtlinie und den Nutzungsbedingungen zu.

Neuer Artikel Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit) :
Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.
Wir haben das Modell trainiert und den EA mit historischen EURUSD H1-Daten für März 2023 getestet. Während des Lernprozesses zeigte der EA während der Testphase Gewinne. Der Gewinn wurde jedoch erzielt, weil der Umfang der durchschnittlichen Ergebnisse der Positionen mit Gewinn größer war als der mit Verlust. Die Anzahl der Gewinner und Verlierer war jedoch ungefähr gleich. Infolgedessen lag der Gewinnfaktor (profit factor) bei 1,12 und der Erholungsfaktor (recovery factor) bei 1,01.
Autor: Dmitriy Gizlyk