Скачать MetaTrader 5
Авторизуйтесь или зарегистрируйтесь, чтобы добавить комментарий
Часто выкладываешь исходный код? Узнай, как это делать правильно!
Дмитрий
1460
Дмитрий 2015.08.19 09:13 
Никак не могу вкурить в эту сеть. Либо я что-то не так делаю при обучении, либо я неправильно понял принцип.
Victor Nikolaev
Модератор
14041
Victor Nikolaev 2015.08.19 12:04  
grell:
Никак не могу вкурить в эту сеть. Либо я что-то не так делаю при обучении, либо я неправильно понял принцип.
Расскажи как понял. Гадать никто не хочет
Дмитрий
1460
Дмитрий 2015.08.19 12:19  
Само собой... Есть массив с входными данными in[n][12]. есть выходной слой out[12]. есть набор весов w[12][12]. Вычисляю для каждого n выходной слой, в котором выбираю победителя. Далее подстраиваю веса в направлении входного нейрона которого этот вес касается вместе с победителем. Вывожу матрицу 12 на 12 на чарт в цветовом представлении. И цвета просто меняются и никакого обучения и стабилизации весов не вижу. Это выборка такая разношерстная или чего не так понял?
o_O
Модератор
23288
o_O 2015.08.20 09:29  
Дмитрий
1460
Дмитрий 2015.08.20 11:54  
Проблема в исходных данных, точней в их делимости на классы, все правильно значит делал. Буду тогда не классифицировать, а фильтровать по очереди каждый нейрон. Кому интересно - отпишусь о результатах, должно получиться.
o_O
Модератор
23288
o_O 2015.08.20 13:05  
grell:
Проблема в исходных данных, точней в их делимости на классы, все правильно значит делал. Буду тогда не классифицировать, а фильтровать по очереди каждый нейрон. Кому интересно - отпишусь о результатах, должно получиться.

аксиома 1:  Если не знаешь как классифицировать входы, то НС бесполезна

аксиома 2: Если знаешь как классифицировать входы, то в НС уже нет необходимости.

Дмитрий
1460
Дмитрий 2015.08.20 16:14  
sergeev:

аксиома 1:  Если не знаешь как классифицировать входы, то НС бесполезна

аксиома 2: Если знаешь как классифицировать входы, то в НС уже нет необходимости.


На начальных этапах классификация была понятна, то есть комбинации входов легко без НС подпадала под известные категории. Но при подсовывании новых данных в классификатор минимальная ошибка (наиболее вероятный класс) была в среднем 25-30%, но когда входные данные были пропущены через 1 слой произвольной НС, классифицируемость не пропала, а сократилась ошибка до 8-10%, и попадание в класс стало более точным. Вот и пришла идея самоклассифицировать входы для дальнейшей работы. То есть суть не в самой НС, а в результате. Поэтому уже не вижу смысла подавать на слой Кохонена исходные данные. А через один промежуточный слой (произвольный).
Комбинатор
15641
Комбинатор 2015.08.22 20:58  
grell:
Проблема в исходных данных, точней в их делимости на классы, все правильно значит делал.
Вроде как сеть Кохонена должна кластеризовать все что угодно. Может у вас проблема с интерпретацией данных?
Дмитрий
1460
Дмитрий 2015.08.25 08:02  
TheXpert:
Вроде как сеть Кохонена должна кластеризовать все что угодно. Может у вас проблема с интерпретацией данных?
Да, в том-то и дело. Что классифицирует за 3-4 шага, но каждый раз по-разному.
/
Авторизуйтесь или зарегистрируйтесь, чтобы добавить комментарий