startingfrom4 / プロファイル
この記事では、アルゴリズムトレード分野における理論と実践を組み合わせる試みについて説明します。 トレーディングシステムの作成に関する考察のほとんどは、ヒストリーバーや適用される様々なインジケータの使用に関連します。 これは最もよくカバーされたフィールドであるため、詳細は考慮しません。 バーは人工的なエンティティを表します。したがって、プロトデータに近い何か、すなわち価格ティックで動作します。
thanks.
Java プログラマーの多くは JavaDocs により作成することのできる自動作成ドキュメンテーションを熟知されていることと思います。その考え方は、検索が簡単なヘルプファイルに抽出できる半構造法によりコードにコメントを追加するというものです。C++ 言語界にもまたドキュメンテーション自動作成機能があります。 Microsoft の SandCastle と Doxygen が代表的な2つです。本稿は MQL5 コードで構成済みコメントから HTML ヘルプファイルを作成するための Doxygen 使用について述べます。実験はひじょうにうまくいきましたから、Doxygen が MQL5 コードから作り出すヘルプのドキュメンテーションは大きな価値を加えると信じています。
本稿では、リスク値に基づいて自動的にエントリロットを計算するエキスパートアドバイザー(EA)を作成します。このEAでは、選択したSL(ストップロス)に対する比率を持つTP(テイクプロフィット)が自動的に配置されます。言い換えれば、3:1、4:1などの選択した比率に基づいたTPが計算されます。
相場調査と相場分析には、複数の異なるアプローチがあります。 主なものには、テクニカルとファンダメンタルがあります。 テクニカル分析では、トレーダーは、価格、ボリュームなど、相場に関連する数値データとパラメータを収集、処理、分析します。 ファンダメンタルズでは、トレーダーは相場に直接的または間接的に影響を与えるイベントやニュースを分析します。 この記事では、価格速度測定方法を扱い、その方法に基づいてトレード戦略を研究します。
包括的なデータ処理には広範なツールが必要であり、多くの場合、1つのアプリケーションのサンドボックスの範疇を超えています。 専門のプログラミング言語は、データ、統計、機械学習の処理と分析に使用されます。 データ処理の主要なプログラミング言語の1つは Python です。 この記事では、ソケットを使用して MetaTrader5 と Python を接続する方法、およびターミナル API を介してクオートを受け取る方法について説明します。
分数階微分は十分に広い範囲で使用されています。例えば、機械学習アルゴリズムには通常微分された級数が入力されます。 問題は、機械学習モデルが認識できるように、利用可能な履歴に従って新しいデータを表示する必要があることです。本稿では、時系列の微分に対する独自のアプローチを検討します。本稿にはさらに、この微分された級数に基づく自己最適化取引システムの例が含まれています。
14 patterns selected from a large variety of existing candlestick formations.
前回の記事では、さまざまな既存のローソク足の形成から選択された14のパターンを分析しました。すべてのパターンを1つずつ分析することは不可能であるため、別の解決策を見つけました。新しいシステムは、既知のローソク足タイプに基づいて新しいローソク足パターンを検索してテストします。
前の記事では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。過去の注文と取引のコレクション、成行注文とポジション、そして注文の便利な選択と並び替えのためのクラスはすでに存在します。この記事では、基本オブジェクトの開発を続け、Engineライブラリが口座の取引イベントを追跡できるようにします。