Yuriy Bykov / プロファイル
- 情報
|
12+ 年
経験
|
12
製品
|
46
デモバージョン
|
|
5
ジョブ
|
1
シグナル
|
0
購読者
|
◉ Developing a multi-currency Expert Advisor (29 parts) ( https://www.mql5.com/ru/blogs/post/756958 )
◉ Moving to MQL5 Algo Forge (4 parts) ( https://www.mql5.com/ru/blogs/post/765536 )
◉ Developing a terminal manager (3 parts) ( https://www.mql5.com/ru/blogs/post/765539 )
📢 Channels:
Telegram: 📲 https://t.me/adwizard_mql5
MQL5 Channels: 🌐 https://www.mql5.com/en/channels/adwizard-en
14.09.2025 - Неделя 19 (#610 / +51%). На сигнале на прошедшей неделе не было ни роста, ни падения. Открывались и закрывались позиции, по итогу недели баланс уменьшился на 1%, продолжает оставаться открытыми значительный объём позиций. Похоже, такое поведение будет типично для новой версии советника: сначала ожидание и накопление открытых позиций по разным символам, которые время от времени почти полностью закрываются, а затем наступает новый цикл. Так что ждём дальнейшего развития событий
本稿では、プロジェクトのソースコードを公開リポジトリに保存する際の1つのアプローチについて検討します。コードを複数のブランチに分散させることで、プロジェクト開発における明確で便利なルールを確立していきます。
07.09.2025 - Неделя 18 (#652 / +52%). Хорошая неделя оказалась для сигнала: добавили +12% к общей прибыли, в конце недели просадка отсутствует. Рейтинг продолжил рост. Похоже, что общая прибыльность достаточно сильно влияет на изменение рейтинга сигнала
В нашем канале (https://www.mql5.com/ru/channels/adwizard) мы регулярно публикуем краткие итоги каждой недели работы сигнала. Решили перенести их ещё и на эту страницу. К сожалению, скриншоты тут вставить нельзя, поэтому ограничимся текстовым форматом. Так как история велась с 4 недели, а сейчас минула уже 17 неделя, то далее мы сначала поместим записи со всех прошедших
При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.
При возникновении необходимости вывести текстовую информацию на график мы можем воспользоваться функцией Comment(). Но её возможности достаточно сильно ограничены. Поэтому, в рамках этой статьи, мы создадим собственный компонент — диалоговое окно на весь экран, способное выводить многострочный текст с гибкими настройками шрифта и поддержкой прокрутки.
Прежде, чем двигаться дальше в разработке мультивалютных советников, попробуем переключиться на создание нового проекта, использующего разработанную библиотеку. На этом примере выявим, как лучше организовать хранение исходного кода, и как нам может помочь использование нового репозитория кода от MetaQuotes.
MetaEditorでプロジェクトを進める際、開発者はしばしばコードのバージョンを管理する必要に直面します。MetaQuotesは最近、Gitへの移行と、コードのバージョン管理や共同作業を可能にするMQL5 Algo Forgeの立ち上げを発表しました。本記事では、新しく導入されたツールと既存のツールを、より効率的に活用する方法について解説します。
В данной статье продолжим подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие изменения потребуется внести в советник создания проекта оптимизации и советники второго и третьего этапов.
In this article, we will look at how to connect a new strategy to the auto optimization system we have created. Let's see what kind of EAs we need to create and whether it will be possible to do without changing the EA library files or minimize the necessary changes.
We aim to create a system for automatic periodic optimization of trading strategies used in one final EA. As the system evolves, it becomes increasingly complex, so it is necessary to look at it as a whole from time to time in order to identify bottlenecks and suboptimal solutions.
If we are going to automate periodic optimization, we need to think about auto updates of the settings of the EAs already running on the trading account. This should also allow us to run the EA in the strategy tester and change its settings within a single run.
For further progress it would be good to see if we can improve the results by periodically re-running the automatic optimization and generating a new EA. The stumbling block in many debates about the use of parameter optimization is the question of how long the obtained parameters can be used for trading in the future period while maintaining the profitability and drawdown at the specified levels. And is it even possible to do this?
私たちはすでに、自動最適化を支援するいくつかのコンポーネントを作成しています。作成の過程では、最小限の動作するコードを作るところからリファクタリングを経て、改善されたコードを得るという従来の循環的な構造に従いました。そろそろ、私たちが作成しているシステムの重要なコンポーネントでもあるデータベースの整理を始める時期です。
これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。
これまで手動でおこなっていた手順の自動化を引き続き進めていきましょう。今回は、第2段階の自動化、すなわち取引戦略の単一インスタンスの最適なグループ選定に立ち返り、フォワード期間におけるインスタンスの結果を考慮する機能を追加します。
現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。
既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。