FactorizationCholeskySyPS

Computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian) positive semidefinite N-by-N matrix. The form of the factorization is:

   P**T * A * P = L *  L**T in case of lower triangular or symmetric matrix A

or

   P**T * A * P = U**T  * U in case of upper triangular matrix A

where P is a permutation matrix, L is lower triangular, U is upper triangular. Lapack function PSTRF.

Computing for type matrix<double>

bool  matrix::FactorizationCholeskySyPS(
   double          tol           // tolerance
   matrix&         P,            // permutation matrix P
   matrix&                     // lower or upper triangular matrix
   );

Computing for type matrix<float>

bool  matrix::FactorizationCholeskySyPS(
   float           tol           // tolerance
   matrixf&        P,            // permutation matrix P
   matrixf&                    // lower or upper triangular matrix
   );

Computing for type matrix<complex>

bool  matrix::FactorizationCholeskySyPS(
   double          tol           // tolerance
   matrixc&        P,            // permutation matrix P
   matrixc&                    // lower or upper triangular matrix
   );

Computing for type matrix<complexf>

bool  matrix::FactorizationCholeskySyPS(
   float           tol           // tolerance
   matrixcf&       P,            // permutation matrix P
   matrixcf&                   // lower or upper triangular matrix
   );

Parameters

tol

[in]  User defined tolerance. If tol < 0, then n*ε*max(A[k,k]), where ε is the machine precision, will be used. The algorithm terminates at the (k-1)st step, if the pivot <=tol.

P

[out]  Permutation matrix P.

L

[out]  Lower or upper triangular matrix.

 

Return Value

Return true if successful, otherwise false in case of an error.

Note

The input can be a symmetric (Hermitian), upper triangular or lower triangular matrix. Triangular matrices are assumed to be symmetric (Hermitian conjugated).

Ce site web utilise des cookies. En savoir plus sur notre politique de cookies.