Discusión sobre el artículo "Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos"

 

Artículo publicado Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos:

Los núcleos del proceso gaussiano son la función de covarianza de la distribución normal que podría desempeñar un papel en el pronóstico. Exploramos este algoritmo único en una clase de señal personalizada de MQL5 para ver si podría usarse como una señal de entrada y salida principal.

Proceso gaussiano: Los núcleos son funciones de covarianza que se utilizan en los procesos gaussianos para medir las relaciones entre los puntos de datos, como en una serie temporal. Estos núcleos generan matrices que capturan la relación intradatos, lo que permite que el proceso gaussiano realice proyecciones o pronósticos asumiendo que los datos siguen una distribución normal. Como estas series buscan explorar nuevas ideas y al mismo tiempo examinar cómo se pueden explotar estas ideas, los núcleos de proceso gaussiano (Gaussian Process, GP) sirven como tema para construir una señal personalizada. 

Recientemente hemos cubierto muchos artículos relacionados con el aprendizaje automático en los últimos cinco artículos, por lo que para este "tomamos un descanso" y analizamos las buenas y antiguas estadísticas. En la naturaleza del desarrollo de sistemas, muy a menudo ambos están casados; sin embargo, al desarrollar esta señal personalizada en particular, no complementaremos ni consideraremos ningún algoritmo de aprendizaje automático. Los kernels GP se destacan por su flexibilidad. 

Se pueden utilizar para modelar una amplia variedad de patrones de datos que varían en enfoque desde la periodicidad hasta las tendencias o incluso relaciones no lineales. Sin embargo, lo más importante es que, a la hora de predecir, hacen más que proporcionar un único valor. En lugar de ello, proporcionan una estimación de la incertidumbre que incluiría el valor deseado, así como un valor de límite superior y un valor de límite inferior. Estos rangos límite a menudo se proporcionan con un índice de confianza, lo que facilita aún más el proceso de toma de decisiones de un comerciante cuando se le presenta un valor previsto. Estas calificaciones de confianza también pueden ser reveladoras y ayudar a comprender mejor los valores negociados al comparar diferentes bandas de pronóstico que están marcadas con diferentes niveles de confianza. 

Además, son buenos para manejar datos ruidosos ya que permiten incrementar un valor de ruido en la matriz K creada (ver más abajo), y también se pueden usar incorporando conocimiento previo en ellos, además de que son muy escalables. Hay una gran variedad de kernels diferentes para elegir. La lista incluye (pero no se limita a): núcleo exponencial cuadrado, núcleo lineal, núcleo periódico, núcleo cuadrático racional, núcleo materno, núcleo exponencial, núcleo polinomial, núcleo de ruido blanco, núcleo de producto escalar, núcleo de mezcla espectral, núcleo constante, núcleo de coseno, núcleo de red neuronal (arcoseno) y núcleos de producto y suma.

Gaussian Process Kernels

Autor: Stephen Njuki