
You are missing trading opportunities:
- Free trading apps
- Over 8,000 signals for copying
- Economic news for exploring financial markets
Registration
Log in
You agree to website policy and terms of use
If you do not have an account, please register
Hee! You could do a simple and linearly weighted one with a fractional period.
Hee! You could do a simple and linearly weighted one with a fractional period.
Do you mean adding coefficients to 1? For example, for a period of 3.5 SMA can be written as follows:
a1*Close[3] + a2*Close[2] + a2*Close[1] + a2*Close[0], where a2=1/3.5, a1=1-3/3.5;
I.e. they add up to 1.
Is that what you meant?
------
Piotr, maybe a1*Close[3] + a2*Close[2] + a2*Close[1] + a1*Close[0], where a2=2/7, a1=1.5/7;
Otherwise it turns out asymmetrically ;)
Or at the first index as you suggested, and then further down - with recalculation of coefficients for corner points.
Hee! You could do a simple and linearly weighted one with fractional periods, though.
Do you mean the addition of coefficients to 1? For example, for a period of 3.5 SMA can be written as follows:
a1*Close[3] + a2*Close[2] + a2*Close[1] + a2*Close[0], where a2=1/3.5, a1=1-3/3.5;
I.e. they add up to 1.
Is that what you meant?
Thought so: (0.5*Close[3] + Close[2] + Close[1] + Close[0])/3.5.You can also interpolate:
(Close[3]+0.5(Close[4]-Close[3]) + Close[2] + Close[1] + Close[0])/4. In this case it is also possible to specify a fractional offset.
Думал так: (0.5*Close[3] + Close[2] + Close[1] + Close[0])/3.5.(Close[3]+0.5(Close[4]-Close[3]) + Close[2] + Close[1] + Close[0])/4. In this case, you should also be able to specify a fractional offset.
О дробных периодах можно говорить только после "аналитического продолжения" формул индюкаторов на область нецелых чисел. Вот это и должно быть в ТЗ, т.к. такое продолжение неоднозначно. Если автор не может объяснить как, пусть хоть пример приведет из другого терминала.
Let's remove the ambiguity.
Look at it like a geometry problem...
;)
---shift is known. Squares, too.
1. for simple waving
2. for linearly weighted
3. for exponential?
Допустим, период - нецелое. Какие формулы ты предлагаешь, avatara:
1. для простой машки
2. для линейно взвешенной
3. для экспоненциальной?
Consider that AC for now.As ordered...
;)