Обсуждение статьи "Оцениваем будущую производительность с помощью доверительных интервалов"

 

Опубликована статья Оцениваем будущую производительность с помощью доверительных интервалов:

В этой статье мы углубимся в применение методов бутстреппинга (bootstrapping) как средства оценки будущей эффективности автоматизированной стратегии.

Когда мы тестируем торговую систему, мы получаем набор различных показателей производительности. Эти данные интуитивно дадут нам представление о потенциальной прибыли системы, но этой интуиции может быть недостаточно. Стратегия, которая принесла большую прибыль при тестировании, может проявить себя не с лучшей стороны в реальной торговле. Есть ли какой-нибудь способ узнать, сохранится ли производительность, наблюдаемая во время тестирования, на том же уровне? А если нет, насколько она ухудшится?

Здесь могут помочь стандартные статистические методы. Методы, которые мы обсудим, не предназначены для точных оценок. Вместо этого они позволяют определить стратегии с высокой вероятностью получения значительной или приемлемой прибыли.

Я знаю трейдеров, которые используют необработанные значения коэффициента Шарпа для вероятностных предположений о будущих результатах. Это опасно. Помните, что прошлые результаты не являются показателем будущей прибыли. С финансовыми рынками нельзя шутить. Ценовые графики часто движутся вверх или вниз по неизвестным причинам. Мы хотим делать правильные прогнозы производительности, основанные на вероятности, которые мы можем применить в наших процессах принятия решений.

Доверительный интервал


Доверительный интервал относится к вероятности того, что определенная статистика набора данных или совокупности будет находиться в пределах некоторого диапазона в течение определенного периода времени. Они измеряют степень уверенности, вычисляя вероятность того, что рассчитанные уровни будут содержать истинную оцениваемую статистику. Статистики обычно используют уровни достоверности от 90% до 99%. Эти интервалы можно рассчитать различными методами. В этой статье мы сосредоточимся на некоторых распространенных методах бутстреппинга (bootstrap).

Автор: Francis Dube