Você está perdendo oportunidades de negociação:
- Aplicativos de negociação gratuitos
- 8 000+ sinais para cópia
- Notícias econômicas para análise dos mercados financeiros
Registro
Login
Você concorda com a política do site e com os termos de uso
Se você não tem uma conta, por favor registre-se
Novo artigo Gradient boosting no aprendizado de máquina transdutivo e ativo foi publicado:
Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).
Vamos direto ao aprendizado ativo e testar sua eficácia em nossos dados.
Existem várias bibliotecas para o aprendizado ativo na linguagem Python, sendo a mais popular delas:
Eu selecionei a biblioteca modAL por ser mais intuitiva e adequada para me familiarizar com a filosofia de aprendizado ativo. Ela oferece maior liberdade no desenho de modelos e na criação de seus próprios modelos usando blocos padrão ou criando os seus próprios blocos.
Vamos considerar o processo descrito acima usando o esquema abaixo, que não requer mais explicações:
Veja a documentação
Autor: Maxim Dmitrievsky