指定

# Multi-Layer Probabilistic EA — Design Plan (MQL5)

Author: Custom-Expert-Advisors
Status: Draft v3
Scope: MQL5-only (no Python)

## 1. Purpose & Scope

Design a robust, real-time, probabilistic Expert Advisor for MT5 that adapts to market regimes, filters noise using information theory, and sizes risk via Bayesian beliefs and fractional Kelly. The design prioritizes stability, latency control, and survivability in live trading environments.

## 2. High-Level Architecture

Layers and main modules:

```
┌─────────────────────────────────────┐
│         Data Processing Layer       │
├─────────────────────────────────────┤
│     Information Theory Module       │
│  • Mutual Information Calculator    │
│  • Shannon Entropy Estimator        │
│  • Signal Quality Assessor          │
├─────────────────────────────────────┤
│        Bayesian Belief System       │
│  • Prior/Posterior Management       │
│  • Market Regime Probabilities      │
│  • Dynamic Belief Updates           │
├─────────────────────────────────────┤
│        Markov State Engine          │
│  • HMM Regime Detection             │
│  • State Transition Matrix          │
│  • Regime-Adaptive Strategies       │
├─────────────────────────────────────┤
│     Decision & Risk Management      │
│  • Kelly Criterion Position Sizing  │
│  • Entropy-Based Signal Filtering   │
│  • Multi-Regime Trade Logic         │
└─────────────────────────────────────┘
```

## 3. Requirements & Non-Goals

- MQL5 only; no external runtimes.
- Operate on new-bar events and periodic timers; avoid per-tick heavy compute.
- Multi-symbol capable; independent state per symbol/timeframe.
- Deterministic, debounced regime transitions; online updates only.
- Non-goals: ML model training on live terminal, heavy matrix libs, cloud dependencies.

## 4. Event Model & Data Flow

- OnInit: load configuration; warm-up historical buffers; restore persisted states.
- OnTimer (e.g., 1s): refresh rolling metrics; pre-compute next-bar signals.
- OnTick: gate by new-bar for target TF(s); evaluate entry/exit; manage orders.
- OnDeinit: persist states (beliefs, HMM α, rolling stats) to files.

Data refresh policy:
- Batch CopyRates/CopyBuffer; pre-allocate arrays; update ring buffers incrementally.
- Warm-up: require N bars (≥500 per TF) before trading.
 - If NN indicator is enabled, pull predictions via iCustom on new bars (price/regime probs, quantiles, uncertainty) and cache per symbol/TF.

## 5. Information Theory Module

Objectives:
- Rank features by Mutual Information (MI) with target (future returns/sign).
- Assess market entropy to gate trading and classify noise vs trend.
- Provide signal quality score to suppress unstable features.

Key techniques:
- Quantile binning (8–16 bins), Laplace smoothing, Miller–Madow bias correction.
- Rolling window MI with exponential decay re-ranking; cap MI change per update (≤20%).
- Shannon entropy on log-returns; use rolling baseline to compute z-score; require K-bar debounce for regime flips.
- Tie-break via Spearman |ρ| or distance correlation; drop features with high MI variance.

Contract (pseudocode):

```cpp
class CInformationTheory {
private:
   int     m_bins;
   double  m_eps;
public:
   void    Init(int bins=12,double eps=1e-12) { m_bins=bins; m_eps=eps; }
   // Mutual information with bias correction (Miller–Madow)
   double  MutualInformation(const double &x[], const double &y[], int n);
   // Shannon entropy (natural log)
   double  Entropy(const double &x[], int n);
   // Rolling z-entropy vs baseline (mean,std)
   double  EntropyZScore(const double &entropy_hist[], int n, double &mean_out, double &std_out);
   // Quantile bin utility in [0..m_bins-1]
   int     QuantileBin(const double &sorted[], int n, double v);
};
```

Operational rules:
- Minimum samples per bin ≥ 5 before trusting MI.
- Debounce regime classification: require K consecutive confirmations.
- Maintain ring buffers to avoid re-sorting per bar.

## 6. Bayesian Belief System

Regimes: Strong Bull, Weak Bull, Neutral, Weak Bear, Strong Bear.

Approach:
- Dirichlet priors α0 from history; exponential forgetting λ (0.98–0.995).
- Likelihoods derived from calibrated indicator maps (logistic curves) frozen during live.
- Posterior smoothing (stickiness) to reduce whipsaws.
- Fusion with HMM: Optional; compute unified regime score as weighted average of posteriors and HMM probs (e.g., 0.6*post + 0.4*hmm_prob); configurable weights and dynamic regime count (3–7) via data-driven clustering (e.g., k-means on historical states) calibrated per asset in WFO.

Contract (pseudocode):

```cpp
enum Regime { REG_STRONG_BULL=0, REG_WEAK_BULL, REG_NEUTRAL, REG_WEAK_BEAR, REG_STRONG_BEAR, REG_COUNT };

class CBayesianEngine {
private:
   double m_alpha0[REG_COUNT];   // priors
   double m_post[REG_COUNT];     // posteriors
   double m_lambda;              // forgetting
   double m_stick;               // smoothing
   double m_eps;
public:
   void   Init(const double priors[REG_COUNT], double lambda=0.99, double stick=0.85, double eps=1e-9);
   // likelihoods in [0,1]
   void   Update(const double likelihoods[REG_COUNT]) {
      double temp[REG_COUNT];
      for(int i=0;i<REG_COUNT;i++){
         double prior = m_lambda*m_post[i] + (1.0-m_lambda)*m_alpha0[i];
         temp[i] = MathMax(m_eps, prior * MathMax(m_eps, likelihoods[i]));
      }
      double sum=0; for(int i=0;i<REG_COUNT;i++) sum+=temp[i];
      for(int i=0;i<REG_COUNT;i++){
         double p = temp[i]/sum;
         m_post[i] = m_stick*m_post[i] + (1.0-m_stick)*p;
      }
   }
   int    Dominant() const { int k=0; double m=m_post[0]; for(int i=1;i<REG_COUNT;i++) if(m_post[i]>m){m=m_post[i];k=i;} return k; }
   double Confidence() const { double H=0, Hmax=MathLog(REG_COUNT); for(int i=0;i<REG_COUNT;i++) H -= (m_post[i]>0 ? m_post[i]*MathLog(m_post[i]) : 0.0); return 1.0 - H/Hmax; }
   const double& Posterior(int i) const { return m_post[i]; }
};
```

## 7. Markov State Engine (HMM)

Approach:
- Online forward-filtering α (not Viterbi) for real-time probabilities.
- Sticky transitions: self-transition bias κ (boost diagonal of A) and min-hold bars.
- Degeneracy guard: floor probs with ε and renormalize.
- Integrate with Bayesian: Optional fused score for final regime decision; support dynamic state counts via clustering to adapt to market data, reducing rigidity.

Contract (pseudocode):

```cpp
class CHmm {
private:
   int    m_N;                // states
   double m_A[5][5];          // transitions
   double m_alpha[5];         // filtered probs
   double m_eps;
public:
   bool   Init(int states, const double A[][5], const double init_alpha[]);
   // b[i] = emission likelihood per state
   void   Step(const double b[]) {
      double next[5]={0};
      for(int i=0;i<m_N;i++){
         double s=0; for(int j=0;j<m_N;j++) s += m_alpha[j]*m_A[j][i];
         next[i] = MathMax(m_eps, s)*MathMax(m_eps, b[i]);
      }
      double sum=0; for(int i=0;i<m_N;i++) sum+=next[i];
      for(int i=0;i<m_N;i++) m_alpha[i]=next[i]/sum;
   }
   int    State() const { int k=0; double m=m_alpha[0]; for(int i=1;i<m_N;i++) if(m_alpha[i]>m){m=m_alpha[i];k=i;} return k; }
   double Prob(int i) const { return m_alpha[i]; }
};
```

## 8. Decision & Risk Management

Entry gate (all must pass):
1) Market tradable: spread < X, liquidity ok, session filter, no red news within N minutes.
2) Entropy low and stable (z-score below threshold, debounced K bars).
3) HMM regime posterior > p_min and Bayesian confidence ≥ c_min.

Position sizing (fractional Kelly with uncertainty throttle and drawdown guard):

```cpp
double CalcLot(double equity, double risk_per_trade, double win_p, double rr,
               double conf, double dd_factor, double min_lot, double max_lot)
{
   double kelly = win_p - (1.0 - win_p)/MathMax(1e-6, rr);
   kelly = MathMax(0.0, MathMin(0.5, kelly));
   double throttle = conf * dd_factor; // 0..1
   double risk_amt = equity * risk_per_trade * kelly * throttle;
   double ptv   = SymbolInfoDouble(_Symbol, SYMBOL_TRADE_TICK_VALUE);
   double ptsz  = SymbolInfoDouble(_Symbol, SYMBOL_POINT);
   double sl_pts= MathMax(10*ptsz, CurrentSLPoints());
   double v_per_lot = (sl_pts/ptsz)*ptv*SymbolInfoDouble(_Symbol, SYMBOL_TRADE_CONTRACT_SIZE)/SymbolInfoDouble(_Symbol, SYMBOL_TRADE_TICK_SIZE);
   double lots  = risk_amt / MathMax(1e-6, v_per_lot);
   return NormalizeDouble(MathMax(min_lot, MathMin(max_lot, lots)), (int)SymbolInfoInteger(_Symbol, SYMBOL_VOLUME_DIGITS));
}
```

Global controls:
- Max risk per trade: 0.25–0.5% of equity.
- Daily loss stop and pause; weekly soft stop.
- One-trade-per-bar per symbol per strategy; cooldown after clusters (e.g., 2 losses → wait M bars).
- Immediate SL/TP on order open; pre-validate against StopLevel/FreezeLevel.
- Correlation-aware: For multi-symbol, adjust via portfolio Kelly using ALGLIB covariance matrix; cap total exposure.

## 9. Safeguards & Circuit Breakers

- Kill switches: posterior confidence below floor for M bars; entropy z-score persistently high; daily loss/slippage cap exceeded.
- Black-swan guards: Detect extreme volatility spikes (e.g., entropy z > 5) and pause trading; fallback to minimal risk mode.
- State persistence: Save/load with redundancy (e.g., dual files, checksums); if file I/O fails, reset to safe defaults and log/alert.
- Execution: CTrade with normalized prices; retry with reduced volume on insufficient margin; handle requotes and partial fills.

## 10. Performance & Stability

- Compute on new bars and OnTimer, never per tick for heavy tasks.
- Static arrays and ring buffers; avoid ArrayResize in hot paths.
- Batch CopyRates/CopyBuffer; align data timestamps.
- Quantile binning with rolling rank approximations; cap per-update MI change.
- Log telemetry only on state changes in release; full logs in tester.

## 11. Strategy Wiring by Regime

- Bull: breakout/momentum, ATR trailing, pyramiding only when posterior>thr and entropy low.
- Bear: mean reversion toward VWAP/EMA bands; wider stops; smaller size.
- Neutral: range trades with fades; or stand aside if costs dominate.

## 12. Feature Selection & Evidence Mapping

- MI-based feature ranking; select top 3–5 informative indicators.
- Exponential decay on historical MI to prevent flapping selections.
- Likelihood mapping: indicator → probability via calibrated logistic functions, frozen during live; refreshed only on scheduled walk-forward.
 - Optional: include NN embeddings (hidden activations) as additional features; re-rank with MI to prevent flapping selections.

## 13. Testing & Validation

- Backtests with walk-forward (anchored OOS segments); lock evidence maps per segment.
- Monte Carlo: shuffle trade sequences; randomize spread/slippage to stress execution.
- OOS paper/live-sim: broker costs and realistic rejection rates.
- Numeric unit checks: MI stability, entropy z baseline, posterior normalization.
- Robustness: Adversarial inputs (data gaps, noise injection); sensitivity analysis for key params (λ, stickiness).
- Calibration: KL divergence for drift; min 20% OOS data per WFO segment.
- Edge cases: Simulate black-swan events (e.g., flash crashes), correlated symbol failures, broker quirks (e.g., variable StopLevels); test file I/O reliability with mock failures.

## 14. Configuration (Inputs)

- Symbols/TFs; warm-up bars; timer interval.
- MI bins (8–16), window length, K debounce bars, MI change cap.
- Dirichlet α0, λ (forgetting), stickiness, ε floor.
- HMM transitions A (diagonal bias κ), min-hold bars.
- Risk: base risk %, Kelly fraction cap, min/max lot, drawdown throttle.
- Gates: spread limit, p_min, c_min, entropy z-threshold.
- Session and news blackout windows.
 - NN (optional): enable_nn, nn_mode (indicator/include), ensemble_size, temp_scale_T, uncertainty_max, model_path (Files/ProbEA/models/), scaler_path, outputs (probs, mu_sigma, quantiles), min_confidence.

## 15. Directory Layout (proposed)

- `Include/Custom Include/ProbabilisticEA/CInformationTheory.mqh` — MI/Entropy utils
- `Include/Custom Include/ProbabilisticEA/CBayesianEngine.mqh` — Bayesian updater
- `Include/Custom Include/ProbabilisticEA/CHmm.mqh` — HMM online filter
- `Include/Custom Include/ProbabilisticEA/CRisk.mqh` — sizing, guards, kill switches
- `Include/Custom Include/ProbabilisticEA/CPriceNN.mqh` — tiny MLP interface (optional)
- `Experts/Custom Expert Advisors/ProbabilisticEA.mq5` — EA wiring and orchestration
- `Files/ProbEA/state/` — persisted JSON/CSV states as `[symbol]_[tf]_state.csv` with versioned backups.
- `Files/ProbEA/models/` — NN weights, scalers, config per symbol/TF
- `Indicators/PriceNN.mq5` — NN indicator exposing probs/quantiles/uncertainty via buffers (optional)

## 16. Development Plan (Phases)

Phase 1 — Core Infrastructure:
- Build information theory library; MI/entropy ring buffers.
- Implement Bayesian updating; HMM forward filter.
- State persistence; unit tests in tester.
- Prioritize minimal viable modules; make advanced features (e.g., NN, fusion) optional add-ons.

Phase 2 — Strategy Logic:
- Regime-specific rules and gates; entropy filtering.
- Fractional Kelly sizing with confidence and drawdown throttles.
- Visual panel for beliefs and regime status.
- Simplify: Use configurable flags to toggle complexity (e.g., disable fusion for initial testing).

Phase 3 — Optimization & Testing:
- Walk-forward analysis; parameter sweeps; genetic optimization (safeguarded).
- Stress tests with slippage/spread; Monte Carlo trade order shuffles.
- Live-sim dry run with telemetry review.

## 17. KPIs & Monitoring

- Trade expectancy by regime; hit rate vs predicted win_p calibration.
- Posterior confidence distribution; regime dwell times vs design.
- Slippage and spread drift monitors; rejection rates.
- Drawdown containment: daily/weekly adherence to limits.
- NN calibration (if enabled): Brier score, Expected Calibration Error (ECE), predictive entropy distribution, ensemble disagreement.

## 17.5 Monitoring and Logging
- Real-time dashboards: Use ChartObjects for regime visualization, belief charts.
- Structured logging: CSV exports for beliefs/entropy on changes; anomaly alerts (e.g., high slippage variance).

## 18. Risks & Mitigations

- Computational load: incremental updates, batching, static buffers.
- Belief instability: stickiness, debounce, floors, min-hold.
- Parameter drift: scheduled WFO; ensemble/bootstrapped validation.
- Execution variance: pre-flight checks, retries, smaller fallback size.
 - NN overconfidence: temperature scaling, entropy gate, ensemble averaging, fallback to rule-based likelihoods if NN unavailable.
- Overcomplexity: Mitigate by modular design with toggles; phased rollout starting with core (no NN/fusion); regular code audits for simplicity.
- Rigid assumptions: Use dynamic regimes and WFO to adapt; fallback to 3-state model if clustering fails.
- Implementation risks: Expanded testing for edges; robust I/O with backups; broker-agnostic checks (e.g., dynamic StopLevel queries).

## 19. Notes

- Favor clarity and debouncing over hyper-reactivity; prioritize survival.
- Keep live config conservative; only widen risk after sustained calibration stability.

---

Appendix A — Original Class Sketches (for reference)

```cpp
class CInformationTheory {
   double CalculateMutualInformation(double &feature[], double &target[], int period);
   double CalculateEntropy(double &returns[], int period);
   bool IsLowEntropyRegime(double entropy_threshold);
};

class CBayesianEngine {
   double priors[5];
   double posteriors[5];
   double likelihoods[5];
   void UpdateBeliefs(double macd_signal, double rsi_value, double volatility);
   int GetDominantRegime();
   double GetRegimeConfidence();
};
```

## 20. Neural Network Integration (Optional)

### 20.1 Roles in the Architecture
- Evidence mapping: feature vector → regime probabilities via softmax; used as likelihoods for `CBayesianEngine.Update()` and emissions for `CHmm.Step()`.
- Distributional forecast: next-bar return mean/variance or quantiles (q10/q50/q90) for win-prob and SL/TP shaping.
- Meta-labeling: probability of success for a gated trade; feeds Kelly p.

### 20.2 MQL5 Design Patterns
- Indicator engine (recommended): `Indicators/PriceNN.mq5` exposes buffers for probs, μ/σ or quantiles, and uncertainty. EA reads via `iCustom` on new bars.
- Embedded include: `CPriceNN.mqh` tiny MLP run on `OnTimer`, cached per symbol/TF.
- Ensemble: 3–5 small NNs averaged; use std as uncertainty.

### 20.3 Model Spec (MQL5 Friendly)
- Small MLP: inputs 16–32, hidden 16–32, outputs 3–6; sigmoid/tanh activations.
- Live: prediction only; training occurs in Tester/WFO and weights serialized to `Files/ProbEA/models/`.
- Temperature scaling T for probability calibration.
- ALGLIB Backend: Use alglib::mlpcreate1 for MLP creation, alglib::mlptrainlm for Tester/WFO training, alglib::mlpprocess for prediction. Pros: Native MQL5, efficient matrices/solvers; no DLLs. Sketch: real_2d_array weights; mlpnetwork net; mlpcreate1(inputs, hidden, outputs, net); // train and serialize.

### 20.4 Features & Normalization
- Inputs: returns (r1,r2,r3,r5,r10), volatility (ATR_z, realized_vol_z), momentum (EMA slopes, MACD_z, RSI_z), microstructure (spread_z, tick_vol_z), regime cues (entropy_z, Hurst proxy).
- Normalize with rolling mean/std or median/IQR; store scalers with the model.

### 20.5 Calibration & Uncertainty
- Temperature-scaled softmax; validate T per WFO segment.
- Metrics: Brier score, ECE. Uncertainty via predictive entropy and ensemble std.
- Use uncertainty to throttle or skip trades.

### 20.6 Persistence & Scheduling
- Files: `weights.[symbol].[tf].csv`, `scaler.[symbol].[tf].csv`, `config.json` (T, thresholds) under `Files/ProbEA/models/`.
- OnInit: load; if missing, disable NN gracefully and fall back to rule-based likelihoods.
- OnDeinit: persist last states; robust to restarts.

### 20.7 EA Flow Using NN Outputs
1) On new bar, build features and run Predict.
2) Gate by entropy z (debounced) and NN uncertainty.
3) Bayesian.Update() with NN-derived likelihoods; HMM.Step() with emissions.
4) If posterior > p_min and Confidence ≥ c_min, compute p_win from μ/σ or meta-prob.
5) CalcLot with confidence/drawdown throttles; place order with immediate SL/TP.

### 20.8 Training vs Inference Separation
- In Strategy Tester/WFO, train models and export weights/scalers/config to `Files/ProbEA/models/`.
- In live/sim, load and Predict only; no backprop.
- Prefer outputs as classification probabilities and optional return quantiles.
- Apply temperature scaling and (optional) small ensemble; expose uncertainty via buffers or accessor functions.

### 20.9 Guardrails
- NN outputs must pass existing gates (entropy, spread, session, HMM posterior).
- Never scale up risk under high entropy or high ensemble disagreement; only reduce or skip.

### 20.10 Interfaces (API Contracts)

This section defines the minimal, testable contracts between the EA and the NN component so data flows are predictable and failures are safe.

#### A) Include-based API (compiled MLP)

Inputs/Outputs and behavior:
- Inputs: `features[]` of length N (finite, normalized), symbol/timeframe context set at init.
- Outputs: regime probabilities `probs[K]` (sum=1, bounded by ε), distribution metrics (`mu`, `sigma`), optional quantiles (`q10`, `q50`, `q90`), and `uncertainty` in [0..1].
- Timing: call on new bar or via OnTimer; cache per (symbol, TF, bar time).
- Failure: return false and set last error; EA uses safe defaults and skips or reduces risk.

Sketch (MQL5-style pseudocode):

```cpp
enum NnError {
   NN_OK=0,
   NN_MODEL_NOT_LOADED=1,
   NN_FEATURE_SIZE_MISMATCH=2,
   NN_INVALID_INPUT=3,
   NN_STALE_CONTEXT=4,
   NN_NUMERIC_FAIL=5
};

struct NnOutputs {
   double probs[];   // size K, normalized
   double mu;        // next-bar return (define: log-return or pips)
   double sigma;     // >= 0
   double q10, q50, q90; // optional; q10<=q50<=q90
   double uncertainty;   // 0..1 (entropy or ensemble std normalized)
};

class CPriceNN {
public:
   bool   Init(const string symbol, ENUM_TIMEFRAMES tf,
               const string weightsPath, const string scalerPath,
               const double tempScaleT);
   bool   IsReady() const;
   int    FeatureCount() const;           // expected N
   bool   Predict(const double &features[], const int n, NnOutputs &out);
   int    LastError() const;
   string LastErrorMsg() const;
};
```

Safe defaults on failure:
- `probs` = uniform (1/K), `uncertainty` = 1.0, `mu` = 0, `sigma` = large (clamped), quantiles unset or mirrored around 0.
- EA logs once per bar and falls back to rule-based signals; no trade or reduced size per policy.

#### B) Indicator-based API (iCustom)

Buffer mapping (example):
- 0: p_bull, 1: p_neutral, 2: p_bear
- 3: mu, 4: sigma
- 5: q10, 6: q50, 7: q90
- 8: uncertainty (0..1)
- 9: status code (>=0 OK; negative = error)

Usage rules:
- Read buffers only on new bar; verify all are not `EMPTY_VALUE`.
- Treat `status<0` or any invalid/NaN as failure; apply same safe defaults and skip/throttle.
- Cache outputs with their bar time; avoid duplicate reads within the same bar.

#### C) Multi-symbol/TF context & caching
- Maintain a per-(symbol, TF) cache of `NnOutputs` keyed by the last completed bar time.
- Invalidate cache on `OnInit`/`OnDeinit`/symbol change; re-load models.
- Persist model/scaler versions; reject mismatches with `NN_STALE_CONTEXT`.

#### D) Validation checklist (implementation-time)
- Feature length matches `FeatureCount()`.
- Inputs finite (no NaN/Inf) and within expected ranges after normalization.
- `probs` sum≈1 within tolerance; clamp and renormalize if needed.
- Monotonic quantiles; fix ordering if violated and flag `NN_NUMERIC_FAIL`.
- Temperature scaling applied consistently across live/test.

## 21. Glossary
- Debounce: Require consecutive confirmations to filter noise.
- WFO: Walk-Forward Optimization – rolling train/test segments.
- KL Divergence: Measure of distribution difference for calibration checks.
- Etc. (expand as needed).

応答済み

1
開発者 1
評価
(462)
プロジェクト
907
76%
仲裁
25
16% / 68%
期限切れ
99
11%
パブリッシュした人: 1 article, 6 codes
2
開発者 2
評価
(15)
プロジェクト
34
24%
仲裁
3
0% / 33%
期限切れ
2
6%
仕事中
3
開発者 3
評価
(5)
プロジェクト
5
20%
仲裁
0
期限切れ
0
仕事中
4
開発者 4
評価
(1)
プロジェクト
1
0%
仲裁
0
期限切れ
0
5
開発者 5
評価
(270)
プロジェクト
550
49%
仲裁
56
39% / 36%
期限切れ
227
41%
仕事中
6
開発者 6
評価
プロジェクト
0
0%
仲裁
0
期限切れ
0
7
開発者 7
評価
プロジェクト
0
0%
仲裁
0
期限切れ
0
8
開発者 8
評価
(1)
プロジェクト
0
0%
仲裁
1
0% / 0%
期限切れ
0
9
開発者 9
評価
(3)
プロジェクト
3
0%
仲裁
0
期限切れ
0
多忙
10
開発者 10
評価
プロジェクト
1
0%
仲裁
0
期限切れ
0
類似した注文
Hello, I would like to develop a custom Expert Advisor (EA) for MT4 (or MT5 if preferred). Requirements: Open trades based on a signal (to be specified later: e.g., indicator, moving average cross, or manual conditions). Automatically set Stop Loss (SL) and Take Profit (TP) for each trade. Option to open an averaging/hedging trade with the same lot size when the price moves against the first trade by a defined number
I am seeking the services of a SKILLED, EXPERIENCED and a RELIABLE programmer, who is well versed in both PINE SCRIPT and MT5 to undertake the following for me: 1. Enhance an existing Pine Script Indicator and convert same to an MT5 EA. The EA MUST replicate the exact signals from the Indicator. The Indicator will be enhanced to send high quality signals. No signals in flat markets. 2. Convert the Indicator to an MT5
⸻ I have an Expert Advisor called NeuroTrendX_Pro v7.9 ULTRA (NTX Pro). I need a reliable and experienced MQL5 developer to finalize and correct it without removing or disabling any existing logic. Scope of work (included in the fixed budget): • Fix all existing compile/runtime errors (not just one). • Keep the entire current logic intact (do not remove or change modules). • Implement and confirm the following
Thabo-killerbot 30 - 1000 USD
//+------------------------------------------------------------------+ //| SimpleMA.mq5 | //| Auto trading bot example | //+------------------------------------------------------------------+ #property copyright "ChatGPT" #property link "" #property version "1.00" #property strict input int FastMAPeriod = 10; input int SlowMAPeriod = 30; input double Lots = 0.1; int fastMAHandle; int slowMAHandle; double fastMA[];
Automate my strategy 30 - 70 USD
🚀 Looking for a Trading Bot Coder 🚀 I’m searching for an experienced developer to help automate my trading strategies. Requirements: Strong knowledge in MQL5 / MT5 (or TradingView Pine Script, depending on platform) Experience with price action & strategy automation Ability to integrate custom risk management & alerts 💡 If you’re a skilled coder who can turn trading ideas into a profitable bot, let’s connect
Hello, I’m looking for an MQL5 or MQL4 EA that trades EURUSD (optionally other majors or XAUUSD). The broker applies a 4-pip spread on EURUSD and higher on other symbols. The sole objective is to generate at least 45–60 lots of volume within 2 weeks or max one month (more is better; a bonus is paid for every additional 10 lots traded). The account has 1000 USD starting balance. Capital preservation is not required
Hey there, I’m looking to get a custom NinjaTrader indicator/plugin/tool developed. It’s very similar to Riley Coleman’s “Candlestick Trader” indicator (you can see a walkthrough of it in this YouTube video at timestamp 6:52: https://www.youtube.com/watch?v=NjCUZveXtLo&amp ;t=303s ). Please take a look at that video for reference, as I’d like most of the core features replicated. To summarize, the key functions I
I am looking for an experience MQL4 developer for making a profitable prop firm compatible MT4 gold scalper EA on a 5 Minute time frame. The EA should have a win rate of not less than 90% on back testing. The EA should be able to pass all prop firm challenges like Funded Next, FTMO, Funding Pips within 1-2 weeks. The EA should also work on live funded account. Any strategy can be used to develop the EA. Proper risk
I’m looking for a profitable Expert Advisor (EA) — the real beast that can deliver strong results on MT4/MT5. If you have a proven EA with good performance and risk management, kindly reach out with details and results
Modify my MT5 EA 30 - 40 USD
I am looking for an MQL5 programmer who can modify and customize my personal MT5 EA. There is problem in placing stop loss but still the EA is profitable on back testing. I also want to add news filter and prop firm compatible. The details will be shared to the developer personally

プロジェクト情報

予算
30+ USD
締め切り
最低 1 最高 250 日

依頼者

(3)
出された注文6
裁定取引数0