Zhuo Kai Chen
Zhuo Kai Chen
  • Información
1 año
experiencia
0
productos
0
versiones demo
1
trabajos
0
señales
0
suscriptores
Expert en Algorithmic Trading
Computer Science Bachelor in CUHK(SZ)
Quant Researcher with 3+ years of trading experience
Currently managing 5+ trading systems
Specializes in CTA strategy development
Github: https://github.com/CodyOutcast
Zhuo Kai Chen
Zhuo Kai Chen
I have just published my first research paper on SSRN!
It's about LLM integration in intraday trading.
Keep in mind that I'm still a noob at research, but I would say this is a good first step.
Link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5246516
Ahmad Chaanani
Ahmad Chaanani 2025.06.17
good luck !
Zhuo Kai Chen
Zhuo Kai Chen
The verified signal has reached a new all-time high. Our EA is now outperforming its historical results in the current market regime. Don't miss this opportunity to capitalize on its success!
Download the demo and test it yourself: https://www.mql5.com/en/market/product/139184
Zhuo Kai Chen
Zhuo Kai Chen
🚀 RiskKILLER AI: The ultimate scalping EA! Powered by AI, it pinpoints high-volatility breakouts with precision & optimizes risk-reward. Be the first to join our prelaunch for exclusive early bird deals! 👉 https://www.mql5.com/en/blogs/post/762546
Zhuo Kai Chen
Ha dejado el comentario sobre el Cliente por el trabajo Improve Indicators and Experts
Zhuo Kai Chen
Ha publicado el artículo Decoding Opening Range Breakout Intraday Trading Strategies
Decoding Opening Range Breakout Intraday Trading Strategies

Opening Range Breakout (ORB) strategies are built on the idea that the initial trading range established shortly after the market opens reflects significant price levels where buyers and sellers agree on value. By identifying breakouts above or below a certain range, traders can capitalize on the momentum that often follows as the market direction becomes clearer. In this article, we will explore three ORB strategies adapted from the Concretum Group.

3
Zhuo Kai Chen
Ha publicado el artículo Day Trading Larry Connors RSI2 Mean-Reversion Strategies
Day Trading Larry Connors RSI2 Mean-Reversion Strategies

Larry Connors is a renowned trader and author, best known for his work in quantitative trading and strategies like the 2-period RSI (RSI2), which helps identify short-term overbought and oversold market conditions. In this article, we’ll first explain the motivation behind our research, then recreate three of Connors’ most famous strategies in MQL5 and apply them to intraday trading of the S&P 500 index CFD.

1
Zhuo Kai Chen
Ha publicado el artículo Exploring Advanced Machine Learning Techniques on the Darvas Box Breakout Strategy
Exploring Advanced Machine Learning Techniques on the Darvas Box Breakout Strategy

The Darvas Box Breakout Strategy, created by Nicolas Darvas, is a technical trading approach that spots potential buy signals when a stock’s price rises above a set "box" range, suggesting strong upward momentum. In this article, we will apply this strategy concept as an example to explore three advanced machine learning techniques. These include using a machine learning model to generate signals rather than to filter trades, employing continuous signals rather than discrete ones, and using models trained on different timeframes to confirm trades.

1
Zhuo Kai Chen
Ha publicado el artículo The Kalman Filter for Forex Mean-Reversion Strategies
The Kalman Filter for Forex Mean-Reversion Strategies

The Kalman filter is a recursive algorithm used in algorithmic trading to estimate the true state of a financial time series by filtering out noise from price movements. It dynamically updates predictions based on new market data, making it valuable for adaptive strategies like mean reversion. This article first introduces the Kalman filter, covering its calculation and implementation. Next, we apply the filter to a classic mean-reversion forex strategy as an example. Finally, we conduct various statistical analyses by comparing the filter with a moving average across different forex pairs.

1
Zhuo Kai Chen
Ha publicado el artículo Pruebas de robustez en asesores expertos
Pruebas de robustez en asesores expertos

En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.

Zhuo Kai Chen
Ha publicado el artículo Predicción de tendencias con LSTM para estrategias de seguimiento de tendencias
Predicción de tendencias con LSTM para estrategias de seguimiento de tendencias

La memoria a corto y largo plazo (Long Short-Term Memory, LSTM) es un tipo de red neuronal recurrente (Recurrent Neural Network, RNN) diseñada para modelar datos secuenciales capturando de manera efectiva las dependencias a largo plazo y abordando el problema del gradiente que se desvanece. En este artículo, exploraremos cómo utilizar LSTM para predecir tendencias futuras, mejorando el rendimiento de las estrategias de seguimiento de tendencias. El artículo tratará sobre la introducción de conceptos clave y la motivación detrás del desarrollo, la obtención de datos de MetaTrader 5, el uso de esos datos para entrenar el modelo en Python, la integración del modelo de aprendizaje automático en MQL5 y la reflexión sobre los resultados y las aspiraciones futuras basadas en pruebas estadísticas retrospectivas.

Zhuo Kai Chen
Ha publicado el artículo La estrategia de negociación de la brecha del valor razonable inverso (Inverse Fair Value Gap, IFVG)
La estrategia de negociación de la brecha del valor razonable inverso (Inverse Fair Value Gap, IFVG)

Una brecha inversa del valor razonable (Inverse Fair Value Gap, IFVG) se produce cuando el precio vuelve a una brecha del valor razonable identificada previamente y, en lugar de mostrar la reacción de apoyo o resistencia esperada, no la respeta. Este comportamiento puede indicar un posible cambio en la dirección del mercado y ofrecer una ventaja comercial contraria. En este artículo, voy a presentar mi enfoque, desarrollado por mí mismo, para cuantificar y utilizar la brecha inversa del valor razonable como estrategia para los asesores expertos de MetaTrader 5.

Zhuo Kai Chen
Zhuo Kai Chen
Machine learning mean-reversion strategy recent performance.
Dominic Michael Frehner
Dominic Michael Frehner 2025.01.26
Perfect for prop firm trading👍🏼
Zhuo Kai Chen
Zhuo Kai Chen
Mean-reversion and trend-following mixed strategy portfolio.
Zhuo Kai Chen
Zhuo Kai Chen
Breakout trading system recent performance.
Zhuo Kai Chen
Ha publicado el artículo Desarrollo de un asesor experto para el análisis de eventos de noticias basados en el calendario en MQL5
Desarrollo de un asesor experto para el análisis de eventos de noticias basados en el calendario en MQL5

La volatilidad tiende a alcanzar su punto máximo alrededor de eventos noticiosos de alto impacto, lo que crea oportunidades de ruptura significativas. En este artículo, describiremos el proceso de implementación de una estrategia de ruptura basada en el calendario. Cubriremos todo, desde la creación de una clase para interpretar y almacenar datos del calendario, el desarrollo de backtests realistas utilizando estos datos y, finalmente, la implementación del código de ejecución para operaciones en vivo.

Zhuo Kai Chen
Ha publicado el artículo La estrategia comercial de captura de liquidez
La estrategia comercial de captura de liquidez

La estrategia de negociación basada en la captura de liquidez es un componente clave de Smart Money Concepts (SMC), que busca identificar y aprovechar las acciones de los actores institucionales en el mercado. Implica apuntar a áreas de alta liquidez, como zonas de soporte o resistencia, donde las órdenes grandes pueden desencadenar movimientos de precios antes de que el mercado reanude su tendencia. Este artículo explica en detalle el concepto de «liquidity grab» (captura de liquidez) y describe el proceso de desarrollo de la estrategia de negociación basada en la captura de liquidez en MQL5.

Zhuo Kai Chen
Ha publicado el artículo Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias
Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias

Los modelos ocultos de Markov (Hidden Markov Models, HMM) son potentes herramientas estadísticas que identifican los estados subyacentes del mercado mediante el análisis de los movimientos observables de los precios. En el ámbito bursátil, los HMM mejoran la predicción de la volatilidad y proporcionan información para las estrategias de seguimiento de tendencias mediante la modelización y la anticipación de los cambios en los regímenes de mercado. En este artículo, presentaremos el procedimiento completo para desarrollar una estrategia de seguimiento de tendencias que utiliza HMM para predecir la volatilidad como filtro.

Zhuo Kai Chen
Ha publicado el artículo Modelo de riesgo de cartera utilizando el criterio de Kelly y la simulación de Monte Carlo
Modelo de riesgo de cartera utilizando el criterio de Kelly y la simulación de Monte Carlo

Durante décadas, los operadores han utilizado la fórmula del criterio de Kelly para determinar la proporción óptima de capital que se debe asignar a una inversión o apuesta con el fin de maximizar el crecimiento a largo plazo y minimizar el riesgo de ruina. Sin embargo, seguir ciegamente el criterio de Kelly utilizando el resultado de una sola prueba retrospectiva suele ser peligroso para los operadores individuales, ya que en el trading en vivo, la ventaja comercial disminuye con el tiempo y el rendimiento pasado no es un indicador de resultados futuros. En este artículo, presentaré un enfoque realista para aplicar el criterio de Kelly a la asignación de riesgos de uno o más EA en MetaTrader 5, incorporando los resultados de la simulación de Monte Carlo de Python.

Zhuo Kai Chen
Zhuo Kai Chen
I personally have some critical thoughts about developing machine learning models as filters for trend-following strategies. We all know that trend-following strategies primarily profit from a few outlier trades that offset most of the losses. This characteristic of profit distribution is difficult to capture with a binary classifier. While we can attempt to minimize this issue by assigning greater weight to the higher profit class, it remains challenging. Intuitively, predicting long-term profits is akin to forecasting prices, which academia often regards as a mystery. Dr. Ernest P. Chan, the author of "Quantitative Trading", stated that using tree models to predict short-term prices is much easier than predicting long-term prices—similar to how forecasting the weather for the next minute is easier than predicting it for tomorrow. I strongly agree and have found success using such models to predict short-term mean reversion strategies.

Recently, a fund manager from Man Group gave a lecture about CTAs (Commodity Trading Advisors) at my university. He mentioned that they rarely use machine learning in their CTA bots, which baffled me. Literally, one of the most successful firms in the world prefers simple rules and intuitive algorithms over sophisticated methods. I asked him why, and he explained:

1. They tried using machine learning to mine alphas but failed miserably.
2. They attempted to use it as a filter, similar to what we discussed in this article, but it barely worked, achieving only 80% correlation. This means it provided almost no additional edge compared to the original strategy.
3. They found success in using machine learning to select the best strategy for a given market.

Regarding the third point, I wondered why they didn’t simply test each strategy for every market and compare the results. However, I assume they find it more efficient to cluster markets for certain strategies, especially since they trade over 6,000 assets. They believe the aforementioned theory explains their obstacles, as they primarily use trend-following strategies for their CTA bots.
Zhuo Kai Chen
Ha publicado el artículo Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias

CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.

12