文章 "使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序"

 

新文章 使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序已发布:

本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

现在,利用 MetaQuotes 的文章《如何在 MQL5 中使用 ONNX 模型》中的思路,我正在将模型转换为 ONNX 格式。按照同一篇文章中提供的指导原则,我将把生成的 ONNX 模型集成到基础智能交易系统(EA)中,以启动交易操作。这种方法可将机器学习模型无缝集成到 MQL5 环境中,从而增强交易算法的能力。

在把格式转化为 ONNX 之前,有必要下载数据。为此,我们将使用我上传的脚本 (ticks_to_csv)。只需将其保存在 MQL5 EA 文件夹中,在集成开发环境中打开并编译即可。完成后,将脚本添加到图表中,让它运行一段时间(因为它会下载一个交易品种的所有分时报价,所以可能需要一段时间)。在日志中,当这个过程结束时,您会看到一条完成信息。作为参考,我曾将其用于EUR/USD,占用了几个G的字节。

作者:Javier Santiago Gaston De Iriarte Cabrera

 

嗨,对不起,我在DeepLearningForecast_ONNX_training.py 文件中犯了一个错误。

您必须使用这个文件

附加的文件:
 
Javier Santiago Gaston De Iriarte Cabrera #:

嗨,对不起,我在DeepLearningForecast_ONNX_training.py 文件中犯了一个错误。

您必须使用这个文件

对不起,这个文件也有错误,我明天会把那个 py 文件做出来,然后放在这里。


我还在做一个续集,你将在续集中看到正确的 py 文件。

 
Javier Santiago Gaston De Iriarte Cabrera #:

对不起,这个也有错误,我明天会把它做成 py 并放在这里。


我还在做一个续篇,在续篇中也会有正确的 py。

这是 .py,我将在下一篇文章中使用它。

附加的文件:
 
Javier Santiago Gaston De Iriarte Cabrera #:

这是 .py,我将在下一篇文章中使用它。

抱歉,我忘了放一些 NaN 值。

我忘了删除一些 NaN

以下是最终文件(但请从下一篇文章中获取)

附加的文件: