文章 "神经网络变得轻松(第十六部分):聚类运用实践" 新评论 MetaQuotes 2022.08.22 05:57 新文章 神经网络变得轻松(第十六部分):聚类运用实践已发布: 在上一篇文章中,我们为数据聚类创建了一个类。 在本文中,我想分享在解决实际交易任务时应用所获结果会遇到的可能变体。 为了评估该智能系统的性能,我们取用我们在前一篇文章中训练过,并在前一次测试中用到的 500 个聚类模型对其进行了测试。 训练图形如下所示。 如您所见,训练图非常平滑。 为了训练模型,我采用了 Adam 参数优化方法。 前 20 个世代展示出损失函数逐渐减少,而这伴随着动量累积。 然后,损失函数值显著地急剧下降到某一最小值。 先前获得的监督模型的训练图的损失函数具有明显的转折。 例如,下面是更复杂的关注度 模型的训练图。 作者:Dmitriy Gizlyk 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
新文章 神经网络变得轻松(第十六部分):聚类运用实践已发布:
在上一篇文章中,我们为数据聚类创建了一个类。 在本文中,我想分享在解决实际交易任务时应用所获结果会遇到的可能变体。
为了评估该智能系统的性能,我们取用我们在前一篇文章中训练过,并在前一次测试中用到的 500 个聚类模型对其进行了测试。 训练图形如下所示。
如您所见,训练图非常平滑。 为了训练模型,我采用了 Adam 参数优化方法。 前 20 个世代展示出损失函数逐渐减少,而这伴随着动量累积。 然后,损失函数值显著地急剧下降到某一最小值。 先前获得的监督模型的训练图的损失函数具有明显的转折。 例如,下面是更复杂的关注度 模型的训练图。
作者:Dmitriy Gizlyk