内幕消息,将在 API 公布石油储量消息之前给出石油的波动情况。也就是说,价格变动的原因和概率发生在价格本身形成之前。
这既是一种批评,也是一个问题。
我们对趋势保持沉默,因为我们使用的是跌出该状态的概率,然后就看运气了,即 "Taki-profit "或偶然发现 "Moose"。
问题:
- 在多重状态的意义上,这里还能有什么?
你好,亚历山大,这里有很多可能性。你有三个事件,你可以把它们组成一组,例如 ( Herb, Tails ) ( Herb, rib ) ( Herb, Herb ) ( Tails , Tails ) ( Tails , rib ) ( Tails , Herb ) ( rib , Tails ) ( rib , rib ) ( rib , rib ) ( rib , rib ) ( rib , Herb )(肋骨 , 肋骨 )(肋骨, 草本 ) ( 肋骨 , 草本 )
也就是说,与其考虑单个事件,不如考虑由这些事件组成的链,从中可以得到完全意想不到的样本。.此类集合的数量计算如下:
- Pow(n,N)
- N 是链的长度(相继抛掷的次数)。
- n - 抛掷硬币后可能出现的状态数(它们的概率组成一个完整的组)。
换句话说,掷硬币的结果数乘以链的长度。在双链的例子中,我得到了 9 组,让我们来核对一下!
- 3-掷骰子的数量
- 2-链的长度
- 3^2 = 9 - 全部相加。
您可以考虑 3 的链 ...4 ....+ 无穷多的状态,这取决于您的样本有多长,您做的掷骰子实验越多,您就会得到越多的用于分析的挤压。如果您对这些集合中某些组的概率感兴趣,也可以将这些集合组合起来,因为所有这些集合构成了一个完整的事件组。
你好,亚历山大,这里有很多变体。你有三个事件,你可以把它们组成集合,例如 ( Herb, Tails ) ( Herb, rib ) ( Herb, Herb ) ( Tails , Tails ) ( Tails , rib ) ( Tails , Herb ) ( rib , Tails ) ( rib , Tails ) ( rib , Tails ) ( rib, Herb )。 , rib )(rib , Herb ) ( rib , Herb )
也就是说,与其考虑单个事件,不如考虑由这些事件组成的链,从中可以得到完全意想不到的样本。.此类集合的数量计算如下:
- Pow(n,N)
- N 是链的长度(相继抛掷的次数)。
- n - 抛掷硬币后可能出现的状态数(它们的概率构成一个完整的组)
换句话说,掷硬币的结果数乘以链的长度。在双链的例子中,我得到了 9 组,让我们来核对一下!
- 3-掷骰子的次数
- 2-链的长度
- 3^2 = 9 - 全部相加。
您可以考虑 3 的链 ...4 ....+ 无穷多的状态,这取决于你的样本有多长,你做的掷骰子实验越多,你就会得到越多的挤压来进行分析。如果您对这些集合中某些组的概率感兴趣,也可以将这些集合组合起来,因为所有这些集合构成了一个完整的事件组。
非常 感谢您的回答,尤金!
很好......
但比如我,在我的交易者时间线上,每年只有 200 次抛掷,即在一个交易日开始前抛掷一次。
因此,集合中只有一个事件。
根据经验,我想指出的是,不断改变交易方向对统计和财务结果有非常不好的影响。
,我认为用很多集合来解决问题是非常多余的,是一种没有实际应用的理论延伸。
,让我们更贴近实践吧!
,好吗?
非常感谢 Eugene 的回答!
很好......
但比如我,在交易者的时间线上每年只有 200 次抛掷,即在交易日开始前抛掷一次。
因此,集合中只有一个事件。
根据经验,我想指出的是,不断改变交易方向对统计和财务结果有非常不好的影响。
,我认为用很多集合来解决问题是非常多余的,是没有实际应用的理论延伸。
,让我们更贴近实践吧!
,好吗?
让我们实际一点。以 "200 "次抛掷为例。如果我们对这一连串的试验进行分析,我们就可以区分出不同的状态,而不是单一的掷骰子。在交易中,如果我们分析的不是交易链,而是价格,那么它们就被称为模式。任何模式都可以用状态链来充分准确地表示。有趣的是,当我们考虑单个状态或仅考虑一个步骤时,很可能会出现混乱,但当这些状态组合成一个链条时,就形成了一种形态,这种形态既可以表示买入,也可以表示卖出,你需要做的就是分析形态之后发生的事情,并进行统计。回溯测试或交易历史也是一条曲线,不仅可以在价格层面,也可以在虚拟交易层面搜索形态。我稍后会在另一篇文章中介绍这一点,只是材料很多,应该会在适当的时候出现。
因此,总的来说,你试图进一步挖掘是件好事,很高兴看到这一点)。
我们对趋势保持沉默,因为我们使用的是跌出该状态的概率,然后我们可以顺其自然,即 "Taki-profit "或偶然发现的 "Moose"。
问题:
- 就状态的多重性而言,这里还能有什么?
确切地说,"泷 "的边缘落差意味着落在连接鹰的平面和尾巴的平面的边缘上。因此,出现了另一种变体--当硬币略微倾斜时,真正落在边缘上。
让我们开始练习吧。例如,"200 "次抛掷。如果我们分析这一连串的试验,我们可以识别的不是单一的抛掷,而是例如具有不同状态集的不同链。在交易中,如果我们分析的不是交易链,而是价格,它们就被称为模式。任何模式都可以用状态链来充分准确地表示。有趣的是,当我们考虑单个状态或仅考虑一个步骤时,很可能会出现混乱,但一旦这些状态组合成一个链条,就会形成一种形态,这种形态既可以表示买入,也可以表示卖出,你需要做的就是分析形态之后发生的事情,并进行统计。回溯测试或交易历史也是一条曲线,不仅可以在价格层面,也可以在虚拟交易层面搜索形态。我稍后会在另一篇文章中对此进行描述,只是材料很多,应该会在适当的时候出现。
因此,总的来说,你试图进一步挖掘是件好事,很高兴看到这一点)。
"有趣的是,当考虑单一状态或仅考虑一个步骤时,我们很可能会得到混沌......"
- 这就是我们 需要停止的地方。
市场中的混乱或动荡极少发生,5-7 年一次,它表现为急剧的逃离或涌入,
,影响快速增长,然后急剧放缓,或者金融工具价值的恐慌性下跌。
,因此,您甚至可以考虑只考虑价格形态,而不考虑价格形态,价格形态有很多,而且并不总是给出预期的方向。
,难道不是这样吗,尤金?
新文章 针对交易的组合数学和概率论(第四部分):伯努利(Bernoulli)逻辑已发布:
在本文中,我决定重点阐述著名的伯努利(Bernoulli)规划案,并展示如何用它来描述与交易相关的数据数组。 所有这些将被用来创建一个自适应的交易系统。 我们还将寻找一个更通用的算法,一个特例是伯努利公式,并查找能够运用它的应用。
如果我们研究运用数学语言来描述交易历史和回测的可能性分析,首先我们需要理解这种分析的目的和可能的结果。 这样的分析有什么附加值吗? 事实上,不可能马上给出一个明确的答案。 但有一个答案,它可以逐渐推导出简单而有效的解决方案。 然而,我们应该先深入了解更多细节。 鉴于之前文章的经验,我对以下问题感兴趣:
所有这些问题的答案如下。 可以将一些策略简化为分形描述。 我已经开发出这个算法,我将进一步讲述它。 它也适用于其它用途,因为它是一种通用分形。 现在,我们来研究并尝试回答以下问题:用随机数和概率论的语言来说,交易历史是什么? 答案很简单:它是一组孤立的实体或向量,它们在一定时间段内的发生具有一定的概率和时间利用因子。 这样的每个实体的主要特征是其发生的概率。 时间利用因子是一个辅助值,有助于判定有多少可用时间来进行交易。 下图可能有助于理解这个想法:
作者:Evgeniy Ilin