文章 "梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法" 新评论 MetaQuotes 2021.02.15 08:41 新文章 梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法已发布: 在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。 编译后的 EA 可以在标准的 MetaTrader 5 策略测试器中进行测试。选择一个合适的时间框架(必须与模型训练中使用的时间框架相匹配)和输入参数look_back 和 MA_period,这也应该与 Python 程序中的参数相匹配。让我们在训练期间检查模型(培训+验证子样本): 模型的效果(训练+验证子样本) 如果我们将结果与在定制测试器中获得的结果进行比较,这些结果是相同的,除了一些点差引起的偏差。现在,让我们从年初开始,用全新的数据来测试这个模型: 新数据的模型性能 该模型在新数据上的表现明显较差。如此糟糕的结果与客观原因有关,我将进一步阐述。 作者:Maxim Dmitrievsky 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
新文章 梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法已发布:
在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。
编译后的 EA 可以在标准的 MetaTrader 5 策略测试器中进行测试。选择一个合适的时间框架(必须与模型训练中使用的时间框架相匹配)和输入参数look_back 和 MA_period,这也应该与 Python 程序中的参数相匹配。让我们在训练期间检查模型(培训+验证子样本):
模型的效果(训练+验证子样本)
如果我们将结果与在定制测试器中获得的结果进行比较,这些结果是相同的,除了一些点差引起的偏差。现在,让我们从年初开始,用全新的数据来测试这个模型:
新数据的模型性能
该模型在新数据上的表现明显较差。如此糟糕的结果与客观原因有关,我将进一步阐述。
作者:Maxim Dmitrievsky