배포
| 심볼 | 딜 | Sell | Buy | |
|---|---|---|---|---|
| XAUUSD | 12 | |||
| .USTECHCash | 5 | |||
|
5
10
15
20
|
5
10
15
20
|
5
10
15
20
|
| 심볼 | 총 수익, USD | 손실, USD | 수익, USD | |
|---|---|---|---|---|
| XAUUSD | 206 | |||
| .USTECHCash | -8 | |||
|
25
50
75
100
125
150
175
200
225
250
275
300
|
25
50
75
100
125
150
175
200
225
250
275
300
|
25
50
75
100
125
150
175
200
225
250
275
300
|
| 심볼 | 총 수익, pips | 손실, pips | 수익, pips | |
|---|---|---|---|---|
| XAUUSD | 21K | |||
| .USTECHCash | -3.9K | |||
|
2.5K
5K
7.5K
10K
13K
15K
18K
20K
23K
25K
28K
30K
|
2.5K
5K
7.5K
10K
13K
15K
18K
20K
23K
25K
28K
30K
|
2.5K
5K
7.5K
10K
13K
15K
18K
20K
23K
25K
28K
30K
|
- 입금량
- 축소
리얼개 계정의 다양한 브로커들의 실행 통계를 기반으로 한 평균 편차가 핍(Pip)에 입력됩니다. 이 값은 "RoboForex-Prime"의 제공업자의 값과 구독자의 값 간의 차이와 주문 실행 지연에 따라 달라집니다. 값이 낮을수록 복제의 질이 더 훌륭하다는 것을 의미합니다.
|
ICMarketsSC-Live20
|
0.00 × 2 | |
|
Exness-Real26
|
0.00 × 10 | |
|
ICMarketsSC-Live23
|
0.00 × 1 | |
|
RoboMarketsLLC-ECN-2
|
0.50 × 10 | |
|
IronFXBM-Real10
|
0.53 × 345 | |
|
RoboForex-ECN-3
|
0.96 × 26 | |
|
Hankotrade-Live
|
1.40 × 5 | |
|
Alpari-Pro.ECN
|
1.53 × 17 | |
|
RoboForex-Prime
|
2.61 × 3275 | |
|
FXChoice-Pro Live
|
3.79 × 19 | |
|
CMCMarkets1-Europe
|
4.50 × 2 | |
|
RoboForex-Pro-2
|
4.67 × 12 | |
|
EightcapLtd-Real-4
|
5.60 × 5 | |
|
ICMarketsSC-Live32
|
6.63 × 8 | |
|
ICMarketsEU-Live17
|
6.69 × 16 | |
|
OctaFX-Real
|
7.69 × 52 | |
|
Tickmill-Live08
|
7.91 × 65 | |
|
RoboForex-Pro-5
|
8.76 × 255 | |
|
BlackBullMarkets-Live
|
9.10 × 87 | |
|
ICMarketsSC-Live12
|
9.78 × 291 | |
|
XMGlobal-Real 8
|
13.75 × 560 | |
|
XMGlobal-Real 18
|
14.88 × 1663 | |
|
Pepperstone-Edge12
|
16.00 × 1 | |
|
Just2Trade-Real
|
17.09 × 64 | |
|
XBTFX-Real
|
18.15 × 97 | |
Any kind of spread, H1 market, 500usd min (No grid, No Martingale, All entrys with Stop Loss and Take Profit. Money managament with Trailing Stop)
As an Algo Trader, I have developed algorithmic trading strategies for Gold (XAU) and Nasdaq, with expansion plans to include currency pairs. My methodology combines rigorous statistical analysis with data mining.
Development Process (4 months of intensive work):
-
Exhaustive Backtesting - 10 years of historical data analyzed to identify significant statistical edges
-
Market-Specific Conditions - Strategies designed to adapt to real market dynamics
-
Robustness Testing - 15,000 Monte Carlo simulations evaluating market condition variations and spreads
-
Final Optimization - Fine-tuning for maximum operational efficiency
Key Features:
-
Automated trading ready for live accounts
-
Data-driven quantitative approach
-
Individual development (one-man team)
-
Intensive computational power utilization
-
Mathematically grounded risk management
Technology: Strategy Quant + Advanced Statistical Analysis