- EigenSymmetricDC
- EigenSymmetricQR
- EigenSymmetricRobust
- EigenSymmetricBisect
- EigenSymmetricDC2s
- EigenSymmetricQR2s
- EigenSymmetricRobust2s
- EigenSymmetricBisect2s
- EigenSymmetric2DC
- EigenSymmetric2QR
- EigenSymmetric2Bisect
EigenSymmetric2Bisect
Compute all the eigenvalues, and optionally, the eigenvectors of a generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric (Hermitian) and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. This method uses bisection algorithm (lapack functions SYGVX, HEGVX).
Computing for type matrix<double>
bool matrix::EigenSymmetric2Bisect(
|
Computing for type matrix<float>
bool matrixf::EigenSymmetric2Bisect(
|
Computing for type matrix<complex>
bool matrixc::EigenSymmetric2Bisect(
|
Computing for type matrix<complexf>
bool matrixcf::EigenSymmetric2Bisect(
|
Parameters
itype
[in] ENUM_EIGS2_TYPE enumeration value which specified the problem type to be solved : A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
jobv
[in] ENUM_EIG_VALUES enumeration value which determines the method for computing eigenvectors.
range
[in] ENUM_BLAS_RANGE enumeration value that defines a subset of computable eigenvalues and vectors.
lower
[in] The lower bound of eigenvalues subset; it is specified depending on the value of the 'range' parameter.
upper
[in] The upper bound of eigenvalues subset; it is specified depending on the value of the 'range' parameter.
abstol
[in] Absolute error tolerance.
The absolute error tolerance to which each eigenvalue/eigenvector is required.
If jobv = 'V', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol.
If abstol < n *eps*|T|, then n *eps*|T| is used instead, where eps is the machine precision, and |T| is the 1-norm of the matrix T. The eigenvalues are computed to an accuracy of eps*|T| irrespective of abstol.
If high relative precision is important, 'abstol' should be set to a safe minimum value X such that 1.0/X does not overflow.
B
[in] Second matrix B. Must be positive definite symmetric (or Hermitian conjugated) matrix.
eigen_values
[out] Vector of eigenvalues.
eigen_vectors
[out] Matrix of eigenvectors.
triangular_factor
[out] The triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T.
Return Value
Return true if successful, otherwise false in case of an error.
Note
Computation depends on the values of the jobv and range parameters.
When BLASRANGE_A is set, all eigenvalues are computed, and the lower and upper parameters are ignored.
With the BLASRANGE_V value, only those eigenvalues (and their vectors) are computed, which fall within the range of real values specified by the 'lower' and 'upper' parameters.
With the BLASRANGE_I value, only those eigenvalues (and their vectors) are computed, which fall within the range of integer indices specified by the 'lower' and 'upper' parameters. For example, with lower=0 and upper=2, only the first three eigenvalues are computed.
The input can be a symmetric (Hermitian), upper triangular or lower triangular matrix. Triangular matrices are assumed to be symmetric (Hermitian conjugated). Second matrix B must be positive definite symmetric. If the input matrix and second matrix B are triangular, then both must be the same triangular, upper or lower.
ENUM_EIGS2_TYPE
An enumeration that specifies the problem type to be solved.
ID |
Description |
---|---|
EIGS2TYPE_1 |
1: A*x = (lambda)*B*x |
EIGS2TYPE_2 |
2: A*B*x = (lambda)*x |
EIGS2TYPE_3 |
3: B*A*x = (lambda)*x |
ENUM_EIG_VALUES
An enumeration that specifies whether to calculate eigenvectors.
ID |
Description |
---|---|
EIGVALUES_V |
Eigenvectors and eigenvalues are calculated. |
EIGVALUES_N |
Only eigenvalues are calculated, without vectors. |
ENUM_BLAS_RANGE
An enumeration defining how right singular vectors should be computed.
ID |
Description |
---|---|
BLASRANGE_A |
All singular or eigenvalues will be found. |
BLASRANGE_V |
All singular or eigenvalues in the half-open interval (VL,VU] will be found. |
BLASRANGE_I |
The IL-th through IU-th singular or eigenvalues will be found. |