文章 "数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)" 新评论 MetaQuotes 2023.02.28 08:27 新文章 数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)已发布: 这是一种惰性算法,它不是基于训练数据集学习,而是以存储数据集替代,并在给定新样本时立即采取行动。 尽管它很简单,但它能用于各种实际应用。 K-最近邻算法是一种非参数监督学习分类器,它运用邻近度对单个数据点的分组进行分类或预测。 虽然此算法主要用于分类问题,但它也可解决回归问题。 它通常作为分类算法,由于它假设数据集中的相似点可以在彼此的附近找到。 k-最近邻算法是监督机器学习中最简单的算法之一。 我们将在本文中构筑我们的算法作为分类器。 作者:Omega J Msigwa 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
新文章 数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)已发布:
这是一种惰性算法,它不是基于训练数据集学习,而是以存储数据集替代,并在给定新样本时立即采取行动。 尽管它很简单,但它能用于各种实际应用。
作者:Omega J Msigwa