Работа завершена
Время выполнения 16 дней
Отзыв от заказчика
Very patient programmer
Отзыв от исполнителя
Nice person to work with.
Техническое задание
//@version=4
study(title="Stochastic", shorttitle="Stoch", format=format.price, precision=2, resolution="")
periodK = input(14, title="K", minval=1)
periodD = input(3, title="D", minval=1)
smoothK = input(3, title="Smooth", minval=1)
k = sma(stoch(close, high, low, periodK), smoothK)
d = sma(k, periodD)
plot(k, title="%K", color=#0094FF)
plot(d, color=change(d) >= 0 ? color.lime : color.red, linewidth=2)
h0 = hline(80, "Upper Band", color=#606060)
h1 = hline(20, "Lower Band", color=#606060)
fill(h0, h1, color=#9915FF, transp=80, title="Background")
lbR = input(title="Pivot Lookback Right", defval=5)
lbL = input(title="Pivot Lookback Left", defval=5)
rangeUpper = input(title="Max of Lookback Range", defval=60)
rangeLower = input(title="Min of Lookback Range", defval=5)
plotBull = input(title="Plot Bullish", defval=true)
plotBear = input(title="Plot Bearish", defval=true)
bearColor = color.red
bullColor = color.green
noneColor = color.new(color.white, 100)
osc= k
plFound = na(pivotlow(osc, lbL, lbR)) ? false : true
phFound = na(pivothigh(osc, lbL, lbR)) ? false : true
_inRange(cond) =>
bars = barssince(cond == true)
rangeLower <= bars and bars <= rangeUpper
//------------------------------------------------------------------------------
// Regular Bullish
// Osc: Higher Low
oscHL = osc[lbR] > valuewhen(plFound, osc[lbR], 1) and _inRange(plFound[1])
// Price: Lower Low
priceLL = low[lbR] < valuewhen(plFound, low[lbR], 1)
bullCond = plotBull and priceLL and oscHL and plFound
plot(
plFound ? osc[lbR] : na,
offset=-lbR,
title="Regular Bullish",
linewidth=2,
color=(bullCond ? bullColor : noneColor),
transp=0
)
plotshape(
bullCond ? osc[lbR] : na,
offset=-lbR,
title="Regular Bullish Label",
style=shape.arrowup,
location=location.absolute,
color=bullColor,
size = size.normal,
transp=0
)
//------------------------------------------------------------------------------
// Regular Bearish
// Osc: Lower High
oscLH = osc[lbR] < valuewhen(phFound, osc[lbR], 1) and _inRange(phFound[1])
study(title="Stochastic", shorttitle="Stoch", format=format.price, precision=2, resolution="")
periodK = input(14, title="K", minval=1)
periodD = input(3, title="D", minval=1)
smoothK = input(3, title="Smooth", minval=1)
k = sma(stoch(close, high, low, periodK), smoothK)
d = sma(k, periodD)
plot(k, title="%K", color=#0094FF)
plot(d, color=change(d) >= 0 ? color.lime : color.red, linewidth=2)
h0 = hline(80, "Upper Band", color=#606060)
h1 = hline(20, "Lower Band", color=#606060)
fill(h0, h1, color=#9915FF, transp=80, title="Background")
lbR = input(title="Pivot Lookback Right", defval=5)
lbL = input(title="Pivot Lookback Left", defval=5)
rangeUpper = input(title="Max of Lookback Range", defval=60)
rangeLower = input(title="Min of Lookback Range", defval=5)
plotBull = input(title="Plot Bullish", defval=true)
plotBear = input(title="Plot Bearish", defval=true)
bearColor = color.red
bullColor = color.green
noneColor = color.new(color.white, 100)
osc= k
plFound = na(pivotlow(osc, lbL, lbR)) ? false : true
phFound = na(pivothigh(osc, lbL, lbR)) ? false : true
_inRange(cond) =>
bars = barssince(cond == true)
rangeLower <= bars and bars <= rangeUpper
//------------------------------------------------------------------------------
// Regular Bullish
// Osc: Higher Low
oscHL = osc[lbR] > valuewhen(plFound, osc[lbR], 1) and _inRange(plFound[1])
// Price: Lower Low
priceLL = low[lbR] < valuewhen(plFound, low[lbR], 1)
bullCond = plotBull and priceLL and oscHL and plFound
plot(
plFound ? osc[lbR] : na,
offset=-lbR,
title="Regular Bullish",
linewidth=2,
color=(bullCond ? bullColor : noneColor),
transp=0
)
plotshape(
bullCond ? osc[lbR] : na,
offset=-lbR,
title="Regular Bullish Label",
style=shape.arrowup,
location=location.absolute,
color=bullColor,
size = size.normal,
transp=0
)
//------------------------------------------------------------------------------
// Regular Bearish
// Osc: Lower High
oscLH = osc[lbR] < valuewhen(phFound, osc[lbR], 1) and _inRange(phFound[1])
Откликнулись
1
Оценка
Проекты
178
39%
Арбитраж
4
25%
/
50%
Просрочено
14
8%
Свободен
2
Оценка
Проекты
844
73%
Арбитраж
15
53%
/
13%
Просрочено
193
23%
Свободен
3
Оценка
Проекты
460
26%
Арбитраж
140
20%
/
59%
Просрочено
100
22%
Работает
4
Оценка
Проекты
16
0%
Арбитраж
8
13%
/
75%
Просрочено
3
19%
Свободен
5
Оценка
Проекты
210
69%
Арбитраж
8
38%
/
38%
Просрочено
22
10%
Свободен
Похожие заказы
Tradingview chart setup
30+ USD
Hi , I have some indicators that I want set up on my TV chart and want to create one chart for some and another chart for some others. Plus I want to set up the brackets orders so I can trade from the chart. I have these set up somewhat but need it cleaned up and the way I want them. how much would something like this cost to do? I'm in California and would like you to show me so I can learn to do this when I want to
Apply with a keen sense of responsibility . Copy the code . Both of my expert has sufficient materials . Its a simple winning strategy , therefore please be ahead of time . Code BLUE . Changing The Strategy According to what i think is correct
Gold robot Ga1
30 - 200 USD
mport pandas as pd import numpy as np def detecter_tendance(data): # Code pour détecter la tendance pass def identifier_niveaux(data): # Code pour identifier les niveaux de support et de résistance pass def calculer_stop_loss(tendance, support, resistance): # Code pour calculer les stop loss pass def calculer_profils(tendance, support, resistance): # Code pour calculer les profils mport pandas as pd
Hello there Hpe you are doing good I am in search of a pine script expert developer who can build strategy in apudFlow in pinescript. Kinldy bid on this project if you can do this
EA Expert MTA 4
30+ USD
I have my own indicator and needs to create EA expert working smoothly with it to hit the targets as defined in indicator: Technical approach: - The EA will read the indicator signals using Copy Buffer on the selected timeframe - The EA should hit indicator variable targets factor -Auto-Entry: Instant execution when the signal appears. -Alerts: Mobile Push Notifications + Pop-up alerts. -Money Management Auto-lot
I need a reliable, clean-coded Expert Advisor built for both MetaTrader 4 and MetaTrader 5 platforms. Main trading behavior: The EA follows buy and sell arrows produced by my custom indicator. Whenever a buy arrow shows up on the chart: if a sell position is currently open → close that sell immediately and enter a buy trade in its place. Whenever a sell arrow appears: if a buy position exists → close the buy and
Algo Trading Rebot/ EA
30 - 100 USD
I would like someone Who can design an EA for me. I will give him the Required Details and Trading Plan How it should Work. its going to be a Simple EA System Around Moving Averages Crossover. I will Provide Him the Moving Averages Settings and How It should execute trades and Exit them
I have been trading manually for years by disciplining myself to follow a rigorous risk management system and using entry and exit strategies crafted from Implied Volatility(IV), Real Volume ,RSI and Moving Average ,but never had I automated the entire system until now . I have just completed the automation of the gold Expert Advisor and the results are astonishing .Below you'll see the graph and a statistics file
The EA should focus on high-speed scalping on the 1-minute timeframe or every tick execution and must perform incredibly well on demo accounts with consistent profitability. EA Requirements: Platform: MetaTrader 5 (MT5) Trading style: Scalping (1-minute or tick-based execution) Dynamic lot size increase system (auto lot multiplier or equity-based lot adjustment) Should work efficiently even on minimum equity (as low
I am looking for an experienced MQL5 developer to build a professional, fully automated Expert Advisor (EA) for MetaTrader 5 . This project is focused on risk-controlled, long-term consistency , not unrealistic promises. 🧑💻 Developer Requirements (Very Important) Please apply only if you meet these criteria : ✅ Rating 4.7+ ✅ 50+ completed jobs (more is better) ✅ 3+ years experience with MQL5 ✅ Strong understanding
Информация о проекте
Бюджет
30+ USD
Сроки выполнения
до 10 дн.