기고글 토론 "트레이딩에서 카오스 이론(2부): 더 깊이 알아보기" 새 코멘트 MetaQuotes 2025.10.09 07:30 새로운 기고글 트레이딩에서 카오스 이론(2부): 더 깊이 알아보기 가 게재되었습니다: 금융 시장에서의 카오스 이론에 대해 계속 알아보겠습니다. 이번에는 통화 및 기타 자산 분석에서 카오스 이론의 적용 가능성에 대해 살펴보겠습니다. 프랙탈 차원은 카오스 이론과 금융 시장을 포함한 복잡한 시스템 분석에서 중요한 역할을 하는 개념입니다. 이는 대상이나 프로세스의 복잡성과 자기 유사성을 정량적으로 측정할 수 있는 지표로 시장 움직임의 무작위성의 정도를 평가하는 데 특히 유용합니다. 금융 시장의 맥락에서 프랙탈 차원은 가격 차트의 '들쭉날쭉함'을 측정하는 데 사용할 수 있습니다. 프랙탈 차원이 높을수록 가격 구조가 더 복잡하고 혼란스러운 반면 차원이 낮을수록 움직임이 더 부드럽고 예측 가능함을 나타낼 수 있습니다. 프랙탈 차원을 계산하는 방법에는 여러 가지가 있습니다. 가장 많이 사용되는 방법 중 하나는 박스 카운팅 메서드입니다. 이 방법은 다양한 크기의 셀 그리드로 차트를 덮고 차트를 덮는 데 필요한 셀의 수를 다양한 배율로 세는 것입니다. 작성자: Yevgeniy Koshtenko 새 코멘트 트레이딩 기회를 놓치고 있어요: 무료 트레이딩 앱 복사용 8,000 이상의 시그널 금융 시장 개척을 위한 경제 뉴스 등록 로그인 공백없는 라틴 문자 비밀번호가 이 이메일로 전송될 것입니다 오류 발생됨 Google으로 로그인 웹사이트 정책 및 이용약관에 동의합니다. 계정이 없으시면, 가입하십시오 MQL5.com 웹사이트에 로그인을 하기 위해 쿠키를 허용하십시오. 브라우저에서 필요한 설정을 활성화하시지 않으면, 로그인할 수 없습니다. 사용자명/비밀번호를 잊으셨습니까? Google으로 로그인
새로운 기고글 트레이딩에서 카오스 이론(2부): 더 깊이 알아보기 가 게재되었습니다:
프랙탈 차원은 카오스 이론과 금융 시장을 포함한 복잡한 시스템 분석에서 중요한 역할을 하는 개념입니다. 이는 대상이나 프로세스의 복잡성과 자기 유사성을 정량적으로 측정할 수 있는 지표로 시장 움직임의 무작위성의 정도를 평가하는 데 특히 유용합니다.
금융 시장의 맥락에서 프랙탈 차원은 가격 차트의 '들쭉날쭉함'을 측정하는 데 사용할 수 있습니다. 프랙탈 차원이 높을수록 가격 구조가 더 복잡하고 혼란스러운 반면 차원이 낮을수록 움직임이 더 부드럽고 예측 가능함을 나타낼 수 있습니다.
프랙탈 차원을 계산하는 방법에는 여러 가지가 있습니다. 가장 많이 사용되는 방법 중 하나는 박스 카운팅 메서드입니다. 이 방법은 다양한 크기의 셀 그리드로 차트를 덮고 차트를 덮는 데 필요한 셀의 수를 다양한 배율로 세는 것입니다.
작성자: Yevgeniy Koshtenko