Andrey Dibrov / Perfil
- Información
4 años
experiencia
|
0
productos
|
0
versiones demo
|
0
trabajos
|
0
señales
|
0
suscriptores
|

El uso de la visión por computadora permite entrenar redes neuronales con la representación visual de la tabla de precios y los indicadores. Este método nos permitirá utilizar con mayor libertad todo el complejo de indicadores técnicos, pues no requiere su suministro digital a la red neuronal.


En este artículo, analizaremos paso a paso la implementación de un sistema comercial basado en la programación de redes neuronales profundas en Python. Para ello, usaremos la biblioteca de aprendizaje automático TensorFlow, desarrollada por Google. Para describir las redes neuronales, utilizaremos la biblioteca de Keras.


En el presente artículo, ofrecemos la descripción y las instrucciones del uso práctico de los módulos de red neuronal en la plataforma Matlab. Asimismo, comentaremos los aspectos principales de la construcción de un sistema comercial con uso de modelos de redes neuronales (RN). Para que resulte más fácil familiarizarse con el complejo de elementos comprimidos para el presente artículo, hemos tenido que modernizarlo de forma que se puedan compatibilizar varias funciones del modelo de RN.

En el presente artículo, analizaremos los momentos esenciales de la implementación de las redes neuronales y el terminal comercial para crear un robot comercial plenamente funcinal.