Discussing the article: "Neural Networks in Trading: Models Using Wavelet Transform and Multi-Task Attention (Final Part)"
You are missing trading opportunities:
- Free trading apps
- Over 8,000 signals for copying
- Economic news for exploring financial markets
Registration
Log in
You agree to website policy and terms of use
If you do not have an account, please register
Check out the new article: Neural Networks in Trading: Models Using Wavelet Transform and Multi-Task Attention (Final Part).
During testing, the models were trained on EURUSD historical data for the entire year of 2023, with the H1 timeframe. All analyzed indicators were used with their default parameter settings.
Для первого этапа обучения мы использовали обучающую выборку, собранную в рамках предыдущих исследований. В дальнейшем обучающая выборка периодически обновлялась с целью адаптации к текущей политике Актера. После нескольких циклов обучения и обновления выборки, была получена политика, демонстрирующая прибыльность как на обучающей, так и на тестовой выборках.
Testing of the trained policy was conducted on historical data for January 2024, with all other parameters unchanged. The results are presented below.
Author: Dmitriy Gizlyk