# Martingale

### Introduction

A **martingale** is any of a class of betting strategies that originated from and were popular in 18th century France. The simplest of these strategies was designed for a game in which the gambler wins his stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double his bet after every loss, so that the first win would recover all previous losses plus win a profit equal to the original stake. The martingale strategy has been applied to roulette as well, as the probability of hitting either red or black is close to 50%.

Since a gambler with infinite wealth will, almost surely, eventually flip heads, the martingale betting strategy was seen as a sure thing by those who advocated it. Of course, none of the gamblers in fact possessed infinite wealth, and the exponential growth of the bets would eventually bankrupt "unlucky" gamblers who chose to use the martingale. It is therefore a good example of a Taleb distribution – the gambler usually wins a small net reward, thus appearing to have a sound strategy. However, the gambler's expected value does indeed remain zero (or less than zero) because the small probability that he will suffer a catastrophic loss exactly balances with his expected gain. (In a casino, the expected value is *negative*, due to the house's edge.) The likelihood of catastrophic loss may not even be very small. The bet size rises exponentially. This, combined with the fact that strings of consecutive losses actually occur more often than common intuition suggests, can bankrupt a gambler quickly.

### Settings

- Initpos - The initialization of the position,which is the first time the EA open positions.
- Times - The ratio of late positions and earlier positions,which can determine the positions to place an order.
- MaxOrders - The Maximum number of consecutive place orders.

### Conclusion

Assuming that the win/loss outcomes of each bet are independent and identically distributed random variables, the stopping time has finite expected value. This justifies the following argument, explaining why the betting system fails: Since expectation is linear, the expected value of a series of bets is just the sum of the expected value of each bet.Since in such games of chance the bets are independent, the expectation of each bet does not depend on whether you previously won or lost. In most casino games, the expected value of any individual bet is negative, so the sum of lots of negative numbers is also always going to be negative.The martingale strategy fails even with unbounded stopping time, as long as there is a limit on earnings or on the bets (which are also true in practice). It is only with unbounded wealth, bets and time that the martingale becomes a winning strategy.

### Others

- Eventually, the software copyright belongs to scuxia.
- If you have any questions, please contact the author at the site.
- Subscribers can email contact the author, the product supports free after sale service.(Email:scuxia@gmail.com)