Python FastAPI Developer for AI-Integrated MT5 Trading System (Data + API + Model Pipeline)

指定

We are building a Python-based backend that integrates with a MetaTrader 5 Expert Advisor (EA).
The EA sends structured market data (pair, session, ATR, volume, previous highs/lows, etc.) to a FastAPI server, and the server responds with AI-driven trade recommendations and parameters.
This backend will act as the “brain” of the EA, managing all decision logic, learning models, and data storage.

This is a serious build, not a small script — we’re creating a scalable, production-ready AI trading infrastructure.


🧠 Core Objectives

  • Develop a FastAPI backend that receives JSON data from MT5 and returns trading bias + risk parameters.

  • Build an internal data processing pipeline that:

    • Cleans, normalizes, and stores incoming candle/trade data.

    • Appends trade outcomes to database for continuous retraining.

  • Integrate AI/ML logic to analyze new inputs and determine optimal strategy parameters for each session.

  • Support multiple currency pairs and sessions (London, New York).

  • Host a simple admin panel or API key system to manage user access and licenses.


⚙️ Technical Requirements

  • Language: Python 3.10+

  • Framework: FastAPI (preferred)

  • Database: MySQL / PostgreSQL

  • Integration: Must handle HTTPS POST requests from EA (JSON format)

  • AI Component: Use historical data + outcome labels for retraining (e.g., LightGBM, CatBoost, or TensorFlow).

  • Data I/O: Must store candle data (OHLCV), ATR, session time, and order outcome results.

  • Scalability: Ability to serve multiple EA instances simultaneously with low latency (<200 ms).

  • Security: API key authentication per user.


📊 Example Workflow

  1. EA sends a JSON packet:

{ "pair": "EURUSD", "session": "London", "atr": 0.0025, "prev_high": 1.0742, "prev_low": 1.0698, "market_context": "low_swept" }

  1. Backend model interprets data → selects the most probable setup for that session.

  2. Server returns:

{ "direction": "buy", "risk_percent": 0.03, "tp_rr": 4.0, "entry_zone": "1.0705-1.0715", "confidence": 0.82 }
  1. EA executes trade and logs results → sent back to the API for retraining.


💾 Deliverables

  • FastAPI backend with POST/GET endpoints.

  • Database schema for storing trades and session data.

  • Sample AI model integration (can start with basic logic; we’ll scale).

  • Log and retrain function (auto-update nightly).

  • Clear documentation and code comments.

  • Basic Docker or deployment guide for hosting (optional bonus).


🧠 Skills Required

  • ✅ Python (FastAPI, Pandas, Numpy)

  • ✅ MySQL or PostgreSQL (data storage and trade logs)

  • ✅ Data mining and normalization (OHLCV, indicators)

  • ✅ REST API design (JSON, authentication)

  • ✅ Basic ML integration (LightGBM, Scikit-learn, or TensorFlow)

  • ✅ Forex knowledge (candles, ATR, session logic)


💰 Budget & Timeline

  • Budget: $1,200 – $2,000 (depending on experience and performance)

  • Timeline: 2–3 weeks

  • Long-term work available (model retraining, scaling, and dashboard builds).


🔒 Additional Notes

This project will directly power a commercial trading system.
Code must be modular, clean, and extensible — no shortcuts or unstructured scripts.
You’ll collaborate briefly with our MQL5 EA developer, so communication and clear handoff are important.


🚀 To Apply

Please include:

  1. Examples of APIs or trading data pipelines you’ve built (FastAPI, Flask, Django, etc.).

  2. A short explanation of how you’d structure model retraining and data storage.

  3. Availability and estimated completion time.


反馈

1
开发者 1
等级
(18)
项目
22
9%
仲裁
6
33% / 33%
逾期
1
5%
已载入
2
开发者 2
等级
(15)
项目
18
6%
仲裁
8
38% / 38%
逾期
2
11%
已载入
3
开发者 3
等级
(18)
项目
23
22%
仲裁
8
13% / 63%
逾期
4
17%
空闲
4
开发者 4
等级
(4)
项目
3
33%
仲裁
2
0% / 100%
逾期
0
空闲
5
开发者 5
等级
(3)
项目
5
20%
仲裁
2
0% / 100%
逾期
3
60%
工作中
6
开发者 6
等级
(5)
项目
7
0%
仲裁
8
13% / 75%
逾期
3
43%
空闲
7
开发者 7
等级
(325)
项目
504
19%
仲裁
33
42% / 30%
逾期
33
7%
繁忙
8
开发者 8
等级
(3)
项目
1
100%
仲裁
3
0% / 100%
逾期
0
空闲
9
开发者 9
等级
(171)
项目
195
42%
仲裁
13
8% / 54%
逾期
9
5%
空闲
发布者: 3 代码
10
开发者 10
等级
(16)
项目
20
0%
仲裁
10
0% / 80%
逾期
6
30%
空闲
11
开发者 11
等级
(34)
项目
38
18%
仲裁
13
8% / 69%
逾期
1
3%
繁忙
12
开发者 12
等级
(75)
项目
124
44%
仲裁
14
29% / 50%
逾期
17
14%
空闲
13
开发者 13
等级
(6)
项目
5
0%
仲裁
2
50% / 50%
逾期
2
40%
空闲
14
开发者 14
等级
(73)
项目
83
64%
仲裁
5
100% / 0%
逾期
9
11%
空闲
15
开发者 15
等级
(14)
项目
19
11%
仲裁
1
0% / 100%
逾期
5
26%
空闲
16
开发者 16
等级
(1)
项目
0
0%
仲裁
1
0% / 100%
逾期
0
空闲
17
开发者 17
等级
(16)
项目
35
23%
仲裁
4
0% / 50%
逾期
2
6%
工作中
18
开发者 18
等级
项目
0
0%
仲裁
0
逾期
0
空闲
19
开发者 19
等级
(10)
项目
14
21%
仲裁
3
33% / 67%
逾期
1
7%
工作中
20
开发者 20
等级
(2)
项目
2
0%
仲裁
1
0% / 0%
逾期
0
空闲
21
开发者 21
等级
项目
0
0%
仲裁
0
逾期
0
空闲
22
开发者 22
等级
(5)
项目
5
20%
仲裁
2
0% / 100%
逾期
1
20%
空闲
23
开发者 23
等级
(2)
项目
2
0%
仲裁
0
逾期
0
空闲
24
开发者 24
等级
(52)
项目
68
59%
仲裁
5
0% / 80%
逾期
5
7%
空闲
发布者: 1 文章
25
开发者 25
等级
项目
0
0%
仲裁
0
逾期
0
空闲
26
开发者 26
等级
项目
0
0%
仲裁
0
逾期
0
空闲
27
开发者 27
等级
项目
0
0%
仲裁
0
逾期
0
空闲
28
开发者 28
等级
项目
1
0%
仲裁
1
100% / 0%
逾期
0
空闲
29
开发者 29
等级
(1)
项目
1
0%
仲裁
2
0% / 50%
逾期
0
空闲
相似订单
I need a AI signal generating bot for forex trading that use the latest ai technology to track real time forex market, analyse and give signals. The bot should operate such that when i put it in a chart it will analyse the market, after several minutes it will display whether the trade is buying or selling. It should display the one minute, five minute,15minute, 30 minute, one hour, 4 hours and daily time frame
step by step and structure this into a full IEEE 830 / ISO/IEC/IEEE 29148 style Requirements Specification. This format will include: Introduction System Overview Functional and Performance Requirements Traceability Matrix (linking requirements to test cases) Verification and Validation Compliance Standards 1. Introduction 1.1 Purpose The purpose of this document is to define the technical requirements for the
Henryy999 30 - 3000 USD
The Ai robot must help me with forex and I don't have money soon can the Ai robot give me some money and I will pay it back if the Ai robot does a good job making me rich
// Add this to your EA after ExportState() function void SendToBase44(const string state, const string dir, double entry, double sl, double tp) { string url = " https://preview-sandbox--ee0a32a725b788974de435e8cef40b7a.base44.app/api/functions/receiveEAState "; string headers = "Content-Type: application/json\r\n"; string json = "{" "\"symbol\":\""+_Symbol+"\","
A trading expert that relies on specific signals such as price breaking a peak or trough, liquidity withdrawal, and retesting the signal. Lock the expert advisor with a code and create a subscriber base with a separate key for each subscriber

项目信息

预算
1200 - 2000 USD
截止日期
 21 天