文章 "神经网络变得简单(第 75 部分):提升轨迹预测模型的性能"

 

新文章 神经网络变得简单(第 75 部分):提升轨迹预测模型的性能已发布:

我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。

预测即将到来的价格走势的轨迹,或许在为所需规划范围构建交易计划的过程中扮演关键角色之一。这种预测的准确性至关重要。为了提高轨迹预测的品质,我们把轨迹预测模型复杂化。

然而,这个过程也如同硬币的另一面。更复杂的模型需要更多的计算资源。这意味着训练模型及其操作的成本都会增加。模型训练的成本需要加以考虑。然而,就操作成本而言,它们可能更为关键。尤其是在高度波动的市场中使用市价单进行实时交易之时。在这种情况下,我们要查找提高模型性能的方法。理想情况下,这种优化不应影响未来轨迹预测的品质。

该方法的作者提议使用一种简单但功能强大的地图预处理算法,其中目标个体的轨迹线性被过滤。然后,它们计算目标个体能够互动的可行区域,仅需考虑地图的几何信息。

作者:Dmitriy Gizlyk