文章 "频域中的滤波和特征提取" 新评论 MetaQuotes 2024.08.19 10:45 新文章 频域中的滤波和特征提取已发布: 在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。 在文章《面向初学者的 MQL5 数字过滤器的实际实现》一文中,作者阐述了通过卷积在时域中应用的数字滤波器。该系列是一组不同长度的唯一权重的乘积,具体取决于滤波器类型及其参数。权重数量定义了一个移动窗口,当滤波器应用于该数据范围时,会与相应的序列值进行卷积。移动平均线也以相同的方式工作。 在本文中,我们将把滤波器应用在频域之中。涉及的基本步骤如下: 首先,在准备 DFT 操作时对序列进行预处理。 DFT 使用快速傅里叶变换算法(FFT)应用于序列。 接下来,我们遵照我们认为必要的任何方式操纵序列的波形。也就是说,应用了一个滤波器,从而修改了序列的原始波形。 对修改后的波形进行逆 DFT 操作,将其转换回熟悉的时域。 最后,我们撤销在初始预处理步骤所执行操作所带来的任何影响。 作者:Francis Dube 新评论 您错过了交易机会: 免费交易应用程序 8,000+信号可供复制 探索金融市场的经济新闻 注册 登录 拉丁字符(不带空格) 密码将被发送至该邮箱 发生错误 使用 Google 登录 您同意网站政策和使用条款 如果您没有帐号,请注册 可以使用cookies登录MQL5.com网站。 请在您的浏览器中启用必要的设置,否则您将无法登录。 忘记您的登录名/密码? 使用 Google 登录
新文章 频域中的滤波和特征提取已发布:
在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
在文章《面向初学者的 MQL5 数字过滤器的实际实现》一文中,作者阐述了通过卷积在时域中应用的数字滤波器。该系列是一组不同长度的唯一权重的乘积,具体取决于滤波器类型及其参数。权重数量定义了一个移动窗口,当滤波器应用于该数据范围时,会与相应的序列值进行卷积。移动平均线也以相同的方式工作。
在本文中,我们将把滤波器应用在频域之中。涉及的基本步骤如下:
作者:Francis Dube