Modelos de classificação da biblioteca Scikit-learn e sua exportação para o formato ONNX

MetaQuotes | 21 março, 2024

O desenvolvimento da tecnologia levou ao surgimento de uma abordagem fundamentalmente nova para construir algoritmos de processamento de dados. Anteriormente, para resolver cada problema específico, era necessária uma formulação e um desenvolvimento claros dos algoritmos correspondentes.

No aprendizado de máquina, o computador aprende por si mesmo a encontrar as melhores maneiras de processar dados. Os modelos de aprendizado de máquina podem resolver com êxito os problemas de classificação (há um conjunto fixo de classes, encontrar as probabilidades de pertencimento de um determinado conjunto de características a cada classe) e regressão (estimar o valor numérico da variável-alvo com base em um determinado conjunto de características). Com base nestes componentes fundamentais, podem ser construídos modelos mais complexos de processamento de dados.

Na biblioteca Scikit-learn, estão disponíveis muitas ferramentas tanto para classificação quanto para regressão. A escolha de métodos e modelos específicos depende das características dos dados, pois diferentes métodos podem ter eficiências variadas e fornecer resultados diferentes, dependendo do problema.

No comunicado de imprensa "ONNX Runtime is now open source", afirma-se que o ONNX Runtime também suporta o perfil ONNX-ML:

ONNX Runtime is the first publicly available inference engine with full support for ONNX 1.2 and higher including the ONNX-ML profile.

O perfil ONNX-ML é uma parte do ONNX, criada especificamente para modelos de aprendizado de máquina (ML). Ele é destinado à descrição e representação de vários tipos de modelos de ML, tais como modelos de classificação, regressão, agrupamento e outros, em uma forma conveniente que pode ser usada em diferentes plataformas e ambientes que suportam ONNX. O perfil ONNX-ML simplifica a transferência, implantação e execução de modelos de aprendizado de máquina, tornando-os mais acessíveis e portáveis.

Neste artigo, exploraremos o uso de todos os modelos de classificação do pacote Scikit-learn para resolver o problema de classificação dos íris de Fisher, tentaremos convertê-los para o formato ONNX e usaremos os modelos resultantes em programas MQL5.

Também compararemos a precisão dos modelos originais e suas versões ONNX no Iris dataset completo.


Conteúdo



1. Íris de Fisher

O conjunto de dados Iris é um dos conjuntos de dados mais famosos e amplamente usados no mundo do aprendizado de máquina. Foi apresentado pela primeira vez em 1936 pelo estatístico e biólogo R.A. Fisher e desde então se tornou um conjunto de dados clássico para tarefas de classificação.

O conjunto de dados Iris consiste em medições das sépalas e pétalas de três espécies de íris: Iris setosa, Iris virginica e Iris versicolor.

Fig.1. Iris setosa

Fig.1. Iris setosa


Fig.2. Iris virginica

Fig.2. Iris virginica


Fig.3. Iris versicolor

Fig.3. Iris versicolor


O conjunto de dados Iris consiste em 150 instâncias de íris, com 50 instâncias de cada uma das três espécies. Cada instância tem quatro características numéricas (em centímetros):

  1. Comprimento da sépala (sepal length)
  2. Largura da sépala (sepal width)
  3. Comprimento da pétala (petal length)
  4. Largura da pétala (petal width)

Cada instância também tem uma classe que indica a espécie de íris (Iris setosa, Iris virginica ou Iris versicolor). Este atributo de classificação torna o conjunto de dados Iris ideal para tarefas de aprendizado de máquina, como classificação e agrupamento.

O MetaEditor permite trabalhar com scripts em Python. Para criar um script Python, é necessário selecionar "Novo" no menu "Arquivo" do MetaEditor. Aparece a janela de diálogo para selecionar o objeto a ser criado (Fig. 4).

Criando um script Python no Assistente MQL5 - Etapa 1

Fig.4. Criando um script Python no Assistente MQL5 - Etapa 1

Em seguida, é necessário nomear o script, por exemplo, IRIS.py

Criando um script Python no Assistente MQL5 - Etapa 2 - Nome do script

Fig.5. Criando um script Python no Assistente MQL5 - Etapa 2 - Nome do script

Após isso, pode-se indicar quais bibliotecas serão utilizadas, no nosso caso deixaremos esses campos em branco.

Criando um script Python no Assistente MQL5 - Etapa 3

Fig.6. Criando um script Python no Assistente MQL5 - Etapa 3


Uma das maneiras de começar a análise do Iris dataset é visualizar os dados. A representação gráfica nos permite entender melhor a estrutura dos dados e as relações entre as características.

Por exemplo, pode-se criar um gráfico de dispersão (scatter plot) para ver como as diferentes espécies de íris estão distribuídas no espaço de características.

Código do script Python:

# The script shows the scatter plot of the Iris dataset features
# Copyright 2023, MetaQuotes Ltd.
# https://mql5.com

import matplotlib.pyplot as plt
from sklearn import datasets

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# extract sepal length and sepal width (the first two features)
sepal_length = X[:, 0]
sepal_width = X[:, 1]

# create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(sepal_length, sepal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Sepal Length (cm)')
plt.ylabel('Sepal Width (cm)')
plt.title('Scatter Plot for Sepal Length and Sepal Width')
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
plt.show()

# save the scatter plot to a file (optional)
# plt.savefig('scatter_plot_sepal_length_width.png')

# Extract petal length and petal width (the third and fourth features)
petal_length = X[:, 2]
petal_width = X[:, 3]

# create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(petal_length, petal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Petal Width (cm)')
plt.title('Scatter Plot for Petal Length and Petal Width')
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
plt.show()

# save the scatter plot to a file (optional)
# plt.savefig('scatter_plot_petal_length_width.png')

Para executar este script, é necessário copiá-lo no MetaEditor (Fig.7) e pressionar "Compilar".

Script IRIS.py no MetaEditor

Fig.7. Script IRIS.py no MetaEditor


Depois disso, os gráficos serão exibidos na tela:

Script IRIS.py no MetaEditor com o gráfico Sepal Length/Sepal Width

Fig.8. Script IRIS.py no MetaEditor com o gráfico Sepal Length/Sepal Width


Fig.9. Script IRIS.py no MetaEditor com o gráfico Petal Length/Petal Width

Fig.9. Script IRIS.py no MetaEditor com o gráfico Petal Length/Petal Width


Vamos examiná-los em detalhes.

Fig. 10. Diagrama de dispersão para o comprimento e largura da sépala (Scatter Plot Sepal Length vs Sepal Width)

Fig. 10. Diagrama de dispersão para o comprimento e largura da sépala (Scatter Plot Sepal Length vs Sepal Width)



Neste diagrama, vemos como as diferentes espécies de íris estão distribuídas pelo comprimento e largura da sépala. Podemos ver que o Iris setosa geralmente tem sépalas mais curtas e largas do que as outras duas espécies.

Fig.11. Diagrama de dispersão para o comprimento e largura da pétala (Scatter Plot Petal Length vs Petal Width)

Fig.11. Diagrama de dispersão para o comprimento e largura da pétala (Scatter Plot Petal Length vs Petal Width)



Neste diagrama, vemos como as diferentes espécies de íris estão distribuídas pelo comprimento e largura da pétala. Podemos notar que o Iris setosa tem as pétalas mais curtas e estreitas, o Iris virginica tem as pétalas mais longas e largas, e o Iris versicolor está entre eles.

O Iris dataset é um conjunto de dados ideal para treinamento e teste de modelos de aprendizado de máquina. Vamos usá-lo para analisar o desempenho dos modelos de aprendizado de máquina para a tarefa de classificação.



2. Modelos para classificação

A tarefa de classificação é uma das principais tarefas do aprendizado de máquina, e seu objetivo é dividir os dados em diferentes categorias ou classes com base em algumas características.

Vamos considerar os principais modelos de aprendizado de máquina do pacote scikit-learn.


Lista de classificadores do pacote Scikit-learn

Para exibir a lista de classificadores disponíveis do Scikit-learn, pode-se usar o script:

# ScikitLearnClassifiers.py
# The script lists all the classification algorithms available in scikit-learn
# Copyright 2023, MetaQuotes Ltd.
# https://mql5.com

# print Python version
from platform import python_version  
print("The Python version is ", python_version()) 

# print scikit-learn version
import sklearn
print('The scikit-learn version is {}.'.format(sklearn.__version__))

# print scikit-learn classifiers
from sklearn.utils import all_estimators
classifiers = all_estimators(type_filter='classifier')
for index, (name, ClassifierClass) in enumerate(classifiers, start=1):
    print(f"Classifier {index}: {name}")

Resultado:

Python    The Python version is  3.10.0
Python    The scikit-learn version is 1.2.2.
Python    Classifier 1: AdaBoostClassifier
Python    Classifier 2: BaggingClassifier
Python    Classifier 3: BernoulliNB
Python    Classifier 4: CalibratedClassifierCV
Python    Classifier 5: CategoricalNB
Python    Classifier 6: ClassifierChain
Python    Classifier 7: ComplementNB
Python    Classifier 8: DecisionTreeClassifier
Python    Classifier 9: DummyClassifier
Python    Classifier 10: ExtraTreeClassifier
Python    Classifier 11: ExtraTreesClassifier
Python    Classifier 12: GaussianNB
Python    Classifier 13: GaussianProcessClassifier
Python    Classifier 14: GradientBoostingClassifier
Python    Classifier 15: HistGradientBoostingClassifier
Python    Classifier 16: KNeighborsClassifier
Python    Classifier 17: LabelPropagation
Python    Classifier 18: LabelSpreading
Python    Classifier 19: LinearDiscriminantAnalysis
Python    Classifier 20: LinearSVC
Python    Classifier 21: LogisticRegression
Python    Classifier 22: LogisticRegressionCV
Python    Classifier 23: MLPClassifier
Python    Classifier 24: MultiOutputClassifier
Python    Classifier 25: MultinomialNB
Python    Classifier 26: NearestCentroid
Python    Classifier 27: NuSVC
Python    Classifier 28: OneVsOneClassifier
Python    Classifier 29: OneVsRestClassifier
Python    Classifier 30: OutputCodeClassifier
Python    Classifier 31: PassiveAggressiveClassifier
Python    Classifier 32: Perceptron
Python    Classifier 33: QuadraticDiscriminantAnalysis
Python    Classifier 34: RadiusNeighborsClassifier
Python    Classifier 35: RandomForestClassifier
Python    Classifier 36: RidgeClassifier
Python    Classifier 37: RidgeClassifierCV
Python    Classifier 38: SGDClassifier
Python    Classifier 39: SVC
Python    Classifier 40: StackingClassifier
Python    Classifier 41: VotingClassifier

Por praticidade, nesta lista de classificadores, eles são destacados em diferentes cores. Modelos que requerem classificadores base são destacados em amarelo, enquanto os demais modelos podem ser usados independentemente.

Adiantando-nos, notamos que os modelos marcados em verde são os que foram exportados com sucesso para o formato ONNX, enquanto os modelos marcados em vermelho são aqueles que, na versão atual do scikit-learn 1.2.2, apresentam erros ao serem convertidos.


Diferentes representações de dados de saída existentes nos modelos

Deve-se notar que diferentes modelos representam as informações de saída de maneiras variadas, portanto, ao trabalhar com modelos convertidos para ONNX, é preciso ter cuidado.

Para a tarefa de classificação dos íris de Fisher, os tensores de entrada têm a mesma forma para todos esses modelos:

Information about input tensors in ONNX:
1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]

Os tensores de saída dos modelos ONNX variam.

1. Modelos que não requerem pós-processamento

  1. SVC Classifier;
  2. LinearSVC Classifier;
  3. NuSVC Classifier;
  4. Radius Neighbors Classifier;
  5. Ridge Classifier;
  6. Ridge Classifier CV.
Information about output tensors in ONNX:
1. Name: label, Data Type: tensor(int64), Shape: [None]
2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]

Eles retornam o resultado (número da classe) de forma explícita no primeiro tensor de saída inteiro label tensor(int64), não requerendo pós-processamento.

2. Modelos cujos resultados requerem pós-processamento:

  1. Random Forest Classifier;
  2. Gradient Boosting Classifier;
  3. AdaBoost Classifier;
  4. Bagging Classifier;
  5. K-NN_Classifier;
  6. Decision Tree Classifier;
  7. Logistic Regression Classifier;
  8. Logistic Regression CV Classifier;
  9. Passive-Aggressive Classifier;
  10. Perceptron Classifier;
  11. SGD Classifier;
  12. Gaussian Naive Bayes Classifier;
  13. Multinomial Naive Bayes Classifier;
  14. Complement Naive Bayes Classifier;
  15. Bernoulli Naive Bayes Classifier;
  16. Multilayer perceptron Classifier;
  17. Linear Discriminant Analysis Classifier;
  18. Hist Gradient Boosting Classifier;
  19. Categorical  Naive Bayes Classifier;
  20. ExtraTree Classifier;
  21. ExtraTrees Classifier.
Information about output tensors in ONNX:
1. Name: output_label, Data Type: tensor(int64), Shape: [None]
2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []

Na saída, retornam uma lista de classes e as probabilidades de pertencer a cada classe.

Para obter o resultado nestes casos, é necessário um pós-processamento do tipo seq(map(int64,tensor(float) (encontrando o elemento com a maior probabilidade).

Bem, é preciso ter cuidado e considerar esses pontos ao trabalhar com modelos ONNX. Um exemplo de tratamento diferenciado dos resultados é apresentado no script em 2.28.2.1.


iris.mqh

Para testar os modelos no conjunto completo de dados iris no MQL5, será necessário formar os dados do conjunto, para isso será usada a função PrepareIrisDataset().

É conveniente separar essas funções no arquivo iris.mqh

//+------------------------------------------------------------------+
//|                                                         Iris.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"

//+------------------------------------------------------------------+
//| Structure for the IRIS Dataset sample                            |
//+------------------------------------------------------------------+
struct sIRISsample
  {
   int               sample_id;   // sample id (1-150)
   double            features[4]; // SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm
   string            class_name;  // class ("Iris-setosa","Iris-versicolor","Iris-virginica")
   int               class_id;    // class id (0,1,2), calculated by function IRISClassID
  };

//--- Iris dataset
sIRISsample ExtIRISDataset[];
int Exttotal=0;

//+------------------------------------------------------------------+
//| Returns class id by class name                                   |
//+------------------------------------------------------------------+
int IRISClassID(string class_name)
  {
//---
   if(class_name=="Iris-setosa")
      return(0);
   else
      if(class_name=="Iris-versicolor")
         return(1);
      else
         if(class_name=="Iris-virginica")
            return(2);
//---
   return(-1);
  }

//+------------------------------------------------------------------+
//| AddSample                                                        |
//+------------------------------------------------------------------+
bool AddSample(const int Id,const double SepalLengthCm,const double SepalWidthCm,const double PetalLengthCm,const double PetalWidthCm, const string Species)
  {
//---
   ExtIRISDataset[Exttotal].sample_id=Id;
//---
   ExtIRISDataset[Exttotal].features[0]=SepalLengthCm;
   ExtIRISDataset[Exttotal].features[1]=SepalWidthCm;
   ExtIRISDataset[Exttotal].features[2]=PetalLengthCm;
   ExtIRISDataset[Exttotal].features[3]=PetalWidthCm;
//---
   ExtIRISDataset[Exttotal].class_name=Species;
   ExtIRISDataset[Exttotal].class_id=IRISClassID(Species);
//---
   Exttotal++;
//---
   return(true);
  }
//+------------------------------------------------------------------+
//| Prepare Iris Dataset                                             |
//+------------------------------------------------------------------+
bool PrepareIrisDataset(sIRISsample &iris_samples[])
  {
   ArrayResize(ExtIRISDataset,150);
   Exttotal=0;
//---
   AddSample(1,5.1,3.5,1.4,0.2,"Iris-setosa");
   AddSample(2,4.9,3.0,1.4,0.2,"Iris-setosa");
   AddSample(3,4.7,3.2,1.3,0.2,"Iris-setosa");
   AddSample(4,4.6,3.1,1.5,0.2,"Iris-setosa");
   AddSample(5,5.0,3.6,1.4,0.2,"Iris-setosa");
   AddSample(6,5.4,3.9,1.7,0.4,"Iris-setosa");
   AddSample(7,4.6,3.4,1.4,0.3,"Iris-setosa");
   AddSample(8,5.0,3.4,1.5,0.2,"Iris-setosa");
   AddSample(9,4.4,2.9,1.4,0.2,"Iris-setosa");
   AddSample(10,4.9,3.1,1.5,0.1,"Iris-setosa");
   AddSample(11,5.4,3.7,1.5,0.2,"Iris-setosa");
   AddSample(12,4.8,3.4,1.6,0.2,"Iris-setosa");
   AddSample(13,4.8,3.0,1.4,0.1,"Iris-setosa");
   AddSample(14,4.3,3.0,1.1,0.1,"Iris-setosa");
   AddSample(15,5.8,4.0,1.2,0.2,"Iris-setosa");
   AddSample(16,5.7,4.4,1.5,0.4,"Iris-setosa");
   AddSample(17,5.4,3.9,1.3,0.4,"Iris-setosa");
   AddSample(18,5.1,3.5,1.4,0.3,"Iris-setosa");
   AddSample(19,5.7,3.8,1.7,0.3,"Iris-setosa");
   AddSample(20,5.1,3.8,1.5,0.3,"Iris-setosa");
   AddSample(21,5.4,3.4,1.7,0.2,"Iris-setosa");
   AddSample(22,5.1,3.7,1.5,0.4,"Iris-setosa");
   AddSample(23,4.6,3.6,1.0,0.2,"Iris-setosa");
   AddSample(24,5.1,3.3,1.7,0.5,"Iris-setosa");
   AddSample(25,4.8,3.4,1.9,0.2,"Iris-setosa");
   AddSample(26,5.0,3.0,1.6,0.2,"Iris-setosa");
   AddSample(27,5.0,3.4,1.6,0.4,"Iris-setosa");
   AddSample(28,5.2,3.5,1.5,0.2,"Iris-setosa");
   AddSample(29,5.2,3.4,1.4,0.2,"Iris-setosa");
   AddSample(30,4.7,3.2,1.6,0.2,"Iris-setosa");
   AddSample(31,4.8,3.1,1.6,0.2,"Iris-setosa");
   AddSample(32,5.4,3.4,1.5,0.4,"Iris-setosa");
   AddSample(33,5.2,4.1,1.5,0.1,"Iris-setosa");
   AddSample(34,5.5,4.2,1.4,0.2,"Iris-setosa");
   AddSample(35,4.9,3.1,1.5,0.2,"Iris-setosa");
   AddSample(36,5.0,3.2,1.2,0.2,"Iris-setosa");
   AddSample(37,5.5,3.5,1.3,0.2,"Iris-setosa");
   AddSample(38,4.9,3.6,1.4,0.1,"Iris-setosa");
   AddSample(39,4.4,3.0,1.3,0.2,"Iris-setosa");
   AddSample(40,5.1,3.4,1.5,0.2,"Iris-setosa");
   AddSample(41,5.0,3.5,1.3,0.3,"Iris-setosa");
   AddSample(42,4.5,2.3,1.3,0.3,"Iris-setosa");
   AddSample(43,4.4,3.2,1.3,0.2,"Iris-setosa");
   AddSample(44,5.0,3.5,1.6,0.6,"Iris-setosa");
   AddSample(45,5.1,3.8,1.9,0.4,"Iris-setosa");
   AddSample(46,4.8,3.0,1.4,0.3,"Iris-setosa");
   AddSample(47,5.1,3.8,1.6,0.2,"Iris-setosa");
   AddSample(48,4.6,3.2,1.4,0.2,"Iris-setosa");
   AddSample(49,5.3,3.7,1.5,0.2,"Iris-setosa");
   AddSample(50,5.0,3.3,1.4,0.2,"Iris-setosa");
   AddSample(51,7.0,3.2,4.7,1.4,"Iris-versicolor");
   AddSample(52,6.4,3.2,4.5,1.5,"Iris-versicolor");
   AddSample(53,6.9,3.1,4.9,1.5,"Iris-versicolor");
   AddSample(54,5.5,2.3,4.0,1.3,"Iris-versicolor");
   AddSample(55,6.5,2.8,4.6,1.5,"Iris-versicolor");
   AddSample(56,5.7,2.8,4.5,1.3,"Iris-versicolor");
   AddSample(57,6.3,3.3,4.7,1.6,"Iris-versicolor");
   AddSample(58,4.9,2.4,3.3,1.0,"Iris-versicolor");
   AddSample(59,6.6,2.9,4.6,1.3,"Iris-versicolor");
   AddSample(60,5.2,2.7,3.9,1.4,"Iris-versicolor");
   AddSample(61,5.0,2.0,3.5,1.0,"Iris-versicolor");
   AddSample(62,5.9,3.0,4.2,1.5,"Iris-versicolor");
   AddSample(63,6.0,2.2,4.0,1.0,"Iris-versicolor");
   AddSample(64,6.1,2.9,4.7,1.4,"Iris-versicolor");
   AddSample(65,5.6,2.9,3.6,1.3,"Iris-versicolor");
   AddSample(66,6.7,3.1,4.4,1.4,"Iris-versicolor");
   AddSample(67,5.6,3.0,4.5,1.5,"Iris-versicolor");
   AddSample(68,5.8,2.7,4.1,1.0,"Iris-versicolor");
   AddSample(69,6.2,2.2,4.5,1.5,"Iris-versicolor");
   AddSample(70,5.6,2.5,3.9,1.1,"Iris-versicolor");
   AddSample(71,5.9,3.2,4.8,1.8,"Iris-versicolor");
   AddSample(72,6.1,2.8,4.0,1.3,"Iris-versicolor");
   AddSample(73,6.3,2.5,4.9,1.5,"Iris-versicolor");
   AddSample(74,6.1,2.8,4.7,1.2,"Iris-versicolor");
   AddSample(75,6.4,2.9,4.3,1.3,"Iris-versicolor");
   AddSample(76,6.6,3.0,4.4,1.4,"Iris-versicolor");
   AddSample(77,6.8,2.8,4.8,1.4,"Iris-versicolor");
   AddSample(78,6.7,3.0,5.0,1.7,"Iris-versicolor");
   AddSample(79,6.0,2.9,4.5,1.5,"Iris-versicolor");
   AddSample(80,5.7,2.6,3.5,1.0,"Iris-versicolor");
   AddSample(81,5.5,2.4,3.8,1.1,"Iris-versicolor");
   AddSample(82,5.5,2.4,3.7,1.0,"Iris-versicolor");
   AddSample(83,5.8,2.7,3.9,1.2,"Iris-versicolor");
   AddSample(84,6.0,2.7,5.1,1.6,"Iris-versicolor");
   AddSample(85,5.4,3.0,4.5,1.5,"Iris-versicolor");
   AddSample(86,6.0,3.4,4.5,1.6,"Iris-versicolor");
   AddSample(87,6.7,3.1,4.7,1.5,"Iris-versicolor");
   AddSample(88,6.3,2.3,4.4,1.3,"Iris-versicolor");
   AddSample(89,5.6,3.0,4.1,1.3,"Iris-versicolor");
   AddSample(90,5.5,2.5,4.0,1.3,"Iris-versicolor");
   AddSample(91,5.5,2.6,4.4,1.2,"Iris-versicolor");
   AddSample(92,6.1,3.0,4.6,1.4,"Iris-versicolor");
   AddSample(93,5.8,2.6,4.0,1.2,"Iris-versicolor");
   AddSample(94,5.0,2.3,3.3,1.0,"Iris-versicolor");
   AddSample(95,5.6,2.7,4.2,1.3,"Iris-versicolor");
   AddSample(96,5.7,3.0,4.2,1.2,"Iris-versicolor");
   AddSample(97,5.7,2.9,4.2,1.3,"Iris-versicolor");
   AddSample(98,6.2,2.9,4.3,1.3,"Iris-versicolor");
   AddSample(99,5.1,2.5,3.0,1.1,"Iris-versicolor");
   AddSample(100,5.7,2.8,4.1,1.3,"Iris-versicolor");
   AddSample(101,6.3,3.3,6.0,2.5,"Iris-virginica");
   AddSample(102,5.8,2.7,5.1,1.9,"Iris-virginica");
   AddSample(103,7.1,3.0,5.9,2.1,"Iris-virginica");
   AddSample(104,6.3,2.9,5.6,1.8,"Iris-virginica");
   AddSample(105,6.5,3.0,5.8,2.2,"Iris-virginica");
   AddSample(106,7.6,3.0,6.6,2.1,"Iris-virginica");
   AddSample(107,4.9,2.5,4.5,1.7,"Iris-virginica");
   AddSample(108,7.3,2.9,6.3,1.8,"Iris-virginica");
   AddSample(109,6.7,2.5,5.8,1.8,"Iris-virginica");
   AddSample(110,7.2,3.6,6.1,2.5,"Iris-virginica");
   AddSample(111,6.5,3.2,5.1,2.0,"Iris-virginica");
   AddSample(112,6.4,2.7,5.3,1.9,"Iris-virginica");
   AddSample(113,6.8,3.0,5.5,2.1,"Iris-virginica");
   AddSample(114,5.7,2.5,5.0,2.0,"Iris-virginica");
   AddSample(115,5.8,2.8,5.1,2.4,"Iris-virginica");
   AddSample(116,6.4,3.2,5.3,2.3,"Iris-virginica");
   AddSample(117,6.5,3.0,5.5,1.8,"Iris-virginica");
   AddSample(118,7.7,3.8,6.7,2.2,"Iris-virginica");
   AddSample(119,7.7,2.6,6.9,2.3,"Iris-virginica");
   AddSample(120,6.0,2.2,5.0,1.5,"Iris-virginica");
   AddSample(121,6.9,3.2,5.7,2.3,"Iris-virginica");
   AddSample(122,5.6,2.8,4.9,2.0,"Iris-virginica");
   AddSample(123,7.7,2.8,6.7,2.0,"Iris-virginica");
   AddSample(124,6.3,2.7,4.9,1.8,"Iris-virginica");
   AddSample(125,6.7,3.3,5.7,2.1,"Iris-virginica");
   AddSample(126,7.2,3.2,6.0,1.8,"Iris-virginica");
   AddSample(127,6.2,2.8,4.8,1.8,"Iris-virginica");
   AddSample(128,6.1,3.0,4.9,1.8,"Iris-virginica");
   AddSample(129,6.4,2.8,5.6,2.1,"Iris-virginica");
   AddSample(130,7.2,3.0,5.8,1.6,"Iris-virginica");
   AddSample(131,7.4,2.8,6.1,1.9,"Iris-virginica");
   AddSample(132,7.9,3.8,6.4,2.0,"Iris-virginica");
   AddSample(133,6.4,2.8,5.6,2.2,"Iris-virginica");
   AddSample(134,6.3,2.8,5.1,1.5,"Iris-virginica");
   AddSample(135,6.1,2.6,5.6,1.4,"Iris-virginica");
   AddSample(136,7.7,3.0,6.1,2.3,"Iris-virginica");
   AddSample(137,6.3,3.4,5.6,2.4,"Iris-virginica");
   AddSample(138,6.4,3.1,5.5,1.8,"Iris-virginica");
   AddSample(139,6.0,3.0,4.8,1.8,"Iris-virginica");
   AddSample(140,6.9,3.1,5.4,2.1,"Iris-virginica");
   AddSample(141,6.7,3.1,5.6,2.4,"Iris-virginica");
   AddSample(142,6.9,3.1,5.1,2.3,"Iris-virginica");
   AddSample(143,5.8,2.7,5.1,1.9,"Iris-virginica");
   AddSample(144,6.8,3.2,5.9,2.3,"Iris-virginica");
   AddSample(145,6.7,3.3,5.7,2.5,"Iris-virginica");
   AddSample(146,6.7,3.0,5.2,2.3,"Iris-virginica");
   AddSample(147,6.3,2.5,5.0,1.9,"Iris-virginica");
   AddSample(148,6.5,3.0,5.2,2.0,"Iris-virginica");
   AddSample(149,6.2,3.4,5.4,2.3,"Iris-virginica");
   AddSample(150,5.9,3.0,5.1,1.8,"Iris-virginica");
//---
   ArrayResize(iris_samples,150);
   for(int i=0; i<Exttotal; i++)
     {
      iris_samples[i]=ExtIRISDataset[i];
     }
//---
   return(true);
  }
//+------------------------------------------------------------------+


Nota sobre os métodos de classificação: SVC, LinearSVC e NuSVC

Vamos comparar três métodos populares de classificação: classificação de vetores de suporte (SVC), classificação de vetores de suporte linear (LinearSVC) e classificação de vetores de suporte Nu (NuSVC).

Princípios de funcionamento:

  1. SVC (Support Vector Classification)
    Como funciona: O SVC é um método de classificação baseado na maximização da margem entre as classes. Ele busca a hiperplano separador ótimo, que maximiza a separação entre as classes e suporta os vetores de suporte - pontos mais próximos ao hiperplano.
    Funções de kernel:  O SVC pode usar diferentes funções de kernel, tais como linear, função de base radial (RBF), polinomial, e outras. A função de kernel determina como os dados são transformados para encontrar o hiperplano ótimo.

  2. LinearSVC (Linear Support Vector Classification)
    Como funciona: LinearSVC é uma variante do SVC que se especializa em classificação linear. Ele busca o hiperplano separador linear ótimo, sem usar funções de kernel. Isso o torna mais rápido e mais eficiente para lidar com grandes volumes de dados.

  3. NuSVC (Nu Support Vector Classification)
    Como funciona: O NuSVC também é baseado no método de vetores de suporte, mas introduz o parâmetro Nu (nu), que controla a complexidade do modelo e a fração dos vetores de suporte. O valor de Nu está no intervalo de 0 a 1 e determina qual fração dos dados pode ser usada para vetores de suporte e erros.

Vantagens:

  1. SVC
    Algoritmo poderoso: O SVC pode lidar com tarefas complexas de classificação e trabalhar com dados não lineares graças ao uso de funções de kernel.
    Resistência a valores atípicos: O SVC é resistente a valores atípicos nos dados, pois usa vetores de suporte para construir o hiperplano separador.

  2. LinearSVC
    Alta eficiência: O LinearSVC é mais rápido e eficiente ao lidar com grandes volumes de dados, especialmente quando há muitos dados e o hiperplano separador linear é adequado para a tarefa.
    Classificação linear: Se a tarefa for bem separável linearmente, o LinearSVC pode oferecer bons resultados sem a necessidade de usar funções de kernel complexas.

  3. NuSVC
    Controle da complexidade do modelo: O parâmetro Nu no NuSVC permite controlar a complexidade do modelo e o equilíbrio entre o ajuste dos dados e a capacidade de generalização.
    Resistência a valores atípicos: Assim como o SVC, o NuSVC é resistente a valores atípicos, o que o torna útil para tarefas com dados imprecisos.

Limitações:

  1. SVC
    Complexidade computacional: O SVC pode ser lento em grandes volumes de dados e/ou ao usar funções de kernel complexas.
    Sensibilidade à escolha do kernel: Escolher a função de kernel correta pode ser uma tarefa difícil e pode afetar significativamente o desempenho do modelo.

  2. LinearSVC
    Limitação para linearidade: O LinearSVC está limitado à separação linear dos dados e pode apresentar resultados pobres em caso de relações não lineares entre as características e a variável alvo.

  3. NuSVC
    Ajuste do parâmetro Nu: Ajustar o parâmetro Nu pode exigir tempo e experimentação para alcançar os melhores resultados.

Dependendo das características da tarefa e do volume de dados, cada um desses métodos pode ser a melhor escolha. É importante realizar experimentos e escolher o método que melhor atenda aos requisitos específicos da tarefa de classificação.


2.1. SVC Classifier

O método de classificação Support Vector Classification (SVC) é um poderoso algoritmo de aprendizado de máquina amplamente utilizado para resolver tarefas de classificação.

Princípios de funcionamento:

  1. Busca do hiperplano separador ótimo
    Como funciona: A ideia principal do SVC é encontrar o hiperplano separador ótimo no espaço de características. Esse hiperplano deve maximizar a separação entre os objetos de classes diferentes e sustentar os vetores de suporte - pontos de dados mais próximos ao hiperplano.
    Maximização da margem: O SVC visa maximizar a margem entre as classes, ou seja, a distância dos vetores de suporte ao hiperplano. Isso permite que o método seja resistente a valores atípicos e generalize bem para novos dados.

  2. Uso de funções de kernel
    Funções de kernel: O SVC pode usar diferentes funções de kernel, tais como linear, função de base radial (RBF), polinomial, e outras. A função de kernel permite projetar os dados em um espaço de maior dimensão, onde a tarefa se torna linear, mesmo se não houver separabilidade linear no espaço original dos dados.
    Escolha do kernel: A escolha da função de kernel correta pode afetar significativamente o desempenho do modelo SVC. Não sempre uma hiperplano linear é a solução ótima.

Vantagens:

Limitações:

Dependendo da tarefa específica e do volume de dados, o método SVC pode ser uma ferramenta poderosa para resolver problemas de classificação. No entanto, é importante considerar suas limitações e ajustar os parâmetros para alcançar os melhores resultados.

2.1.1. Código de criação do modelo SVC Classifier

Este código demonstra o processo de treinamento do modelo SVC Classifier no conjunto de dados Iris, sua exportação para o formato ONNX e a realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_SVCClassifier.py
# The code demonstrates the process of training SVC model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create an SVC Classifier model with a linear kernel
svc_model = SVC(kernel='linear', C=1.0)

# train the model on the entire dataset
svc_model.fit(X, y)  

# predict classes for the entire dataset
y_pred = svc_model.predict(X) 

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of SVC Classifier model:", accuracy)  

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(svc_model, initial_types=initial_type, target_opset=12) 

# save the model to a file
onnx_filename = data_path +"svc_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of SVC Classifier model in ONNX format:", accuracy_onnx)

Após executar o script no MetaEditor usando o botão "Compilar" na aba Journal, é possível ver os resultados de seu trabalho.

Fig.12. Resultados do trabalho do script Iris_SVMClassifier.py no MetaEditor

Fig.12. Resultados do trabalho do script Iris_SVMClassifier.py no MetaEditor

Resultados do trabalho do script Iris_SVCClassifier.py:

Python    Accuracy of SVC Classifier model: 0.9933333333333333
Python   
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python   
Python               0       1.00      1.00      1.00        50
Python               1       1.00      0.98      0.99        50
Python               2       0.98      1.00      0.99        50
Python   
Python        accuracy                           0.99       150
Python       macro avg       0.99      0.99      0.99       150
Python    weighted avg       0.99      0.99      0.99       150
Python   
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\svc_iris.onnx
Python   
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python   
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python   
Python    Accuracy of SVC Classifier model in ONNX format: 0.9933333333333333

Aqui é possível encontrar informações sobre o caminho onde o modelo ONNX foi salvo, os tipos de parâmetros de entrada e saída do modelo ONNX, bem como a precisão da descrição do Iris dataset.

A precisão da descrição do conjunto de dados usando o SVM Classifier é de 99%, precisão similar é mostrada pelo modelo exportado no formato ONNX.

Agora, vamos verificar esses resultados do MQL5, executando o modelo construído para cada uma das 150 amostras de dados. Além disso, o script contém um exemplo de processamento em lote de dados.


2.1.2. Código no MQL5 para trabalhar com o modelo SVC Classifier

//+------------------------------------------------------------------+
//|                                           Iris_SVCClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "svc_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="SVCClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Os resultados do trabalho do script são exibidos na aba "Experts" do terminal MetaTrader 5.

Iris_SVCClassifier (EURUSD,H1)  model:SVCClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_SVCClassifier (EURUSD,H1)  model:SVCClassifier   correct results: 99.33%
Iris_SVCClassifier (EURUSD,H1)  model=SVCClassifier all samples accuracy=0.993333
Iris_SVCClassifier (EURUSD,H1)  model=SVCClassifier batch test accuracy=1.000000

O modelo SVC conseguiu distinguir corretamente 149 amostras de 150, o que é um resultado muito bom. O modelo cometeu apenas um erro de classificação no conjunto de dados Iris, prevendo a classe 2 (versicolor) em vez da classe 1 (virginica) para a amostra №84.

Note-se que a precisão do modelo ONNX exportado no Iris dataset completo é de 99.33%, o que corresponde à precisão do original.


2.1.3. Representação ONNX do modelo SVC Classifier

O modelo ONNX construído pode ser visualizado no MetaEditor:


Fig.13. Modelo ONNX svc_iris.onnx no MetaEditor

Fig.13. Modelo ONNX svc_iris.onnx no MetaEditor


Para obter mais informações sobre a arquitetura do modelo, pode-se usar o Netron; para isso, na descrição do modelo no MetaEditor, é necessário pressionar o botão "Open in Netron".


Fig.14. Modelo ONNX svc_iris.onnx no Netron

Fig.14. Modelo ONNX svc_iris.onnx no Netron


Além disso, ao passar o mouse sobre os operadores ONNX presentes no modelo, pode-se obter informações sobre os parâmetros desses operadores (SVMClassifier na Fig.15).


Fig.15. Modelo ONNX svc_iris.onnx no Netron (parâmetros do operador ONNX SVMClassifier)

Fig.15. Modelo ONNX svc_iris.onnx no Netron (parâmetros do operador ONNX SVMClassifier)



2.2. LinearSVC Classifier

LinearSVC (Classificação de Vetores de Suporte Linear) é um poderoso algoritmo de aprendizado de máquina usado para tarefas de classificação binária e multiclasse. Ele é baseado na ideia de encontrar a hiperplano que melhor separa os dados.

Princípios de funcionamento do LinearSVC:

  1. Busca do hiperplano ótimo: A ideia principal do LinearSVC é encontrar o hiperplano ótimo que maximiza a separação entre duas classes de dados. Um hiperplano é uma superfície multidimensional definida como uma equação linear.
  2. Minimização das margens: O LinearSVC visa minimizar as margens (distâncias entre os pontos de dados e o hiperplano). Quanto maiores as margens, mais confiável o hiperplano separa as classes.
  3. Trabalho com dados linearmente inseparáveis: O LinearSVC pode lidar com dados que não podem ser particionados linearmente no espaço original, por meio do uso de funções de kernel (kernel trick) que permitem que os dados sejam projetados em um espaço de dimensão mais alta, onde podem ser particionados linearmente.

Vantagens do LinearSVC:

Limitações do LinearSVC:

O LinearSVC é um algoritmo de classificação poderoso, que possui uma boa capacidade de generalização, alta eficiência e suporte para trabalhar com dados linearmente inseparáveis. Ele é aplicável em diversas tarefas de classificação, especialmente nos casos em que os dados podem ser separados por um hiperplano linear. No entanto, é importante considerar que para tarefas complexas que requerem modelagem de dependências não lineares, o LinearSVC pode ser uma escolha menos adequada, e nesses casos, deve-se considerar o uso de métodos com superfícies separadoras mais complexas.


2.2.1. Código de criação do modelo LinearSVC Classifier

Este código demonstra o processo de treinamento do modelo LinearSVC Classifier no conjunto de dados Iris, sua exportação para o formato ONNX e a realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_LinearSVC.py
# The code demonstrates the process of training LinearSVC model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a LinearSVC model
linear_svc_model = LinearSVC(C=1.0, max_iter=10000)

# train the model on the entire dataset
linear_svc_model.fit(X, y)

# predict classes for the entire dataset
y_pred = linear_svc_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of LinearSVC model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(linear_svc_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "linear_svc_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of LinearSVC model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of LinearSVC model: 0.9666666666666667
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.96      0.94      0.95        50
Python               2       0.94      0.96      0.95        50
Python    
Python        accuracy                           0.97       150
Python       macro avg       0.97      0.97      0.97       150
Python    weighted avg       0.97      0.97      0.97       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\linear_svc_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python    
Python    Accuracy of LinearSVC model in ONNX format: 0.9666666666666667


2.2.2. Código no MQL5 para trabalhar com o modelo LinearSVC Classifier

//+------------------------------------------------------------------+
//|                                               Iris_LinearSVC.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "linear_svc_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="LinearSVC";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_LinearSVC (EURUSD,H1)      model:LinearSVC  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_LinearSVC (EURUSD,H1)      model:LinearSVC  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_LinearSVC (EURUSD,H1)      model:LinearSVC  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_LinearSVC (EURUSD,H1)      model:LinearSVC  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_LinearSVC (EURUSD,H1)      model:LinearSVC  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_LinearSVC (EURUSD,H1)      model:LinearSVC   correct results: 96.67%
Iris_LinearSVC (EURUSD,H1)      model=LinearSVC all samples accuracy=0.966667
Iris_LinearSVC (EURUSD,H1)      model=LinearSVC batch test accuracy=1.000000

A precisão do modelo ONNX exportado no Iris dataset completo é de 96.67%, o que corresponde à precisão do original.


2.2.3. Representação ONNX do modelo LinearSVC Classifier

Fig.16. Representação ONNX do modelo LinearSVC Classifier no Netron

Fig.16. Representação ONNX do modelo LinearSVC Classifier no Netron


2.3. NuSVC Classifier

O método de classificação Nu-Support Vector Classification (NuSVC) é um poderoso algoritmo de aprendizado de máquina, baseado no método de vetores de suporte (Support Vector Machine, SVM).

Princípios de funcionamento do NuSVC:

  1. Método de vetores de suporte (SVM): O NuSVC é uma variante do SVM, utilizado para resolver tarefas de classificação binária e multiclasse. O principal princípio do SVM é encontrar o hiperplano separador ótimo que maximiza a separação entre as classes e possui a maior margem entre elas.
  2. Parâmetro Nu: Um dos parâmetros chave do NuSVC é o parâmetro Nu (nu), que controla a complexidade do modelo e determina a fração da amostra que pode ser usada como vetores de suporte e erros. O valor de Nu está no intervalo de 0 a 1, onde 0.5 significa que aproximadamente metade da amostra será utilizada como vetores de suporte e erros.
  3. Ajuste de parâmetros: Determinar os valores ótimos do parâmetro Nu e outros hiperparâmetros pode exigir validação cruzada e a busca pelos melhores valores nos dados de treinamento.
  4. Funções de kernel: O NuSVC pode usar várias funções de kernel, como linear, função de base radial (RBF), polinomial e outras. A função de kernel determina a maneira de transformar o espaço de características para encontrar o hiperplano separador.

Vantagens do NuSVC:

Limitações do NuSVC:

O Nu-Support Vector Classification (NuSVC) é um poderoso método de classificação baseado em SVM, que possui várias vantagens, incluindo resistência a valores atípicos e boa capacidade de generalização. No entanto, sua eficácia pode depender da escolha de parâmetros e da função de kernel, além de poder ser ineficiente ao treinar em grandes volumes de dados. É importante ajustar cuidadosamente os parâmetros do método e adaptá-lo às tarefas de classificação específicas.


2.3.1. Código de criação do modelo NuSVC Classifier

Este código demonstra o processo de treinamento do modelo NuSVC Classifier no conjunto de dados Iris, sua exportação para o formato ONNX e a realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_NuSVC.py
# The code demonstrates the process of training NuSVC model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.svm import NuSVC
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a NuSVC model
nusvc_model = NuSVC(nu=0.5, kernel='linear')

# train the model on the entire dataset
nusvc_model.fit(X, y)

# predict classes for the entire dataset
y_pred = nusvc_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of NuSVC model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(nusvc_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "nusvc_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of NuSVC model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of NuSVC model: 0.9733333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.96      0.96      0.96        50
Python               2       0.96      0.96      0.96        50
Python    
Python        accuracy                           0.97       150
Python       macro avg       0.97      0.97      0.97       150
Python    weighted avg       0.97      0.97      0.97       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\nusvc_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python    
Python    Accuracy of NuSVC model in ONNX format: 0.9733333333333334


2.3.2. Código no MQL5 para trabalhar com o modelo NuSVC Classifier

//+------------------------------------------------------------------+
//|                                                   Iris_NuSVC.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "nusvc_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="NuSVC";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_NuSVC (EURUSD,H1)  model:NuSVC  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_NuSVC (EURUSD,H1)  model:NuSVC  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_NuSVC (EURUSD,H1)  model:NuSVC  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_NuSVC (EURUSD,H1)  model:NuSVC  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_NuSVC (EURUSD,H1)  model:NuSVC   correct results: 97.33%
Iris_NuSVC (EURUSD,H1)  model=NuSVC all samples accuracy=0.973333
Iris_NuSVC (EURUSD,H1)  model=NuSVC batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 97.33%, o que corresponde à precisão do original.


2.3.3. Representação ONNX do modelo NuSVC Classifier

Fig.17. Representação ONNX do modelo NuSVC Classifier no Netron

Fig.17. Representação ONNX do modelo NuSVC Classifier no Netron


2.4. Radius Neighbors Classifier

O Radius Neighbors Classifier é um método de aprendizado de máquina que também é utilizado para tarefas de classificação e baseia-se no princípio de proximidade dos objetos. Diferentemente do classificador clássico K-Nearest Neighbors (K-NN), em que um número fixo de vizinhos mais próximos (K) é selecionado, no Radius Neighbors Classifier, os objetos são classificados com base na distância até os vizinhos mais próximos dentro de um determinado raio.

Princípios de funcionamento do Radius Neighbors Classifier:
  1. Definição do raio: O principal parâmetro do Radius Neighbors Classifier é o raio, que define a distância máxima entre um objeto e seus vizinhos para que o objeto seja considerado próximo a uma classe de vizinhos.
  2. Busca dos vizinhos mais próximos: Para cada objeto, calcula-se a distância para todos os outros objetos do conjunto de treinamento. Aqueles objetos que estão dentro do raio definido são considerados vizinhos do objeto em questão.
  3. Votação: O Radius Neighbors Classifier utiliza a votação da maioria entre os vizinhos para determinar a classe de um objeto. Por exemplo, se a maioria dos vizinhos pertence à classe A, então o objeto também será classificado como pertencente à classe A.
Vantagens do Radius Neighbors Classifier:
Limitações do Radius Neighbors Classifier:

O Radius Neighbors Classifier é um método útil de aprendizado de máquina em situações onde a proximidade dos objetos e a forma das classes podem ser complexas. Pode ser usado em várias áreas, incluindo análise de imagens, processamento de linguagem natural, entre outras.


2.4.1. Código para criar o modelo Radius Neighbors Classifier

Este código demonstra o processo de treinamento do modelo Radius Neighbors Classifier no conjunto de dados Iris, sua exportação para o formato ONNX e a realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_RadiusNeighborsClassifier.py
# The code demonstrates the process of training an Radius Neughbors model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023 MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.neighbors import RadiusNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Radius Neighbors Classifier model
radius_model = RadiusNeighborsClassifier(radius=1.0)

# train the model on the entire dataset
radius_model.fit(X, y)  

# predict classes for the entire dataset
y_pred = radius_model.predict(X) 

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Radius Neighbors Classifier model:", accuracy)  

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(radius_model, initial_types=initial_type, target_opset=12) 

# save the model to a file
onnx_filename = data_path + "radius_neighbors_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Radius Neighbors Classifier model in ONNX format:", accuracy_onnx)

Resultados do script Iris_RadiusNeighbors.py:

Python    Accuracy of Radius Neighbors Classifier model: 0.9733333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.94      0.98      0.96        50
Python               2       0.98      0.94      0.96        50
Python    
Python        accuracy                           0.97       150
Python       macro avg       0.97      0.97      0.97       150
Python    weighted avg       0.97      0.97      0.97       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\radius_neighbors_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python    
Python    Accuracy of Radius Neighbors Classifier model in ONNX format: 0.9733333333333334

A precisão do modelo original e do modelo exportado para o formato ONNX coincidem.


2.4.2. Código no MQL5 para trabalhar com o modelo Radius Neighbors Classifier

//+------------------------------------------------------------------+
//|                               Iris_RadiusNeighborsClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "radius_neighbors_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="RadiusNeighborsClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_RadiusNeighborsClassifier (EURUSD,H1)      model:RadiusNeighborsClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model:RadiusNeighborsClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model:RadiusNeighborsClassifier  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model:RadiusNeighborsClassifier  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model:RadiusNeighborsClassifier   correct results: 97.33%
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model=RadiusNeighborsClassifier all samples accuracy=0.973333
Iris_RadiusNeighborsClassifier (EURUSD,H1)      model=RadiusNeighborsClassifier batch test accuracy=1.000000

O modelo Radius Neighbor Classifier mostrou uma precisão de 97% com 4 erros de classificação (amostras 78, 107, 127 e 139).

A precisão do modelo ONNX exportado no iris dataset completo é de 97.33%, o que corresponde à precisão do original.


2.4.3. Representação ONNX do modelo Radius Neighbors Classifier

Fig.18. Representação ONNX do modelo Radius Neighbors Classifier no Netron

Fig.18. Representação ONNX do modelo Radius Neighbors Classifier no Netron


Nota sobre os métodos RidgeClassifier e RidgeClassifierCV

RidgeClassifier e RidgeClassifierCV são dois métodos de classificação baseados na regressão Ridge, mas diferem na forma de ajuste dos parâmetros e na seleção automática dos hiperparâmetros:

    RidgeClassifier:

  • RidgeClassifier é um método de classificação baseado na regressão linear Ridge, que é usado para tarefas de classificação binária e multiclasse.
  • Para classificação multiclasse, o RidgeClassifier transforma a tarefa em várias tarefas binárias (um contra todos) e constrói um modelo para cada uma delas.
  • O parâmetro de regularização alpha deve ser ajustado manualmente pelo usuário. Isso significa que você precisa escolher o valor ótimo de alpha por meio de experimentos ou análise dos resultados em dados de validação.

    RidgeClassifierCV:

  • RidgeClassifierCV é uma extensão do RidgeClassifier que oferece suporte integrado para validação cruzada e seleção automática do valor ótimo do parâmetro de regularização alpha.
  • Em vez de ajustar manualmente o alpha, você pode fornecer ao RidgeClassifierCV uma lista de valores de alpha para explorar e especificar o método de validação cruzada (por exemplo, através do parâmetro cv).
  • O RidgeClassifierCV selecionará automaticamente o valor de alpha que oferece o melhor desempenho na validação cruzada.

Então, a principal diferença entre eles está no nível de automação na seleção do valor ótimo do parâmetro de regularização alpha. O RidgeClassifier requer ajuste manual de alpha, enquanto o RidgeClassifierCV permite a seleção automática do valor ótimo de alpha usando validação cruzada. A escolha entre eles depende de suas necessidades e do desejo de automação no processo de ajuste do modelo.


2.5. Ridge Classifier

O Ridge Classifier é uma variante da regressão logística que inclui regularização L2 (regularização de Tikhonov) no modelo. A regularização L2 adiciona uma penalidade aos grandes valores dos coeficientes do modelo, o que ajuda a reduzir o sobreajuste e melhorar a capacidade de generalização do modelo.

Princípios de funcionamento do Ridge Classifier:
Vantagens do Ridge Classifier:
Limitações do Ridge Classifier:

O Ridge Classifier é um método de aprendizado de máquina poderoso que combina as vantagens da regressão logística com a regularização para combater o sobreajuste e melhorar a capacidade de generalização do modelo. Ele é aplicado em várias áreas onde a classificação com consideração de probabilidades e controle da complexidade do modelo são importantes.


2.5.1. Código para criar o modelo Ridge Classifier

Este código demonstra o processo de treinamento do modelo Ridge Classifier no conjunto de dados Iris, sua exportação para o formato ONNX e a realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_RidgeClassifier.py
# The code demonstrates the process of training Ridge Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import RidgeClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Ridge Classifier model
ridge_model = RidgeClassifier()

# train the model on the entire dataset
ridge_model.fit(X, y)  

# predict classes for the entire dataset
y_pred = ridge_model.predict(X) 

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Ridge Classifier model:", accuracy)  

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(ridge_model, initial_types=initial_type, target_opset=12) 

# save the model to a file
onnx_filename = data_path + "ridge_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Ridge Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Ridge Classifier model: 0.8533333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.87      0.66      0.75        50
Python               2       0.73      0.90      0.80        50
Python    
Python        accuracy                           0.85       150
Python       macro avg       0.86      0.85      0.85       150
Python    weighted avg       0.86      0.85      0.85       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\ridge_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python    
Python    Accuracy of Ridge Classifier model in ONNX format: 0.8533333333333334


2.5.2. Código no MQL5 para trabalhar com o modelo Ridge Classifier

//+------------------------------------------------------------------+
//|                                         Iris_RidgeClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "ridge_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="RidgeClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier   correct results: 85.33%
Iris_RidgeClassifier (EURUSD,H1)        model=RidgeClassifier all samples accuracy=0.853333
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40)
Iris_RidgeClassifier (EURUSD,H1)        model:RidgeClassifier  FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50)
Iris_RidgeClassifier (EURUSD,H1)        model=RidgeClassifier batch test accuracy=0.000000

No conjunto completo de dados íris, o modelo mostrou uma eficácia de 85.33%, o que corresponde à precisão do original.


2.5.3. ONNX-представление модели Ridge Classifier

Fig.19. Representação ONNX do modelo Ridge Classifier no Netron

Fig.19. Representação ONNX do modelo Ridge Classifier no Netron


2.6. RidgeClassifierCV

O método de classificação RidgeClassifierCV é um algoritmo poderoso de classificação binária e multiclasse, baseado na regressão Ridge.

Princípios de funcionamento do RidgeClassifierCV:

  1. Regressão linear Ridge: O RidgeClassifierCV é baseado na regressão linear Ridge. Este método representa uma modificação da regressão linear, onde a regularização L2 é adicionada. A regularização ajuda a controlar o sobreajuste, reduzindo a amplitude dos coeficientes de peso das características .
  2. Classificação binária e multiclasse: O RidgeClassifierCV pode ser usado tanto para classificação binária (quando há apenas duas classes) quanto para classificação multiclasse (quando há mais de duas classes). Para a classificação multiclasse, o método converte o problema em várias tarefas binárias (um contra todos) e constrói um modelo para cada uma delas.
  3. Seleção automática do parâmetro de regularização: Um dos principais benefícios do RidgeClassifierCV é o suporte embutido para validação cruzada e seleção automática do valor ótimo do parâmetro de regularização alpha. Em vez de ajustar manualmente o alpha, o método itera sobre diferentes valores de alpha e seleciona o melhor com base na validação cruzada.
  4. Resistência à multicolinearidade: A regressão Ridge lida bem com o problema da multicolinearidade, quando as características são altamente correlacionadas entre si. A regularização permite controlar a contribuição de cada recurso, tornando o modelo resistente a dados correlacionados.

Vantagens do RidgeClassifierCV:

Limitações do RidgeClassifierCV:

O método de classificação RidgeClassifierCV é uma ferramenta poderosa para classificação binária e multiclasse com seleção automática do parâmetro de regularização ótimo. Sua resistência ao sobreajuste, interpretabilidade e eficácia o tornam uma escolha popular para uma série de tarefas de classificação. No entanto, é importante lembrar de suas limitações, especialmente a suposição de dependências lineares entre as características e a variável alvo.


2.6.1. Código para criação do modelo RidgeClassifierCV

Este código demonstra o processo de treinamento do modelo RidgeClassifierCV no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_RidgeClassifierCV.py
# The code demonstrates the process of training RidgeClassifierCV model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import RidgeClassifierCV
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a RidgeClassifierCV model
ridge_classifier_cv_model = RidgeClassifierCV()

# train the model on the entire dataset
ridge_classifier_cv_model.fit(X, y)

# predict classes for the entire dataset
y_pred = ridge_classifier_cv_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of RidgeClassifierCV model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(ridge_classifier_cv_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "ridge_classifier_cv_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of RidgeClassifierCV model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of RidgeClassifierCV model: 0.8533333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.87      0.66      0.75        50
Python               2       0.73      0.90      0.80        50
Python    
Python        accuracy                           0.85       150
Python       macro avg       0.86      0.85      0.85       150
Python    weighted avg       0.86      0.85      0.85       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\ridge_classifier_cv_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: probabilities, Data Type: tensor(float), Shape: [None, 3]
Python    
Python    Accuracy of RidgeClassifierCV model in ONNX format: 0.8533333333333334


2.6.2. Código no MQL5 para trabalhar com o modelo RidgeClassifierCV

//+------------------------------------------------------------------+
//|                                       Iris_RidgeClassifierCV.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "ridge_classifier_cv_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   ulong input_shape[]= { batch_size, input_data.Range(1)};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[];
   float output2[][3];
//---
   ArrayResize(output1,(int)batch_size);
   ArrayResize(output2,(int)batch_size);
//---
   ulong output_shape[]= {batch_size};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {batch_size,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output1,output2);
//--- classes are ready in output1[k];
   if(res)
     {
      for(int k=0; k<(int)batch_size; k++)
         model_classes_id[k]=output1[k];
     }
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="RidgeClassifierCV";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV   correct results: 85.33%
Iris_RidgeClassifierCV (EURUSD,H1)      model=RidgeClassifierCV all samples accuracy=0.853333
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40)
Iris_RidgeClassifierCV (EURUSD,H1)      model:RidgeClassifierCV  FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50)
Iris_RidgeClassifierCV (EURUSD,H1)      model=RidgeClassifierCV batch test accuracy=0.000000

A eficácia do modelo ONNX também corresponde completamente à eficácia do modelo original do pacote Scikit-learn (85.33%).


2.6.3. Representação ONNX do modelo RidgeClassifierCV

Fig.20. Representação ONNX do modelo RidgeClassifierCV em Netron

Fig.20. Representação ONNX do modelo RidgeClassifierCV em Netron



2.7. Random Forest Classifier

Random Forest Classifier é um método de ensemble de aprendizado de máquina baseado na construção de várias árvores de decisão e na combinação de seus resultados para melhorar a qualidade da classificação. Este método é extremamente popular devido à sua eficácia e capacidade de trabalhar com dados diversos.

Princípios do Random Forest Classifier:
  1. Bagging (Bootstrap Aggregating): O Random Forest utiliza o método de bagging, que envolve a criação de várias subamostras (bootstrap samples) dos dados de treinamento com reposição. Para cada subamostra, é construída uma árvore de decisão separada.
  2. Seleção aleatória de características: Na construção de cada árvore, um subconjunto de características é selecionado aleatoriamente a partir do conjunto total de características. Isso promove a diversidade das árvores e reduz a correlação entre elas.
  3. Votação: Na classificação de um objeto, cada árvore faz sua própria previsão, e a classe que recebe a maioria dos votos entre todas as árvores é escolhida como a previsão final do modelo.
Vantagens do Random Forest Classifier:
Limitações do Random Forest Classifier:

O Random Forest Classifier é um poderoso algoritmo de aprendizado de máquina amplamente utilizado em várias áreas, incluindo pesquisas biomédicas, análise financeira e análise de dados textuais. Ele é altamente adequado para resolver tarefas de classificação e regressão e possui uma grande capacidade de generalização.


2.7.1. Código para criação do modelo Random Forest Classifier

Este código demonstra o processo de treinamento do modelo Random Forest Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_RandomForestClassifier.py
# The code demonstrates the process of training Random Forest Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023,2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Random Forest Classifier model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# train the model on the entire dataset
rf_model.fit(X, y)

# predict classes for the entire dataset
y_pred = rf_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Random Forest Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(rf_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "rf_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Random Forest Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Random Forest Classifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\rf_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Random Forest Classifier model in ONNX format: 1.0

O modelo Random Forest Classifier (e sua versão ONNX) resolve a tarefa de classificação dos íris de Fisher com 100% de precisão.


2.7.2. Código no MQL5 para trabalhar com o modelo Random Forest Classifier

//+------------------------------------------------------------------+
//|                                  Iris_RandomForestClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "rf_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="RandomForestClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_RandomForestClassifier (EURUSD,H1) model:RandomForestClassifier   correct results: 100.00%
Iris_RandomForestClassifier (EURUSD,H1) model=RandomForestClassifier all samples accuracy=1.000000
Iris_RandomForestClassifier (EURUSD,H1) model=RandomForestClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.7.3. Representação ONNX do modelo Random Forest Classifier

Fig.21. Representação ONNX do modelo Random Forest Classifier em Netron

Fig.21. Representação ONNX do modelo Random Forest Classifier em Netron


2.8. Gradient Boosting Classifier

O Gradient Bousting é uma das mais poderosas técnicas de aprendizado de máquina e encontra aplicações em diversos campos, incluindo análise de dados, visão computacional, linguagem natural e análise financeira, devido à sua capacidade de alta precisão e de lidar com uma variedade de dados.   

O Gradient Boosting Classifier é um método de ensemble de aprendizado de máquina que constrói uma composição de árvores de decisão para resolver tarefas de classificação. Esse método é popular devido à sua capacidade de obter alta precisão e resistência ao ajuste excessivo.

Princípios do Gradient Boosting Classifier:

  1. Ensemble de árvores de decisão: O Gradient Boosting Classifier constrói uma composição (ensemble) de árvores de decisão, onde cada árvore tenta melhorar as previsões da árvore anterior.
  2. Descida de gradiente: O Gradient Boosting utiliza a descida de gradiente para otimizar a função de perda. Minimiza o erro de classificação, calculando o gradiente da função de perda e atualizando as previsões de acordo com esse gradiente.
  3. Ponderação das árvores: Cada árvore na composição tem um peso, e as previsões de todas as árvores são combinadas levando em conta seus pesos.

Vantagens do Gradient Boosting Classifier:

Limitações do Gradient Boosting Classifier:

O Gradient Boosting Classifier é um método poderoso de aprendizado de máquina, frequentemente utilizado em competições de análise de dados e resolve com sucesso muitas tarefas de classificação. Ele é capaz de encontrar dependências não lineares complexas nos dados e possui boa capacidade de generalização quando os hiperparâmetros são ajustados corretamente.


2.8.1. Código de criação do modelo Gradient Boosting Classifier

Este código demonstra o processo de treinamento do modelo Gradient Boosting Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_GradientBoostingClassifier.py
# The code demonstrates the process of training Gradient Boostring Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Gradient Boosting Classifier model
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)

# train the model on the entire dataset
gb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = gb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Gradient Boosting Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(gb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "gb_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Gradient Boosting Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Gradient Boosting Classifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\gb_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Gradient Boosting Classifier model in ONNX format: 1.0

O modelo Gradient Boosting Classifier (e sua versão ONNX) resolve a tarefa de classificação dos íris de Fisher com 100% de precisão.


2.8.2. Código no MQL5 para trabalhar com o modelo Gradient Boosting Classifier

//+------------------------------------------------------------------+
//|                              Iris_GradientBoostingClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "gb_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="GradientBoostingClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_GradientBoostingClassifier (EURUSD,H1)     model:GradientBoostingClassifier   correct results: 100.00%
Iris_GradientBoostingClassifier (EURUSD,H1)     model=GradientBoostingClassifier all samples accuracy=1.000000
Iris_GradientBoostingClassifier (EURUSD,H1)     model=GradientBoostingClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.8.3. Representação ONNX do modelo Gradient Boosting Classifier

Fig.22. Representação ONNX do modelo Gradient Boosting Classifier em Netron

Fig.22. Representação ONNX do modelo Gradient Boosting Classifier em Netron


2.9. Adaptive Boosting Classifier

O classificador AdaBoost (Adaptive Boosting) é um método de aprendizado de máquina baseado em conjunto usado para melhorar a classificação combinando os resultados de vários classificadores fracos (por exemplo, árvores de decisão) para criar um algoritmo mais forte.

Princípios do AdaBoost Classifier:
  1. Ensemble de classificadores fracos: O AdaBoost começa com a inicialização de cada amostra no conjunto de treinamento com pesos, atribuindo-lhes valores iniciais iguais.
  2. Treinamento de classificadores fracos: Em seguida, o AdaBoost treina um classificador fraco (por exemplo, uma árvore de decisão) no conjunto de treinamento, considerando os pesos das amostras. Este classificador tenta classificar corretamente as amostras.
  3. Redistribuição de pesos: O AdaBoost ajusta os pesos das amostras, aumentando os pesos das amostras classificadas incorretamente e diminuindo os pesos das amostras classificadas corretamente.
  4. Criação de uma composição: O AdaBoost repete o processo de treinamento de classificadores fracos e redistribuição de pesos várias vezes. Então, os resultados desses classificadores fracos são combinados em uma composição, onde cada classificador contribui com base em sua precisão.
Vantagens do AdaBoost Classifier:
Limitações do AdaBoost Classifier:

O AdaBoost Classifier é um algoritmo poderoso de aprendizado de máquina frequentemente utilizado na prática para resolver tarefas de classificação. Ele é bem adequado para tarefas com classes binárias e multiclasse e pode ser adaptado a diferentes classificadores base.


2.9.1. Código de criação do modelo Adaptive Boosting Classifier

Este código demonstra o processo de treinamento do modelo Adaptive Boosting Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_AdaBoostClassifier.py
# The code demonstrates the process of training AdaBoost Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create an AdaBoost Classifier model
adaboost_model = AdaBoostClassifier(n_estimators=50, random_state=42)

# train the model on the entire dataset
adaboost_model.fit(X, y)

# predict classes for the entire dataset
y_pred = adaboost_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of AdaBoost Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(adaboost_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "adaboost_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of AdaBoost Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of AdaBoost Classifier model: 0.96
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.92      0.96      0.94        50
Python               2       0.96      0.92      0.94        50
Python    
Python        accuracy                           0.96       150
Python       macro avg       0.96      0.96      0.96       150
Python    weighted avg       0.96      0.96      0.96       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\adaboost_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of AdaBoost Classifier model in ONNX format: 0.96


2.9.2. Código no MQL5 para trabalhar com o modelo Adaptive Boosting Classifier

//+------------------------------------------------------------------+
//|                                      Iris_AdaBoostClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "adaboost_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="AdaBoostClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AdaBoostClassifier (EURUSD,H1)     model:AdaBoostClassifier   correct results: 96.00%
Iris_AdaBoostClassifier (EURUSD,H1)     model=AdaBoostClassifier all samples accuracy=0.960000
Iris_AdaBoostClassifier (EURUSD,H1)     model=AdaBoostClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 96%, o que corresponde à precisão do original.


2.9.3. Representação ONNX do modelo Adaptive Boosting Classifier

Fig.23. Representação ONNX do modelo Adaptive Boosting Classifier em Netron

Fig.23. Representação ONNX do modelo Adaptive Boosting Classifier em Netron


2.10. Bootstrap Aggregating Classifier

O classificador Bagging (Bootstrap Aggregating) é uma técnica de aprendizado de máquina baseada em conjuntos que se baseia na criação de várias subamostras (amostras bootstrap) a partir de dados de treinamento e na construção de modelos separados em cada uma delas e, em seguida, na combinação dos resultados para melhorar a generalização do modelo.

Princípios do Bagging Classifier:
  1. Criação de subamostras: O Bagging começa com a criação de várias subamostras aleatórias (bootstrap samples) dos dados de treinamento com reposição. Isso significa que as mesmas amostras podem aparecer em várias subamostras, enquanto algumas amostras podem ser omitidas.
  2. Treinamento dos modelos base: Em cada subamostra, um modelo base separado (por exemplo, uma árvore de decisão) é treinado. Cada modelo é treinado independentemente dos outros modelos.
  3. Agregação dos resultados: Após o treinamento de todos os modelos base, os resultados de suas previsões são combinados para obter a previsão final. No caso de classificação binária, isso pode ser feito por votação da maioria.
Vantagens do Bagging Classifier:
Limitações do Bagging Classifier:

O Bagging Classifier é um método eficaz de aprendizado de máquina que pode aumentar a capacidade de generalização do modelo e reduzir o sobreajuste. É frequentemente usado em combinação com diferentes modelos base para resolver uma variedade de tarefas de classificação e regressão.


2.10.1. Código de criação do modelo Bootstrap Aggregating Classifier

Este código demonstra o processo de treinamento do modelo Bootstrap Aggregating Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_BootstrapAggregatingClassifier.py
# The code demonstrates the process of training Bagging Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Bagging Classifier model with a Decision Tree base estimator
bagging_model = BaggingClassifier(n_estimators=100, random_state=42)

# train the model on the entire dataset
bagging_model.fit(X, y)

# predict classes for the entire dataset
y_pred = bagging_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Bagging Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(bagging_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "bagging_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Bagging Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Bagging Classifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\bagging_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Bagging Classifier model in ONNX format: 1.0

O modelo Bootstrap Aggregating Classifier (e sua versão ONNX) alcançou 100% de precisão na classificação do conjunto de dados de íris.


2.10.2. Código no MQL5 para trabalhar com o modelo Bootstrap Aggregating Classifier

//+------------------------------------------------------------------+
//|                          Iris_BootstrapAggregatingClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "bagging_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="BootstrapAggregatingClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_BootstrapAggregatingClassifier (EURUSD,H1) model:BootstrapAggregatingClassifier   correct results: 100.00%
Iris_BootstrapAggregatingClassifier (EURUSD,H1) model=BootstrapAggregatingClassifier all samples accuracy=1.000000
Iris_BootstrapAggregatingClassifier (EURUSD,H1) model=BootstrapAggregatingClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.10.3. Representação ONNX do modelo Bootstrap Aggregating Classifier

Fig.24. Representação ONNX do modelo Bootstrap Aggregating Classifier em Netron

Fig.24. Representação ONNX do modelo Bootstrap Aggregating Classifier no Netron


2.11. K-Nearest Neighbors (K-NN) Classifier

O K-Nearest Neighbors (K-NN) Classifier é um método de aprendizado de máquina usado para resolver tarefas de classificação e regressão com base na proximidade entre os objetos de dados. Ele se baseia no princípio de que objetos próximos uns dos outros no espaço multidimensional de características tendem a ter características semelhantes e, portanto, podem ter rótulos de classe semelhantes.

Princípios do K-NN Classifier:

  1. Definição de proximidade: O classificador K-NN determina a proximidade entre o objeto a ser classificado e os outros objetos no conjunto de treinamento. Isso geralmente é feito usando uma métrica de distância, como a distância euclidiana ou a distância de Manhattan.
  2. Escolha do número de vizinhos: O parâmetro K define o número de vizinhos mais próximos que serão usados para classificar o objeto. Normalmente, K é escolhido com base na tarefa e nos dados.
  3. Votação: O K-NN usa votação majoritária entre os K vizinhos mais próximos para determinar a classe do objeto. Por exemplo, se a maioria dos K vizinhos pertence à classe A, o objeto também será classificado como classe A.

Vantagens do K-NN Classifier:

Limitações do K-NN Classifier:

O K-NN Classifier é um método de aprendizado de máquina que pode ser útil em tarefas onde a proximidade dos objetos é importante, como em tarefas de recomendação, classificação de dados textuais e reconhecimento de padrões. Ele é bem adequado para análise inicial de dados e prototipagem rápida de modelos.


2.11.1. Código de criação do modelo K-Nearest Neighbors (K-NN) Classifier

Este código demonstra o processo de treinamento do modelo K-Nearest Neighbors (K-NN) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_KNearestNeighborsClassifier.py
# The code uses the K-Nearest Neighbors (KNN) Classifier for the Iris dataset, converts the model to ONNX format, saves it, and evaluates its accuracy.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a K-Nearest Neighbors (KNN) Classifier model
knn_model = KNeighborsClassifier(n_neighbors=3)

# train the model on the entire dataset
knn_model.fit(X, y)

# predict classes for the entire dataset
y_pred = knn_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of KNN Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(knn_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "knn_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of KNN Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of KNN Classifier model: 0.96
Python   
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python   
Python               0       1.00      1.00      1.00        50
Python               1       0.94      0.94      0.94        50
Python               2       0.94      0.94      0.94        50
Python   
Python        accuracy                           0.96       150
Python       macro avg       0.96      0.96      0.96       150
Python    weighted avg       0.96      0.96      0.96       150
Python   
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\knn_iris.onnx
Python   
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python   
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python   
Python    Accuracy of KNN Classifier model in ONNX format: 0.96


2.11.2. Código no MQL5 para trabalhar com o modelo K-Nearest Neighbors (K-NN) Classifier

//+------------------------------------------------------------------+
//|                             Iris_KNearestNeighborsClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "knn_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="KNearestNeighborsClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier   correct results: 96.00%
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model=KNearestNeighborsClassifier all samples accuracy=0.960000
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model:KNearestNeighborsClassifier  FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50)
Iris_KNearestNeighborsClassifier (EURUSD,H1)    model=KNearestNeighborsClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 96%, o que corresponde à precisão do original.


2.11.3. Representação ONNX do modelo K-Nearest Neighbors (K-NN) Classifier

Fig.25. Representação ONNX do modelo K-Nearest Neighbors no Netron

Fig.25. Representação ONNX do modelo K-Nearest Neighbors no Netron


2.12. Decision Tree Classifier

O Decision Tree Classifier é um método de aprendizado de máquina utilizado para tarefas de classificação, baseado na construção de uma árvore de decisão. Este método divide o conjunto de dados em subgrupos menores, realizando uma série de testes condicionais nas características e determina a classe de um objeto com base no caminho que ele percorre na árvore.

Princípios do Decision Tree Classifier:

  1. Construção da árvore de decisão: Inicialmente, todos os dados são representados na raiz da árvore. Para cada nó da árvore, os dados são divididos em duas ou mais subgrupos, com base nos valores de uma das características. Isso é feito de forma a minimizar ao máximo a incerteza (por exemplo, entropia ou índice de Gini) em cada subgrupo.
  2. Construção recursiva: O processo de divisão dos dados é realizado recursivamente até que se atinjam as folhas da árvore. As folhas representam as classes finais dos objetos.
  3. Tomada de decisão: Quando um objeto é inserido na árvore, ele segue o caminho da raiz até uma das folhas, onde sua classe é determinada com base na maioria dos objetos naquela folha.
Vantagens do Decision Tree Classifier:
Limitações do Decision Tree Classifier:

O Decision Tree Classifier é um método útil de aprendizado de máquina para tarefas de classificação, especialmente em situações onde a interpretabilidade do modelo é importante e é necessário entender quais características influenciam a decisão. Este método também pode ser usado em métodos de ensemble, como Random Forest e Gradient Boosting.


2.12.1. Código de criação do modelo Decision Tree Classifier

Este código demonstra o processo de treinamento do modelo Decision Tree Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_DecisionTreeClassifier.py
# The code uses the Decision Tree Classifier for the Iris dataset, converts the model to ONNX format, saves it, and evaluates its accuracy.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Decision Tree Classifier model
decision_tree_model = DecisionTreeClassifier(random_state=42)

# train the model on the entire dataset
decision_tree_model.fit(X, y)

# predict classes for the entire dataset
y_pred = decision_tree_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Decision Tree Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(decision_tree_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "decision_tree_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Decision Tree Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Decision Tree Classifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\decision_tree_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Decision Tree Classifier model in ONNX format: 1.0

O modelo Decision Tree Classifier (e sua versão ONNX) mostrou 100% de precisão na classificação do conjunto completo de íris de Fisher.


2.12.2. Código no MQL5 para trabalhar com o modelo Decision Tree Classifier

//+------------------------------------------------------------------+
//|                                  Iris_DecisionTreeClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "decision_tree_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="DecisionTreeClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_DecisionTreeClassifier (EURUSD,H1) model:DecisionTreeClassifier   correct results: 100.00%
Iris_DecisionTreeClassifier (EURUSD,H1) model=DecisionTreeClassifier all samples accuracy=1.000000
Iris_DecisionTreeClassifier (EURUSD,H1) model=DecisionTreeClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.12.3. Representação ONNX do modelo Decision Tree Classifier

Fig.26. Representação ONNX do modelo Decision Tree Classifier no Netron

Fig.26. Representação ONNX do modelo Decision Tree Classifier no Netron


Nota sobre os modelos LogisticRegression e LogisticRegressionCV

LogisticRegression e LogisticRegressionCV são dois classificadores usados para classificação binária por meio de regressão logística, mas diferem na maneira como os parâmetros do modelo são ajustados:

    LogisticRegression:

  • LogisticRegression é um classificador que usa a função logística para modelar a probabilidade de pertencer a uma de duas classes (classificação binária).
  • Ele oferece parâmetros básicos para ajuste, como C (força inversa da regularização), penalty (tipo de regularização, por exemplo, L1 ou L2), solver (algoritmo de otimização) e outros.
  • Ao usar LogisticRegression, você normalmente escolhe os valores dos parâmetros e suas combinações e, em seguida, treina o modelo nos dados.

    LogisticRegressionCV:

  • LogisticRegressionCV é uma extensão do LogisticRegression que fornece suporte embutido para validação cruzada e seleção do valor ótimo do parâmetro de regularização C.
  • Em vez de selecionar manualmente C, você pode fornecer ao LogisticRegressionCV uma lista de valores de C para explorar e especificar o método de validação cruzada (por exemplo, através do parâmetro cv).
  • O LogisticRegressionCV automaticamente selecionará o valor ótimo de C que proporciona o melhor desempenho na validação cruzada.
  • Isso é conveniente quando você precisa ajustar a regularização automaticamente, especialmente se você tem muitos dados ou não sabe qual valor de C escolher.

Assim, a principal diferença entre os dois é o nível de automação na definição dos parâmetros C. O LogisticRegression requer ajuste manual de C, enquanto o LogisticRegressionCV permite que você selecione automaticamente o valor ideal de C usando validação cruzada. A escolha entre eles depende de suas necessidades e do desejo de automação no processo de ajuste do modelo.



2.13. Logistic Regression Classifier

O classificador de regressão logística é um método de aprendizado de máquina usado para tarefas de classificação binária e multiclasse. O termo "regressão" pode ser enganador, mas a regressão logística na verdade prevê a probabilidade de um objeto pertencer a uma das classes. Com base nessas probabilidades, é tomada a decisão final sobre a classificação do objeto.

Princípios de funcionamento do classificador de regressão logística:
  1. Previsão de probabilidade: A regressão logística modela a probabilidade de um objeto pertencer a uma classe específica usando a função logística (sigmoidal).
  2. Definição da fronteira de decisão: Com base nas probabilidades previstas, a regressão logística define uma fronteira de decisão que separa as classes. Se a probabilidade exceder um determinado limiar (geralmente 0,5), o objeto é classificado como pertencente a uma classe, caso contrário, a outra.
  3. Treinamento dos parâmetros: O modelo de regressão logística é treinado em um conjunto de dados de treinamento ajustando os pesos (coeficientes) das características para minimizar a função de perda.
Vantagens do classificador de regressão logística:
Limitações do classificador de regressão logística:

A regressão logística é um método clássico de aprendizado de máquina, amplamente usado na prática para tarefas de classificação, especialmente em casos onde a interpretabilidade do modelo é importante e os dados têm uma estrutura linear ou quase linear. Ela também é usada em estatística e análise de dados médicos para avaliar o impacto de fatores na probabilidade de eventos.


2.13.1. Código de criação do modelo Logistic Regression Classifier

Este código demonstra o processo de treinamento do modelo Logistic Regression Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_LogisticRegressionClassifier.py
# The code uses the Logistic Regression Classifier for the Iris dataset, converts the model to ONNX format, saves it, and evaluates its accuracy.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Logistic Regression Classifier model
logistic_regression_model = LogisticRegression(max_iter=1000, random_state=42)

# train the model on the entire dataset
logistic_regression_model.fit(X, y)

# predict classes for the entire dataset
y_pred = logistic_regression_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Logistic Regression Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(logistic_regression_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "logistic_regression_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Logistic Regression Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Logistic Regression Classifier model: 0.9733333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.98      0.94      0.96        50
Python               2       0.94      0.98      0.96        50
Python    
Python        accuracy                           0.97       150
Python       macro avg       0.97      0.97      0.97       150
Python    weighted avg       0.97      0.97      0.97       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\logistic_regression_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Logistic Regression Classifier model in ONNX format: 0.9733333333333334


2.13.2. Código no MQL5 para trabalhar com o modelo Regression Classifier

//+------------------------------------------------------------------+
//|                            Iris_LogisticRegressionClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "logistic_regression_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="LogisticRegressionClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+
Resultado:
Iris_LogisticRegressionClassifier (EURUSD,H1)   model:LogisticRegressionClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_LogisticRegressionClassifier (EURUSD,H1)   model:LogisticRegressionClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_LogisticRegressionClassifier (EURUSD,H1)   model:LogisticRegressionClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_LogisticRegressionClassifier (EURUSD,H1)   model:LogisticRegressionClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_LogisticRegressionClassifier (EURUSD,H1)   model:LogisticRegressionClassifier   correct results: 97.33%
Iris_LogisticRegressionClassifier (EURUSD,H1)   model=LogisticRegressionClassifier all samples accuracy=0.973333
Iris_LogisticRegressionClassifier (EURUSD,H1)   model=LogisticRegressionClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 97.33%, o que corresponde à precisão do original.


2.13.3. Representação ONNX do modelo Logistic Regression Classifier

Fig.27. Representação ONNX do modelo Logistic Regression Classifier no Netron

Fig.27. Representação ONNX do modelo Logistic Regression Classifier no Netron


2.14. LogisticRegressionCV Classifier

LogisticRegressionCV (Regressão Logística com validação cruzada) é um método poderoso e flexível de classificação binária. Este método não apenas permite que você crie modelos de classificação baseados em regressão logística, mas também ajusta automaticamente os parâmetros para alcançar o melhor desempenho.

Princípios de funcionamento do LogisticRegressionCV:

  1. Regressão Logística: A base do método LogisticRegressionCV é a regressão logística. A regressão logística é um método estatístico usado para modelar a probabilidade de um objeto pertencer a uma de duas classes. Este modelo é aplicado quando a variável dependente é binária (duas classes) ou quando pode ser convertida em binária.
  2. Validação cruzada: A principal vantagem do LogisticRegressionCV reside em sua validação cruzada integrada. Isso significa que, em vez de ajustar manualmente o valor ótimo do parâmetro de regularização C, o método automaticamente itera sobre diferentes valores de C e escolhe aquele que oferece o melhor desempenho na validação cruzada.
  3. Escolha do C ótimo: O LogisticRegressionCV utiliza a estratégia de validação cruzada para avaliar o desempenho do modelo sob diferentes valores de C. C é um parâmetro de regularização que controla o grau de regularização do modelo. Um valor pequeno de C significa uma forte regularização, enquanto um valor grande de C significa uma fraca regularização. A validação cruzada permite selecionar o valor ótimo de C para equilibrar entre o subajuste e o sobreajuste.
  4. Regularização: O LogisticRegressionCV também suporta diferentes tipos de regularização, incluindo L1 (lasso) e L2 (ridge). Esses tipos de regularização ajudam a melhorar a capacidade de generalização do modelo e a prevenir o sobreajuste.

Vantagens do LogisticRegressionCV:

Limitações do LogisticRegressionCV:

O LogisticRegressionCV é uma ferramenta poderosa para classificação binária com ajuste automático de parâmetros e resistência ao sobreajuste. É particularmente útil quando você precisa rapidamente criar um modelo de classificação com boa interpretabilidade. No entanto, é importante lembrar que ele funciona melhor em casos onde os dados têm dependências lineares ou próximas do linear.


2.14.1. Código de criação do modelo LogisticRegressionCV Classifier

Este código demonstra o processo de treinamento do modelo LogisticRegressionCV Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_LogisticRegressionCVClassifier.py
# The code demonstrates the process of training LogisticRegressionCV model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import LogisticRegressionCV
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a LogisticRegressionCV model
logistic_regression_model = LogisticRegressionCV(cv=5, max_iter=1000)

# train the model on the entire dataset
logistic_regression_model.fit(X, y)

# predict classes for the entire dataset
y_pred = logistic_regression_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of LogisticRegressionCV model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(logistic_regression_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "logistic_regressioncv_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of LogisticRegressionCV model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of LogisticRegressionCV model: 0.98
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.98      0.96      0.97        50
Python               2       0.96      0.98      0.97        50
Python    
Python        accuracy                           0.98       150
Python       macro avg       0.98      0.98      0.98       150
Python    weighted avg       0.98      0.98      0.98       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\logistic_regression_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of LogisticRegressionCV model in ONNX format: 0.98


2.14.2. Código no MQL5 para trabalhar com o modelo LogisticRegressionCV Classifier

//+------------------------------------------------------------------+
//|                          Iris_LogisticRegressionCVClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "logistic_regressioncv_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="LogisticRegressionCVClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_LogisticRegressionCVClassifier (EURUSD,H1) model:LogisticRegressionCVClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_LogisticRegressionCVClassifier (EURUSD,H1) model:LogisticRegressionCVClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_LogisticRegressionCVClassifier (EURUSD,H1) model:LogisticRegressionCVClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_LogisticRegressionCVClassifier (EURUSD,H1) model:LogisticRegressionCVClassifier   correct results: 98.00%
Iris_LogisticRegressionCVClassifier (EURUSD,H1) model=LogisticRegressionCVClassifier all samples accuracy=0.980000
Iris_LogisticRegressionCVClassifier (EURUSD,H1) model=LogisticRegressionCVClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 98%, o que corresponde à precisão do original.


2.14.3. Representação ONNX do modelo LogisticRegressionCV Classifier

Fig.28. Representação ONNX do modelo LogisticRegressionCV Classifier no Netron

Fig.28. Representação ONNX do modelo LogisticRegressionCV Classifier no Netron



2.15. Passive-Aggressive (PA) Classifier

O classificador passivo-agressivo (PA) é um método de aprendizado de máquina utilizado para tarefas de classificação. A ideia principal deste método é adaptar os pesos (coeficientes) do modelo durante o treinamento para minimizar o erro de classificação. O classificador passivo-agressivo pode ser útil em tarefas de aprendizado online e em situações onde os dados mudam ao longo do tempo.

Princípios de funcionamento do classificador passivo-agressivo:
  1. Adaptação dos pesos: Em vez de atualizar os pesos do modelo na direção da minimização da função de perda, como é feito no método de descida de gradiente estocástico, o classificador passivo-agressivo adapta os pesos na direção que minimiza o erro de classificação para o exemplo atual.
  2. Manutenção da agressividade: O método tem um parâmetro chamado agressividade (C), que determina quão fortemente os pesos do modelo precisam ser adaptados. Valores grandes de C tornam o método mais agressivo na adaptação, enquanto valores pequenos são menos agressivos.
Vantagens do classificador passivo-agressivo:
Limitações do classificador passivo-agressivo:

O classificador passivo-agressivo é um método de aprendizado de máquina adequado para tarefas de classificação com dados mutáveis e para situações onde é importante adaptar rapidamente o modelo a novas circunstâncias. Ele encontra aplicação em várias áreas, incluindo análise de dados textuais, classificação de imagens e outras tarefas.


2.15.1. Código de criação do modelo Passive-Aggressive (PA) Classifier

Este código demonstra o processo de treinamento do modelo classificador passivo-agressivo (PA) no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_PassiveAgressiveClassifier.py
# The code uses the Passive-Aggressive (PA) Classifier for the Iris dataset, converts the model to ONNX format, saves it, and evaluates its accuracy.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Passive-Aggressive (PA) Classifier model
pa_classifier_model = PassiveAggressiveClassifier(max_iter=1000, random_state=42)

# train the model on the entire dataset
pa_classifier_model.fit(X, y)

# predict classes for the entire dataset
y_pred = pa_classifier_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Passive-Aggressive (PA) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(pa_classifier_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "pa_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Passive-Aggressive (PA) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Passive-Aggressive (PA) Classifier model: 0.96
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.96      0.92      0.94        50
Python               2       0.92      0.96      0.94        50
Python    
Python        accuracy                           0.96       150
Python       macro avg       0.96      0.96      0.96       150
Python    weighted avg       0.96      0.96      0.96       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\pa_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Passive-Aggressive (PA) Classifier model in ONNX format: 0.96


2.15.2. Código no MQL5 para trabalhar com o modelo Passive-Aggressive (PA) Classifier

//+------------------------------------------------------------------+
//|                              Iris_PassiveAgressiveClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "pa_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="PassiveAgressiveClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model:PassiveAgressiveClassifier   correct results: 96.00%
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model=PassiveAgressiveClassifier all samples accuracy=0.960000
Iris_PassiveAgressiveClassifier (EURUSD,H1)     model=PassiveAgressiveClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 96%, o que corresponde à precisão do original.


2.15.3. Representação ONNX do modelo Passive-Aggressive (PA) Classifier

Fig.29. Representação ONNX do modelo classificador passivo-agressivo (PA) no Netron

Fig.29. Representação ONNX do modelo classificador passivo-agressivo (PA) no Netron

2.16. Perceptron Classifier

O classificador perceptron é um classificador binário linear usado para separar duas classes com base em uma hiperplano separador linear. Ele é um dos métodos de aprendizado de máquina mais simples e antigos, e seu princípio básico é treinar os pesos (coeficientes) do modelo de forma a maximizar a precisão da classificação no conjunto de dados de treinamento.

Princípios de funcionamento do classificador perceptron:
  1. Hiperplano linear: O perceptron constrói um hiperplano linear no espaço multidimensional de características que separa as duas classes. Esse hiperplano é definido pelos pesos (coeficientes) do modelo.
  2. Treinamento dos pesos: Inicialmente, os pesos são inicializados aleatoriamente ou com zeros. Então, para cada objeto no conjunto de treinamento, o modelo prevê a classe com base nos pesos atuais e os ajusta em caso de erro. O treinamento continua até que todos os objetos sejam classificados corretamente ou até que um número máximo de iterações seja alcançado.
Vantagens do classificador perceptron:
Limitações do classificador perceptron:

O classificador perceptron é um algoritmo básico para classificação binária, útil em tarefas simples quando os dados são linearmente separáveis. Também pode servir como fundação para métodos mais complexos, como redes neurais multicamadas. É importante lembrar que, em tarefas mais complexas, onde os dados têm uma estrutura complexa, outros métodos, como regressão logística ou métodos de vetor de suporte (SVM), podem oferecer maior precisão de classificação.


2.16.1. Código de criação do modelo perceptron Classifier

Este código demonstra o processo de treinamento do modelo perceptron Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.# Iris_PerceptronClassifier.py

# Iris_PerceptronClassifier.py
# The code demonstrates the process of training Perceptron Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Perceptron Classifier model
perceptron_model = Perceptron(max_iter=1000, random_state=42)

# train the model on the entire dataset
perceptron_model.fit(X, y)

# predict classes for the entire dataset
y_pred = perceptron_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Perceptron Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(perceptron_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "perceptron_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Perceptron Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of perceptron Classifier model: 0.6133333333333333
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      0.80      0.89        50
Python               1       0.46      1.00      0.63        50
Python               2       1.00      0.04      0.08        50
Python    
Python        accuracy                           0.61       150
Python       macro avg       0.82      0.61      0.53       150
Python    weighted avg       0.82      0.61      0.53       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\perceptron_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of perceptron Classifier model in ONNX format: 0.6133333333333333


2.16.2. Código no MQL5 para trabalhar com o modelo Perceptron Classifier

//+------------------------------------------------------------------+
//|                                    Iris_PerceptronClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"
#include "iris.mqh"
#resource "perceptron_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="PerceptronClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=2 FAILED [class=1, true class=0] features=(4.90,3.00,1.40,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=9 FAILED [class=1, true class=0] features=(4.40,2.90,1.40,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=10 FAILED [class=1, true class=0] features=(4.90,3.10,1.50,0.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=13 FAILED [class=1, true class=0] features=(4.80,3.00,1.40,0.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=21 FAILED [class=1, true class=0] features=(5.40,3.40,1.70,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=26 FAILED [class=1, true class=0] features=(5.00,3.00,1.60,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=31 FAILED [class=1, true class=0] features=(4.80,3.10,1.60,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=35 FAILED [class=1, true class=0] features=(4.90,3.10,1.50,0.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=42 FAILED [class=1, true class=0] features=(4.50,2.30,1.30,0.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=46 FAILED [class=1, true class=0] features=(4.80,3.00,1.40,0.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=102 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=103 FAILED [class=1, true class=2] features=(7.10,3.00,5.90,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=104 FAILED [class=1, true class=2] features=(6.30,2.90,5.60,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=105 FAILED [class=1, true class=2] features=(6.50,3.00,5.80,2.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=106 FAILED [class=1, true class=2] features=(7.60,3.00,6.60,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=108 FAILED [class=1, true class=2] features=(7.30,2.90,6.30,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=110 FAILED [class=1, true class=2] features=(7.20,3.60,6.10,2.50]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=111 FAILED [class=1, true class=2] features=(6.50,3.20,5.10,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=112 FAILED [class=1, true class=2] features=(6.40,2.70,5.30,1.90]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=113 FAILED [class=1, true class=2] features=(6.80,3.00,5.50,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=114 FAILED [class=1, true class=2] features=(5.70,2.50,5.00,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=116 FAILED [class=1, true class=2] features=(6.40,3.20,5.30,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=117 FAILED [class=1, true class=2] features=(6.50,3.00,5.50,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=118 FAILED [class=1, true class=2] features=(7.70,3.80,6.70,2.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=119 FAILED [class=1, true class=2] features=(7.70,2.60,6.90,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=121 FAILED [class=1, true class=2] features=(6.90,3.20,5.70,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=122 FAILED [class=1, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=123 FAILED [class=1, true class=2] features=(7.70,2.80,6.70,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=125 FAILED [class=1, true class=2] features=(6.70,3.30,5.70,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=126 FAILED [class=1, true class=2] features=(7.20,3.20,6.00,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=128 FAILED [class=1, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=129 FAILED [class=1, true class=2] features=(6.40,2.80,5.60,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=131 FAILED [class=1, true class=2] features=(7.40,2.80,6.10,1.90]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=132 FAILED [class=1, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=133 FAILED [class=1, true class=2] features=(6.40,2.80,5.60,2.20]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=136 FAILED [class=1, true class=2] features=(7.70,3.00,6.10,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=137 FAILED [class=1, true class=2] features=(6.30,3.40,5.60,2.40]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=138 FAILED [class=1, true class=2] features=(6.40,3.10,5.50,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=140 FAILED [class=1, true class=2] features=(6.90,3.10,5.40,2.10]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=141 FAILED [class=1, true class=2] features=(6.70,3.10,5.60,2.40]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=142 FAILED [class=1, true class=2] features=(6.90,3.10,5.10,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=143 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=144 FAILED [class=1, true class=2] features=(6.80,3.20,5.90,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=145 FAILED [class=1, true class=2] features=(6.70,3.30,5.70,2.50]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=146 FAILED [class=1, true class=2] features=(6.70,3.00,5.20,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=147 FAILED [class=1, true class=2] features=(6.30,2.50,5.00,1.90]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=148 FAILED [class=1, true class=2] features=(6.50,3.00,5.20,2.00]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=149 FAILED [class=1, true class=2] features=(6.20,3.40,5.40,2.30]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  sample=150 FAILED [class=1, true class=2] features=(5.90,3.00,5.10,1.80]
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier   correct results: 61.33%
Iris_PerceptronClassifier (EURUSD,H1)   model=PerceptronClassifier all samples accuracy=0.613333
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80)
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  FAILED [class=1, true class=0] features=(4.90,3.10,1.50,0.10)
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90)
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  FAILED [class=1, true class=2] features=(7.10,3.00,5.90,2.10)
Iris_PerceptronClassifier (EURUSD,H1)   model:PerceptronClassifier  FAILED [class=1, true class=2] features=(6.30,2.90,5.60,1.80)
Iris_PerceptronClassifier (EURUSD,H1)   model=PerceptronClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 61,33%, o que corresponde à precisão do original.

2.16.3. Representação ONNX do modelo Perceptron Classifier

Fig.30. Representação do modelo perceptron Classifier em Netron

Fig.30. Representação do modelo perceptron Classifier em Netron


2.17. Stochastic Gradient Descent Classifier

SGD Classifier (Stochastic Gradient Descent Classifier) é um método de aprendizado de máquina usado para tarefas de classificação. Ele é um caso especial de modelos lineares e representa um classificador linear que é treinado usando descida de gradiente estocástica.

Princípios do funcionamento do SGD Classifier:
  1. Hiperplano linear: SGD Classifier constrói um hiperplano linear no espaço multidimensional de características que separa duas classes. O hiperplano é definido pelos pesos (coeficientes) do modelo.
  2. Descida de gradiente estocástica: O método é treinado usando descida de gradiente estocástica, o que significa que a atualização dos pesos do modelo é realizada em cada objeto do conjunto de treinamento (ou em um subconjunto aleatoriamente selecionado), ao invés de no conjunto de dados completo. Isso torna o SGD Classifier adequado para grandes volumes de dados e aprendizado online.
  3. Função de perda: SGD Classifier otimiza uma função de perda, como a função de perda logística para tarefas de classificação binária ou a função de perda softmax para classificação multiclasse.
Vantagens do SGD Classifier:
Limitações do SGD Classifier:

SGD Classifier é um método flexível de aprendizado de máquina que pode ser usado para tarefas de classificação binária e multiclasse, especialmente em casos onde os dados são volumosos e requerem processamento rápido. É importante configurar adequadamente seus hiperparâmetros e monitorar a convergência para alcançar alta precisão de classificação.


2.17.1. Código de criação do modelo Stochastic Gradient Descent Classifier

Este código demonstra o processo de treinamento do modelo Stochastic Gradient Descent Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_SGDClassifier.py
# The code demonstrates the process of training Stochastic Gradient Descent Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create an SGD Classifier model
sgd_model = SGDClassifier(max_iter=1000, random_state=42)

# train the model on the entire dataset
sgd_model.fit(X, y)

# predict classes for the entire dataset
y_pred = sgd_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of SGD Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(sgd_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "sgd_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of SGD Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of SGD Classifier model: 0.9333333333333333
Python   
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python   
Python               0       0.96      1.00      0.98        50
Python               1       0.88      0.92      0.90        50
Python               2       0.96      0.88      0.92        50
Python   
Python        accuracy                           0.93       150
Python       macro avg       0.93      0.93      0.93       150
Python    weighted avg       0.93      0.93      0.93       150
Python   
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\perceptron_classifier_iris.onnx
Python   
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python   
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python   
Python    Accuracy of SGD Classifier model in ONNX format: 0.9333333333333333


2.17.2. Código no MQL5 para trabalhar com o modelo Stochastic Gradient Descent Classifier

//+------------------------------------------------------------------+
//|                                           Iris_SGDClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "sgd_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="SGDClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=65 FAILED [class=0, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=86 FAILED [class=0, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier   correct results: 93.33%
Iris_SGDClassifier (EURUSD,H1)  model=SGDClassifier all samples accuracy=0.933333
Iris_SGDClassifier (EURUSD,H1)  model:SGDClassifier  FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80)
Iris_SGDClassifier (EURUSD,H1)  model=SGDClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 93,33%, o que corresponde à precisão do original.


2.17.3. Representação ONNX do modelo Stochastic Gradient Descent Classifier

Fig.31. Representação do modelo Stochastic Gradient Descent Classifier em Netron

Fig.31. Representação do modelo Stochastic Gradient Descent Classifier em Netron


2.18. Gaussian Naive Bayes (GNB) Classifier

Gaussian Naive Bayes (GNB) Classifier é um método de aprendizado de máquina baseado no modelo probabilístico bayesiano e usado para tarefas de classificação. Ele faz parte da família de classificadores bayesianos ingênuos e assume que todas as características são independentes e seguem uma distribuição normal.

Princípios de funcionamento do Gaussian Naive Bayes Classifier:
  1. Abordagem Bayesiana: GNB é baseado na abordagem bayesiana para classificação, que utiliza o teorema de Bayes para calcular a probabilidade de um objeto pertencer a cada classe.
  2. Suposição Ingênua: A principal suposição feita pelo GNB é que todas as características são independentes e seguem uma distribuição normal (gaussiana). Esta é uma suposição ingênua porque, na realidade, as características frequentemente se correlacionam entre si.
  3. Treinamento dos parâmetros: O modelo GNB é treinado no conjunto de dados de treinamento, calculando os parâmetros de distribuição (média e desvio padrão) para cada característica em cada classe.
Vantagens do Gaussian Naive Bayes Classifier:
Limitações do Gaussian Naive Bayes Classifier:

O Gaussian Naive Bayes Classifier é uma boa escolha para tarefas simples de classificação, especialmente quando a suposição de distribuição normal das características é mais ou menos verdadeira. No entanto, em tarefas mais complexas, onde as características estão correlacionados entre si ou a distribuição não é normal, outros métodos, como Support Vector Machines (SVM) ou gradient boosting, podem fornecer resultados mais precisos.


2.18.1. Código de criação do modelo Gaussian Naive Bayes (GNB) Classifier

Este código demonstra o processo de treinamento do modelo Gaussian Naive Bayes (GNB) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_GaussianNaiveBayesClassifier.py
# The code demonstrates the process of training Gaussian Naive Bayes Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Gaussian Naive Bayes (GNB) Classifier model
gnb_model = GaussianNB()

# train the model on the entire dataset
gnb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = gnb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Gaussian Naive Bayes (GNB) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(gnb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "gnb_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Gaussian Naive Bayes (GNB) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Gaussian Naive Bayes (GNB) Classifier model: 0.96
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.94      0.94      0.94        50
Python               2       0.94      0.94      0.94        50
Python    
Python        accuracy                           0.96       150
Python       macro avg       0.96      0.96      0.96       150
Python    weighted avg       0.96      0.96      0.96       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\gnb_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Gaussian Naive Bayes (GNB) Classifier model in ONNX format: 0.96


2.18.2. Código no MQL5 para trabalhar com o modelo Gaussian Naive Bayes (GNB) Classifier

//+------------------------------------------------------------------+
//|                            Iris_GaussianNaiveBayesClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "gnb_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="GaussianNaiveBayesClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model:GaussianNaiveBayesClassifier   correct results: 96.00%
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model=GaussianNaiveBayesClassifier all samples accuracy=0.960000
Iris_GaussianNaiveBayesClassifier (EURUSD,H1)   model=GaussianNaiveBayesClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 96%, o que corresponde à precisão do original.


2.18.3. Representação ONNX do modelo Gaussian Naive Bayes (GNB) Classifier

Fig.32. Representação do modelo Gaussian Naive Bayes (GNB) Classifier em Netron

Fig.32. Representação do modelo Gaussian Naive Bayes (GNB) Classifier em Netron


2.19. Multinomial Naive Bayes (MNB) Classifier

Multinomial Naive Bayes (MNB) Classifier é um método de aprendizado de máquina baseado em modelo probabilístico bayesiano, usado para tarefas de classificação, especialmente em processamento de texto. Ele é uma das variantes dos classificadores bayesianos ingênuos e assume que as características representam contagens, como o número de palavras em um texto.

Princípios do funcionamento do Multinomial Naive Bayes Classifier:
  1. Abordagem Bayesiana: MNB também é baseado na abordagem bayesiana para classificação e usa o teorema de Bayes para calcular a probabilidade de um objeto pertencer a cada classe.
  2. Suposição de distribuição multinomial: A principal suposição do MNB é que as características representam contagens, como a frequência de palavras em um texto, e têm uma distribuição multinomial. Essa suposição é frequentemente válida para dados textuais.
  3. Treinamento dos parâmetros: O modelo MNB é treinado no conjunto de dados de treinamento, calculando os parâmetros de distribuição para cada recurso em cada classe.
Vantagens do Multinomial Naive Bayes Classifier:
Limitações do Multinomial Naive Bayes Classifier:

O Multinomial Naive Bayes Classifier é um método útil para tarefas de análise de texto, especialmente quando as características estão relacionadas a contagens, como o número de palavras em um texto. Ele é amplamente utilizado no processamento de linguagem natural (NLP) para tarefas de classificação de texto, categorização de documentos e outras análises textuais.


2.19.1. Código de criação do modelo Multinomial Naive Bayes (MNB) Classifier

Este código demonstra o processo de treinamento do modelo Multinomial Naive Bayes (MNB) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_MultinomialNaiveBayesClassifier.py
# The code demonstrates the process of training Multinomial Naive Bayes (MNB) Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Multinomial Naive Bayes (MNB) Classifier model
mnb_model = MultinomialNB()

# train the model on the entire dataset
mnb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = mnb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Multinomial Naive Bayes (MNB) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(mnb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "mnb_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Multinomial Naive Bayes (MNB) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Multinomial Naive Bayes (MNB) Classifier model: 0.9533333333333334
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.94      0.92      0.93        50
Python               2       0.92      0.94      0.93        50
Python    
Python        accuracy                           0.95       150
Python       macro avg       0.95      0.95      0.95       150
Python    weighted avg       0.95      0.95      0.95       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\mnb_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Multinomial Naive Bayes (MNB) Classifier model in ONNX format: 0.9533333333333334


2.19.2. Código no MQL5 para trabalhar com o modelo Multinomial Naive Bayes (MNB) Classifier

//+------------------------------------------------------------------+
//|                         Iris_MultinomialNaiveBayesClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "mnb_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="MultinomialNaiveBayesClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=69 FAILED [class=2, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=132 FAILED [class=1, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier   correct results: 95.33%
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model=MultinomialNaiveBayesClassifier all samples accuracy=0.953333
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model:MultinomialNaiveBayesClassifier  FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50)
Iris_MultinomialNaiveBayesClassifier (EURUSD,H1)        model=MultinomialNaiveBayesClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 95,33%, o que corresponde à precisão do original.


2.19.3. Representação ONNX do modelo Multinomial Naive Bayes (MNB) Classifier

Fig.33. Representação do modelo Multinomial Naive Bayes (MNB) Classifier em Netron

Fig.33. Representação do modelo Multinomial Naive Bayes (MNB) Classifier em Netron


2.20. Complement Naive Bayes (CNB) Classifier

Complement Naive Bayes (CNB) Classifier é uma variante do classificador bayesiano ingênuo, especificamente projetada para lidar com dados desbalanceados, onde uma classe pode ser significativamente mais comum do que outra. Este classificador é uma adaptação do método bayesiano ingênuo clássico, que tenta levar em conta o desbalanceamento de classes.

Princípios do funcionamento do Complement Naive Bayes Classifier:
  1. Abordagem Bayesiana: Assim como outros classificadores bayesianos, o CNB é baseado na abordagem bayesiana para classificação e usa o teorema de Bayes para calcular a probabilidade de um objeto pertencer a cada classe.
  2. Correção do desbalanceamento de classes: O principal propósito do CNB é a correção do desbalanceamento de classes. Em vez de considerar a probabilidade das características na classe, como faz o método bayesiano ingênuo padrão, o CNB tenta levar em conta a probabilidade das características fora da classe. Isso é particularmente útil quando uma classe é significativamente menos representada do que a outra.
  3. Treinamento dos parâmetros: O modelo CNB é treinado no conjunto de dados de treinamento, calculando os parâmetros de distribuição para cada recurso fora da classe.
Vantagens do Complement Naive Bayes Classifier:
Limitações do Complement Naive Bayes Classifier:

O Complement Naive Bayes Classifier é uma boa escolha para tarefas de classificação em dados desbalanceados, especialmente quando uma classe é significativamente menos representada do que outra. Pode ser particularmente útil em tarefas de classificação de texto, onde as palavras podem ser fortemente desbalanceadas entre as classes, como análise de sentimento ou filtragem de spam.


2.20.1. Código de criação do modelo Complement Naive Bayes (CNB) Classifier

Este código demonstra o processo de treinamento do modelo Complement Naive Bayes (CNB) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_CNBClassifier.py
# The code demonstrates the process of training Complement Naive Bayes (CNB) Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.naive_bayes import ComplementNB
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Complement Naive Bayes (CNB) Classifier model
cnb_model = ComplementNB()

# train the model on the entire dataset
cnb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = cnb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Complement Naive Bayes (CNB) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(cnb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "cnb_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Complement Naive Bayes (CNB) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Complement Naive Bayes (CNB) Classifier model: 0.6666666666666666
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       0.96      1.00      0.98        50
Python               1       0.00      0.00      0.00        50
Python               2       0.51      1.00      0.68        50
Python    
Python        accuracy                           0.67       150
Python       macro avg       0.49      0.67      0.55       150
Python    weighted avg       0.49      0.67      0.55       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\cnb_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Complement Naive Bayes (CNB) Classifier model in ONNX format: 0.6666666666666666


2.20.2. Código no MQL5 para trabalhar com o modelo Complement Naive Bayes (CNB) Classifier

//+------------------------------------------------------------------+
//|                                           Iris_CNBClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "cnb_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="CNBClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=54 FAILED [class=2, true class=1] features=(5.50,2.30,4.00,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=55 FAILED [class=2, true class=1] features=(6.50,2.80,4.60,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=56 FAILED [class=2, true class=1] features=(5.70,2.80,4.50,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=58 FAILED [class=2, true class=1] features=(4.90,2.40,3.30,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=59 FAILED [class=2, true class=1] features=(6.60,2.90,4.60,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=60 FAILED [class=2, true class=1] features=(5.20,2.70,3.90,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=61 FAILED [class=2, true class=1] features=(5.00,2.00,3.50,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=63 FAILED [class=2, true class=1] features=(6.00,2.20,4.00,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=64 FAILED [class=2, true class=1] features=(6.10,2.90,4.70,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=68 FAILED [class=2, true class=1] features=(5.80,2.70,4.10,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=69 FAILED [class=2, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=70 FAILED [class=2, true class=1] features=(5.60,2.50,3.90,1.10]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=72 FAILED [class=2, true class=1] features=(6.10,2.80,4.00,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=74 FAILED [class=2, true class=1] features=(6.10,2.80,4.70,1.20]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=75 FAILED [class=2, true class=1] features=(6.40,2.90,4.30,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=77 FAILED [class=2, true class=1] features=(6.80,2.80,4.80,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=80 FAILED [class=0, true class=1] features=(5.70,2.60,3.50,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=81 FAILED [class=2, true class=1] features=(5.50,2.40,3.80,1.10]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=82 FAILED [class=2, true class=1] features=(5.50,2.40,3.70,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=83 FAILED [class=2, true class=1] features=(5.80,2.70,3.90,1.20]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=88 FAILED [class=2, true class=1] features=(6.30,2.30,4.40,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=90 FAILED [class=2, true class=1] features=(5.50,2.50,4.00,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=91 FAILED [class=2, true class=1] features=(5.50,2.60,4.40,1.20]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=93 FAILED [class=2, true class=1] features=(5.80,2.60,4.00,1.20]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=94 FAILED [class=2, true class=1] features=(5.00,2.30,3.30,1.00]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=95 FAILED [class=2, true class=1] features=(5.60,2.70,4.20,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=96 FAILED [class=2, true class=1] features=(5.70,3.00,4.20,1.20]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=97 FAILED [class=2, true class=1] features=(5.70,2.90,4.20,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=98 FAILED [class=2, true class=1] features=(6.20,2.90,4.30,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=99 FAILED [class=0, true class=1] features=(5.10,2.50,3.00,1.10]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  sample=100 FAILED [class=2, true class=1] features=(5.70,2.80,4.10,1.30]
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier   correct results: 66.67%
Iris_CNBClassifier (EURUSD,H1)  model=CNBClassifier all samples accuracy=0.666667
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50)
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40)
Iris_CNBClassifier (EURUSD,H1)  model:CNBClassifier  FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50)
Iris_CNBClassifier (EURUSD,H1)  model=CNBClassifier batch test accuracy=0.000000
A precisão do modelo ONNX exportado no iris dataset completo é de 66,67%, o que corresponde à precisão do original.


2.20.3. Representação ONNX do modelo Complement Naive Bayes (CNB) Classifier

Fig.34. Representação do modelo Complement Naive Bayes (CNB) Classifier em Netron

Fig.34. Representação do modelo Complement Naive Bayes (CNB) Classifier em Netron


2.21. Bernoulli Naive Bayes (BNB) Classifier

Bernoulli Naive Bayes (BNB) Classifier é outra variante do classificador bayesiano ingênuo, utilizado para tarefas de classificação binária. Este classificador é particularmente útil em situações onde as características são representadas por dados binários, por exemplo, em tarefas de análise de texto, onde as características podem ser a presença ou ausência de palavras no texto.

Princípios do funcionamento do Bernoulli Naive Bayes Classifier:

  1. Abordagem Bayesiana: Assim como outros classificadores bayesianos, o BNB é baseado na abordagem bayesiana para classificação e usa o teorema de Bayes para calcular a probabilidade de um objeto pertencer a cada classe.
  2. Suposição sobre características binárias: A principal suposição do BNB é que as características são dados binários, ou seja, eles podem ter apenas dois valores, como 1 e 0, onde 1 indica a presença da característica e 0 a sua ausência.
  3. Treinamento dos parâmetros: O modelo BNB é treinado no conjunto de dados de treinamento, calculando os parâmetros de distribuição para cada recurso em cada classe.
Vantagens do Bernoulli Naive Bayes Classifier:
Limitações do Bernoulli Naive Bayes Classifier:

O Bernoulli Naive Bayes Classifier é uma boa escolha para tarefas de classificação binária com características binárias, como análise de sentimento ou classificação de spam. Ele é simples de usar e lida bem com dados desse tipo.


2.21.1. Código de criação do modelo Bernoulli Naive Bayes (BNB) Classifier

Este código demonstra o processo de treinamento do modelo Bernoulli Naive Bayes (BNB) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_BNBClassifier.py
# The code demonstrates the process of training Bernoulli Naive Bayes (BNB) Classifier on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Bernoulli Naive Bayes (BNB) Classifier model
bnb_model = BernoulliNB()

# train the model on the entire dataset
bnb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = bnb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Bernoulli Naive Bayes (BNB) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(bnb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "bnb_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Bernoulli Naive Bayes (BNB) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Bernoulli Naive Bayes (BNB) Classifier model: 0.3333333333333333
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       0.33      1.00      0.50        50
Python               1       0.00      0.00      0.00        50
Python               2       0.00      0.00      0.00        50
Python    
Python        accuracy                           0.33       150
Python       macro avg       0.11      0.33      0.17       150
Python    weighted avg       0.11      0.33      0.17       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\bnb_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Bernoulli Naive Bayes (BNB) Classifier model in ONNX format: 0.3333333333333333


2.21.2. Código no MQL5 para trabalhar com o modelo Bernoulli Naive Bayes (BNB) Classifier

//+------------------------------------------------------------------+
//|                                           Iris_BNBClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "bnb_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="BNBClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=51 FAILED [class=0, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=52 FAILED [class=0, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=53 FAILED [class=0, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=54 FAILED [class=0, true class=1] features=(5.50,2.30,4.00,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=55 FAILED [class=0, true class=1] features=(6.50,2.80,4.60,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=56 FAILED [class=0, true class=1] features=(5.70,2.80,4.50,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=57 FAILED [class=0, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=58 FAILED [class=0, true class=1] features=(4.90,2.40,3.30,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=59 FAILED [class=0, true class=1] features=(6.60,2.90,4.60,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=60 FAILED [class=0, true class=1] features=(5.20,2.70,3.90,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=61 FAILED [class=0, true class=1] features=(5.00,2.00,3.50,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=62 FAILED [class=0, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=63 FAILED [class=0, true class=1] features=(6.00,2.20,4.00,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=64 FAILED [class=0, true class=1] features=(6.10,2.90,4.70,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=65 FAILED [class=0, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=66 FAILED [class=0, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=67 FAILED [class=0, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=68 FAILED [class=0, true class=1] features=(5.80,2.70,4.10,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=69 FAILED [class=0, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=70 FAILED [class=0, true class=1] features=(5.60,2.50,3.90,1.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=71 FAILED [class=0, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=72 FAILED [class=0, true class=1] features=(6.10,2.80,4.00,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=73 FAILED [class=0, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=74 FAILED [class=0, true class=1] features=(6.10,2.80,4.70,1.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=75 FAILED [class=0, true class=1] features=(6.40,2.90,4.30,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=76 FAILED [class=0, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=77 FAILED [class=0, true class=1] features=(6.80,2.80,4.80,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=78 FAILED [class=0, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=79 FAILED [class=0, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=80 FAILED [class=0, true class=1] features=(5.70,2.60,3.50,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=81 FAILED [class=0, true class=1] features=(5.50,2.40,3.80,1.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=82 FAILED [class=0, true class=1] features=(5.50,2.40,3.70,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=83 FAILED [class=0, true class=1] features=(5.80,2.70,3.90,1.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=84 FAILED [class=0, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=85 FAILED [class=0, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=86 FAILED [class=0, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=87 FAILED [class=0, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=88 FAILED [class=0, true class=1] features=(6.30,2.30,4.40,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=89 FAILED [class=0, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=90 FAILED [class=0, true class=1] features=(5.50,2.50,4.00,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=91 FAILED [class=0, true class=1] features=(5.50,2.60,4.40,1.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=92 FAILED [class=0, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=93 FAILED [class=0, true class=1] features=(5.80,2.60,4.00,1.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=94 FAILED [class=0, true class=1] features=(5.00,2.30,3.30,1.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=95 FAILED [class=0, true class=1] features=(5.60,2.70,4.20,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=96 FAILED [class=0, true class=1] features=(5.70,3.00,4.20,1.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=97 FAILED [class=0, true class=1] features=(5.70,2.90,4.20,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=98 FAILED [class=0, true class=1] features=(6.20,2.90,4.30,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=99 FAILED [class=0, true class=1] features=(5.10,2.50,3.00,1.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=100 FAILED [class=0, true class=1] features=(5.70,2.80,4.10,1.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=101 FAILED [class=0, true class=2] features=(6.30,3.30,6.00,2.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=102 FAILED [class=0, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=103 FAILED [class=0, true class=2] features=(7.10,3.00,5.90,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=104 FAILED [class=0, true class=2] features=(6.30,2.90,5.60,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=105 FAILED [class=0, true class=2] features=(6.50,3.00,5.80,2.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=106 FAILED [class=0, true class=2] features=(7.60,3.00,6.60,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=107 FAILED [class=0, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=108 FAILED [class=0, true class=2] features=(7.30,2.90,6.30,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=109 FAILED [class=0, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=110 FAILED [class=0, true class=2] features=(7.20,3.60,6.10,2.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=111 FAILED [class=0, true class=2] features=(6.50,3.20,5.10,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=112 FAILED [class=0, true class=2] features=(6.40,2.70,5.30,1.90]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=113 FAILED [class=0, true class=2] features=(6.80,3.00,5.50,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=114 FAILED [class=0, true class=2] features=(5.70,2.50,5.00,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=115 FAILED [class=0, true class=2] features=(5.80,2.80,5.10,2.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=116 FAILED [class=0, true class=2] features=(6.40,3.20,5.30,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=117 FAILED [class=0, true class=2] features=(6.50,3.00,5.50,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=118 FAILED [class=0, true class=2] features=(7.70,3.80,6.70,2.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=119 FAILED [class=0, true class=2] features=(7.70,2.60,6.90,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=120 FAILED [class=0, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=121 FAILED [class=0, true class=2] features=(6.90,3.20,5.70,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=122 FAILED [class=0, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=123 FAILED [class=0, true class=2] features=(7.70,2.80,6.70,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=124 FAILED [class=0, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=125 FAILED [class=0, true class=2] features=(6.70,3.30,5.70,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=126 FAILED [class=0, true class=2] features=(7.20,3.20,6.00,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=127 FAILED [class=0, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=128 FAILED [class=0, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=129 FAILED [class=0, true class=2] features=(6.40,2.80,5.60,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=130 FAILED [class=0, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=131 FAILED [class=0, true class=2] features=(7.40,2.80,6.10,1.90]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=132 FAILED [class=0, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=133 FAILED [class=0, true class=2] features=(6.40,2.80,5.60,2.20]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=134 FAILED [class=0, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=135 FAILED [class=0, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=136 FAILED [class=0, true class=2] features=(7.70,3.00,6.10,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=137 FAILED [class=0, true class=2] features=(6.30,3.40,5.60,2.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=138 FAILED [class=0, true class=2] features=(6.40,3.10,5.50,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=139 FAILED [class=0, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=140 FAILED [class=0, true class=2] features=(6.90,3.10,5.40,2.10]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=141 FAILED [class=0, true class=2] features=(6.70,3.10,5.60,2.40]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=142 FAILED [class=0, true class=2] features=(6.90,3.10,5.10,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=143 FAILED [class=0, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=144 FAILED [class=0, true class=2] features=(6.80,3.20,5.90,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=145 FAILED [class=0, true class=2] features=(6.70,3.30,5.70,2.50]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=146 FAILED [class=0, true class=2] features=(6.70,3.00,5.20,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=147 FAILED [class=0, true class=2] features=(6.30,2.50,5.00,1.90]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=148 FAILED [class=0, true class=2] features=(6.50,3.00,5.20,2.00]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=149 FAILED [class=0, true class=2] features=(6.20,3.40,5.40,2.30]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  sample=150 FAILED [class=0, true class=2] features=(5.90,3.00,5.10,1.80]
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier   correct results: 33.33%
Iris_BNBClassifier (EURUSD,H1)  model=BNBClassifier all samples accuracy=0.333333
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=1] features=(6.30,2.50,4.90,1.50)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=2] features=(6.30,2.70,4.90,1.80)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=1] features=(7.00,3.20,4.70,1.40)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=1] features=(6.40,3.20,4.50,1.50)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=2] features=(6.30,3.30,6.00,2.50)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=2] features=(5.80,2.70,5.10,1.90)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=2] features=(7.10,3.00,5.90,2.10)
Iris_BNBClassifier (EURUSD,H1)  model:BNBClassifier  FAILED [class=0, true class=2] features=(6.30,2.90,5.60,1.80)
Iris_BNBClassifier (EURUSD,H1)  model=BNBClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 33,33%, o que corresponde à precisão do original.


2.21.3. Representação ONNX do modelo Bernoulli Naive Bayes (BNB) Classifier

Fig.35. Representação do modelo Bernoulli Naive Bayes (BNB) Classifier em Netron

Fig.35. Representação do modelo Bernoulli Naive Bayes (BNB) Classifier em Netron


2.22. Multilayer perceptron Classifier

O MLP Classifier (Multilayer perceptron Classifier) é uma rede neural multicamadas usada para tarefas de classificação. Ele é composto por um perceptron multicamadas, que inclui várias camadas de neurônios, incluindo a camada de entrada, camadas ocultas e a camada de saída. O MLP Classifier tem a capacidade de aprender dependências complexas não lineares nos dados.

Princípios do funcionamento do MLP Classifier:
  1. Arquitetura multicamada: O MLP Classifier possui uma arquitetura multicamada, que inclui a camada de entrada, uma ou mais camadas ocultas e a camada de saída. Cada neurônio nas camadas está conectado aos neurônios nas camadas adjacentes com pesos que são ajustados durante o treinamento.
  2. Funções de ativação: Dentro de cada neurônio, uma função de ativação é aplicada, introduzindo não linearidade no modelo e permitindo que o MLP Classifier modele dependências complexas nos dados.
  3. Treinamento com retropropagação: O MLP Classifier é treinado usando o método de retropropagação (backpropagation), que minimiza o erro entre as previsões do modelo e as verdadeiras labels das classes.
Vantagens do MLP Classifier:
Limitações do MLP Classifier:

O MLP Classifier é uma ferramenta poderosa para tarefas de classificação, especialmente em casos onde os dados apresentam dependências complexas. Ele é usado com frequência nas áreas de aprendizado de máquina e aprendizado profundo para resolver várias tarefas de classificação. No entanto, para aplicar com sucesso esse modelo, é importante ajustar corretamente seus hiperparâmetros e garantir um volume suficiente de dados de treinamento.


2.22.1. Código de criação do modelo Multilayer Perceptron Classifier

Este código demonstra o processo de treinamento do modelo Multilayer perceptron Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_MLPClassifier.py
# The code demonstrates the process of training Multilayer Perceptron Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Multilayer Perceptron (MLP) Classifier model
mlp_model = MLPClassifier(max_iter=1000, random_state=42)

# train the model on the entire dataset
mlp_model.fit(X, y)

# predict classes for the entire dataset
y_pred = mlp_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Multilayer Perceptron (MLP) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(mlp_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path +"mlp_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Multilayer Perceptron (MLP) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Multilayer perceptron (MLP) Classifier model: 0.98
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      0.94      0.97        50
Python               2       0.94      1.00      0.97        50
Python    
Python        accuracy                           0.98       150
Python       macro avg       0.98      0.98      0.98       150
Python    weighted avg       0.98      0.98      0.98       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\mlp_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Multilayer perceptron (MLP) Classifier model in ONNX format: 0.98


2.22.2. Código no MQL5 para trabalhar com o modelo Multilayer perceptron Classifier

//+------------------------------------------------------------------+
//|                                           Iris_MLPClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "mlp_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="MLPClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_MLPClassifier (EURUSD,H1)  model:MLPClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_MLPClassifier (EURUSD,H1)  model:MLPClassifier  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_MLPClassifier (EURUSD,H1)  model:MLPClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_MLPClassifier (EURUSD,H1)  model:MLPClassifier   correct results: 98.00%
Iris_MLPClassifier (EURUSD,H1)  model=MLPClassifier all samples accuracy=0.980000
Iris_MLPClassifier (EURUSD,H1)  model:MLPClassifier  FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50)
Iris_MLPClassifier (EURUSD,H1)  model=MLPClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 98%, o que corresponde à precisão do original.


2.22.3. Representação ONNX do modelo Multilayer perceptron Classifier

Fig.36. Representação do modelo Multilayer perceptron Classifier em Netron

Fig.36. Representação do modelo Multilayer perceptron Classifier em Netron


2.23. Linear Discriminant Analysis (LDA) Classifier

O Linear Discriminant Analysis (LDA) Classifier é um método de aprendizado de máquina usado para resolver tarefas de classificação. Ele pertence à família de métodos de redução de dimensionalidade e classificação em um espaço de dimensão menor. O LDA constrói hiperplanos de forma a maximizar a separação entre as classes.

Princípios do funcionamento do LDA Classifier:
  1. Redução de dimensionalidade: A ideia principal do LDA é a redução de dimensionalidade dos dados. Ele busca encontrar um novo espaço de características onde as classes de dados são maximamente separadas entre si.
  2. Maximização da separação: O LDA constrói hiperplanos (combinações lineares de características) que maximizam a diferença entre as médias dos valores das características em diferentes classes e minimizam a variação dentro de cada classe.
  3. Treinamento dos parâmetros: O modelo LDA é treinado no conjunto de dados de treinamento, calculando os parâmetros dos hiperplanos e projeções dos dados para o novo espaço.
Vantagens do LDA Classifier:
Limitações do LDA Classifier:

O LDA Classifier é um método útil para tarefas de classificação e redução de dimensionalidade de dados, especialmente quando há a necessidade de melhorar a separação entre as classes. É frequentemente utilizado em estatística, biologia, análise médica e outras áreas para análise de dados e classificação.


2.23.1. Código de criação do modelo Linear Discriminant Analysis (LDA) Classifier

Este código demonstra o processo de treinamento do modelo Linear Discriminant Analysis (LDA) Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_LDAClassifier.py
# The code demonstrates the process of training Linear Discriminant Analysis (LDA) Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Linear Discriminant Analysis (LDA) Classifier model
lda_model = LinearDiscriminantAnalysis()

# train the model on the entire dataset
lda_model.fit(X, y)

# predict classes for the entire dataset
y_pred = lda_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Linear Discriminant Analysis (LDA) Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(lda_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path +"lda_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Linear Discriminant Analysis (LDA) Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Linear Discriminant Analysis (LDA) Classifier model: 0.98
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.98      0.96      0.97        50
Python               2       0.96      0.98      0.97        50
Python    
Python        accuracy                           0.98       150
Python       macro avg       0.98      0.98      0.98       150
Python    weighted avg       0.98      0.98      0.98       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\lda_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Linear Discriminant Analysis (LDA) Classifier model in ONNX format: 0.98


2.23.2. Código no MQL5 para trabalhar com o modelo Linear Discriminant Analysis (LDA) Classifier

//+------------------------------------------------------------------+
//|                                           Iris_LDAClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "lda_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="LDAClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_LDAClassifier (EURUSD,H1)  model:LDAClassifier  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_LDAClassifier (EURUSD,H1)  model:LDAClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_LDAClassifier (EURUSD,H1)  model:LDAClassifier  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_LDAClassifier (EURUSD,H1)  model:LDAClassifier   correct results: 98.00%
Iris_LDAClassifier (EURUSD,H1)  model=LDAClassifier all samples accuracy=0.980000
Iris_LDAClassifier (EURUSD,H1)  model=LDAClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 98%, o que corresponde à precisão do original.


2.23.3. Representação ONNX do modelo Linear Discriminant Analysis (LDA) Classifier

Fig.37. Representação do modelo Linear Discriminant Analysis (LDA) Classifier em Netron

Fig.37. Representação do modelo Linear Discriminant Analysis (LDA) Classifier em Netron


2.24. Hist Gradient Boosting

O Hist Gradient Boosting Classifier é um algoritmo de aprendizado de máquina que pertence à família do gradient boosting e é destinado a tarefas de classificação. É um método eficaz e poderoso, amplamente utilizado em análise de dados e aprendizado de máquina.

Princípios do funcionamento do Hist Gradient Boosting Classifier:

  1. Gradient boosting: O Hist Gradient Boosting Classifier se baseia no método de gradient boosting, que constrói um ensemble de árvores de decisão para melhorar a classificação. Isso é feito treinando modelos fracos sucessivamente e ajustando os erros dos modelos anteriores.
  2. Uso de histogramas: Hist no nome significa que este algoritmo utiliza histogramas para processar dados eficientemente. Em vez de fazer uma busca completa nas características, o Hist Gradient Boosting constrói histogramas das características , o que permite calcular rapidamente as divisões nas árvores de decisão.
  3. Treinamento nos resíduos: Como outros métodos de gradient boosting, o Hist Gradient Boosting treina cada nova árvore nos resíduos do modelo anterior para refinar a previsão.
Vantagens do Hist Gradient Boosting Classifier:
Limitações do Hist Gradient Boosting Classifier:

O Hist Gradient Boosting Classifier é um algoritmo poderoso para tarefas de classificação e regressão, fornecendo alta precisão e eficiência no processamento de dados. Ele encontra aplicação em várias áreas, como análise de dados, bioinformática, finanças e outras.


2.24.1. Código de criação do modelo Histogram-Based Gradient Boosting Classifier

Este código demonstra o processo de treinamento do modelo Histogram-Based Gradient Boosting Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_HistGradientBoostingClassifier.py
# The code demonstrates the process of training Histogram-Based Gradient Boosting Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a Histogram-Based Gradient Boosting Classifier model
hist_gradient_boosting_model = HistGradientBoostingClassifier(random_state=42)

# train the model on the entire dataset
hist_gradient_boosting_model.fit(X, y)

# predict classes for the entire dataset
y_pred = hist_gradient_boosting_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Hist Gradient Boosting Classifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(hist_gradient_boosting_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path +"hist_gradient_boosting_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Hist Gradient Boosting Classifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Hist Gradient Boosting Classifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\hist_gradient_boosting_classifier_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of Hist Gradient Boosting Classifier model in ONNX format: 1.0


2.24.2. Código no MQL5 para trabalhar com o modelo Histogram-Based Gradient Boosting Classifier

//+------------------------------------------------------------------+
//|                          Iris_HistGradientBoostingClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "hist_gradient_boosting_classifier_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="HistGradientBoostingClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_HistGradientBoostingClassifier (EURUSD,H1) model:HistGradientBoostingClassifier   correct results: 100.00%
Iris_HistGradientBoostingClassifier (EURUSD,H1) model=HistGradientBoostingClassifier all samples accuracy=1.000000
Iris_HistGradientBoostingClassifier (EURUSD,H1) model=HistGradientBoostingClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.24.3. Representação ONNX do modelo Histogram-Based Gradient Boosting Classifier

Fig.38. Representação ONNX do modelo Histogram-Based Gradient Boosting Classifier em Netron

Fig.38. Representação ONNX do modelo Histogram-Based Gradient Boosting Classifier em Netron


2.25. CategoricalNB Classifier

O CategoricalNB é um algoritmo de classificação baseado no teorema de Bayes. Ele é especificamente projetado para conjuntos de dados com características categóricas e é amplamente utilizado na classificação de texto, detecção de spam e outras aplicações relacionadas a dados discretos.

Princípios do funcionamento do CategoricalNB:

  1. Classificador bayesiano ingênuo: O CategoricalNB é um dos tipos de classificadores bayesianos ingênuos, baseados no teorema de Bayes. Ele calcula a probabilidade de pertencer a uma certa classe para um conjunto de características, utilizando as probabilidades condicionais de cada característica dado o classe.
  2. Características categóricas: Ao contrário do classificador bayesiano ingênuo gaussiano, que assume características contínuas com distribuição normal, o CategoricalNB é adequado para conjuntos de dados com características categóricas. Ele modela a distribuição probabilística de cada característica por classe.
  3. Suposição de independência: A "ingenuidade" no classificador bayesiano ingênuo vem da suposição de independência entre as características. O CategoricalNB assume que as características são condicionalmente independentes dado o classe. Apesar dessa suposição nem sempre ser mantida na prática, os métodos bayesianos ingênuos podem fornecer bons resultados em muitos conjuntos de dados reais.

Vantagens do CategoricalNB:

Limitações do CategoricalNB:

O CategoricalNB é um algoritmo de classificação valioso, especialmente adequado para conjuntos de dados com características categóricas. Sua simplicidade, eficiência e interpretabilidade o tornam uma ferramenta útil para várias tarefas de classificação. Apesar das limitações, como a suposição de independência, ele permanece uma escolha popular para classificação de texto e outras tarefas onde predominam dados discretos. Ao trabalhar com dados categóricos, considerar o CategoricalNB como um modelo de base é frequentemente uma escolha razoável. No entanto, é importante avaliar seu desempenho em comparação com modelos mais complexos, especialmente se houver dependências entre as características.


2.25.1. Código para criar o modelo CategoricalNB Classifier

Este código demonstra o processo de treinamento do modelo CategoricalNB Classifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_CategoricalNBClassifier.py
# The code demonstrates the process of training CategoricalNB Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.naive_bayes import CategoricalNB
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a CategoricalNB model
categorical_nb_model = CategoricalNB()

# train the model on the entire dataset
categorical_nb_model.fit(X, y)

# predict classes for the entire dataset
y_pred = categorical_nb_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of CategoricalNB model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(categorical_nb_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "categorical_nb_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of CategoricalNB model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of CategoricalNB model: 0.9333333333333333
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.86      0.96      0.91        50
Python               2       0.95      0.84      0.89        50
Python    
Python        accuracy                           0.93       150
Python       macro avg       0.94      0.93      0.93       150
Python    weighted avg       0.94      0.93      0.93       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\categorical_nb_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of CategoricalNB model in ONNX format: 0.9333333333333333


2.25.2. Código no MQL5 para trabalhar com o modelo CategoricalNB Classifier

//+------------------------------------------------------------------+
//|                                 Iris_CategoricalNBClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "categorical_nb_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="CategoricalNBClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+
Resultado:
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=102 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=122 FAILED [class=1, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=128 FAILED [class=1, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  sample=143 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier   correct results: 93.33%
Iris_CategoricalNBClassifier (EURUSD,H1)        model=CategoricalNBClassifier all samples accuracy=0.933333
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80)
Iris_CategoricalNBClassifier (EURUSD,H1)        model:CategoricalNBClassifier  FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90)
Iris_CategoricalNBClassifier (EURUSD,H1)        model=CategoricalNBClassifier batch test accuracy=0.000000

A precisão do modelo ONNX exportado no iris dataset completo é de 93,33%, o que corresponde à precisão do original.


2.25.3. Representação ONNX do modelo CategoricalNB Classifier

Fig.39. Representação ONNX do modelo CategoricalNB Classifier em Netron

Fig.39. Representação ONNX do modelo CategoricalNB Classifier em Netron



Nota sobre os modelos ExtraTreeClassifier e ExtraTreesClassifier:

ExtraTreeClassifier e ExtraTreesClassifier são dois classificadores distintos, e a principal diferença entre eles está na forma como operam:

ExtraTreeClassifier (Extremely Randomized Trees Classifier):

  • Este classificador também é conhecido como Extremely Randomized Trees ou Extra-Trees.
  • Baseia-se na ideia de árvores de decisão aleatórias.
  • No ExtraTreeClassifier, a escolha do ponto de divisão para cada nó da árvore é feita de maneira aleatória, sem qualquer busca prévia pelo melhor ponto de divisão.
  • Isso torna o classificador menos computacionalmente intensivo do que o Random Forest clássico, pois não requer o cálculo de divisões ótimas para cada nó.
  • No ExtraTreeClassifier, frequentemente são usados limites aleatórios para as características e divisões aleatórias, o que resulta em árvores mais aleatórias.
  • A falta de busca pelas melhores divisões torna o ExtraTreeClassifier mais rápido, mas menos preciso em comparação com o Random Forest.
ExtraTreesClassifier (Extremely Randomized Trees Classifier):
  • O ExtraTreesClassifier também é um classificador baseado no método de Extremely Randomized Trees.
  • A principal diferença entre o ExtraTreesClassifier e o ExtraTreeClassifier é que o ExtraTreesClassifier realiza divisões aleatórias para selecionar as melhores divisões em cada nó da árvore.
  • Isso significa que o ExtraTreesClassifier aplica um Random Forest com um nível adicional de aleatoriedade na seleção das divisões ótimas.
  • O ExtraTreesClassifier geralmente é mais preciso do que o ExtraTreeClassifier porque realiza divisões aleatórias para encontrar os melhores características para divisão.
  • No entanto, o ExtraTreesClassifier pode ser mais computacionalmente intensivo devido à necessidade de uma busca mais ampla pelas divisões ótimas.
Assim, a principal diferença entre esses dois classificadores está no nível de aleatoriedade na escolha das divisões. O ExtraTreeClassifier faz uma seleção aleatória para cada nó sem uma busca prévia pelas melhores divisões, enquanto o ExtraTreesClassifier realiza divisões aleatórias com a busca das melhores divisões para cada nó.


2.26. ExtraTreeClassifier

O ExtraTreeClassifier, ou Extremely Randomized Trees, é um algoritmo poderoso de aprendizado de máquina usado em tarefas de classificação e regressão. Este algoritmo baseia-se na ideia de árvores de decisão e oferece melhorias em comparação com as florestas aleatórias tradicionais e árvores de decisão.

Princípios do funcionamento do ExtraTreeClassifier:

  1. Divisão aleatória de nós: O princípio fundamental do ExtraTreeClassifier é que ele escolhe divisões aleatoriamente para cada nó da árvore. Isso difere das árvores de decisão tradicionais, que selecionam o melhor recurso para divisão. O ExtraTreeClassifier faz a divisão sem considerar a melhor divisão, tornando-o mais aleatório e resistente ao sobreajuste.
  2. Agregação dos resultados: Ao construir um ensemble, o ExtraTreeClassifier cria múltiplas árvores aleatórias e agrega seus resultados. Isso é feito para aumentar a capacidade de generalização do modelo e reduzir a variância. O ensemble de árvores ajuda a combater o problema do sobreajuste e aumenta a estabilidade das previsões.
  3. Limites aleatórios: Ao dividir um nó, o ExtraTreeClassifier escolhe limites aleatórios para cada recurso, em vez de valores ótimos definidos. Isso leva a uma maior aleatoriedade e robustez do modelo.

Vantagens do ExtraTreeClassifier:

Limitações do ExtraTreeClassifier:

O ExtraTreeClassifier é um algoritmo poderoso de aprendizado de máquina que possui resistência ao sobreajuste e alta velocidade de treinamento. Ele pode ser útil em várias tarefas de classificação e regressão, especialmente quando os recursos computacionais são limitados. No entanto, é importante considerar o caráter aleatório deste algoritmo e suas limitações, como a sensibilidade a valores atípicos e menor interpretabilidade. Ao usar o ExtraTreeClassifier, é crucial ajustar cuidadosamente seus parâmetros e considerar as características dos dados.


2.26.1. Código para criar o modelo ExtraTreeClassifier

Este código demonstra o processo de treinamento do modelo ExtraTreeClassifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_ExtraTreeClassifier.py
# The code demonstrates the process of training ExtraTree Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.tree import ExtraTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create an ExtraTreeClassifier model
extra_tree_model = ExtraTreeClassifier()

# train the model on the entire dataset
extra_tree_model.fit(X, y)

# predict classes for the entire dataset
y_pred = extra_tree_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of ExtraTreeClassifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(extra_tree_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "extra_tree_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of ExtraTreeClassifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of ExtraTreeClassifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\extra_tree_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of ExtraTreeClassifier model in ONNX format: 1.0


2.26.2. Código no MQL5 para trabalhar com o modelo ExtraTreeClassifier

//+------------------------------------------------------------------+
//|                                     Iris_ExtraTreeClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "extra_tree_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="ExtraTreeClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_ExtraTreeClassifier (EURUSD,H1)    model:ExtraTreeClassifier   correct results: 100.00%
Iris_ExtraTreeClassifier (EURUSD,H1)    model=ExtraTreeClassifier all samples accuracy=1.000000
Iris_ExtraTreeClassifier (EURUSD,H1)    model=ExtraTreeClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.26.3. Representação ONNX do modelo ExtraTreeClassifier

Fig.40. Representação ONNX do modelo ExtraTreeClassifier em Netron

Fig.40. Representação ONNX do modelo ExtraTreeClassifier em Netron


2.27. ExtraTreesClassifier

O ExtraTreesClassifier é um algoritmo poderoso de aprendizado de máquina usado para tarefas de classificação. Este algoritmo é uma extensão e melhoria do Random Forest (floresta aleatória) e oferece uma série de vantagens e desvantagens.

Princípios do funcionamento do ExtraTreesClassifier:

  1. Bootstrap de amostras: Semelhante ao Random Forest, o ExtraTreesClassifier usa o método bootstrap para criar um conjunto de subamostras do conjunto de dados de treinamento. Isso significa que para cada árvore, uma subamostra aleatória com substituição é criada a partir dos dados originais.
  2. Divisões aleatórias: Ao contrário do Random Forest, onde a melhor característica é selecionado para cada nó da árvore, o ExtraTreesClassifier usa características aleatórias e limiares aleatórios para a divisão dos nós. Isso torna as árvores mais aleatórias e reduz o sobreajuste.
  3. Votação: Após a construção do conjunto de árvores, cada árvore vota na classe de um objeto. O resultado é que a classe com o maior número de votos se torna a classe prevista.

Vantagens do ExtraTreesClassifier:

  1. Redução de sobreajuste: O uso de divisões e características aleatórias torna o ExtraTreesClassifier menos suscetível ao sobreajuste em comparação com as árvores de decisão tradicionais.
  2. Alta velocidade de treinamento: O ExtraTreesClassifier requer menos recursos computacionais para treinamento em comparação com alguns outros algoritmos, como o gradient boosting.
  3. Resistência a valores atípicos: Graças ao uso de um ensemble de árvores e divisões aleatórias, o ExtraTreesClassifier geralmente é mais resistente a valores atípicos nos dados.

Limitações do ExtraTreesClassifier:

O ExtraTreesClassifier é um algoritmo de classificação poderoso, com resistência ao sobreajuste, alta velocidade de treinamento e robustez a valores atípicos. Ele pode ser uma ferramenta útil na análise de dados e na resolução de tarefas de classificação, especialmente em casos com grandes volumes de dados e a necessidade de uma solução eficiente. No entanto, é importante notar que o algoritmo nem sempre é a melhor escolha, e sua eficácia pode depender da tarefa específica e dos dados.


2.27.1. Código para criar o modelo ExtraTreesClassifier

Este código demonstra o processo de treinamento do modelo ExtraTreesClassifier no conjunto de dados Iris, exportação para o formato ONNX e realização de classificação usando o modelo ONNX. Também avalia a precisão tanto do modelo original quanto do modelo ONNX.

# Iris_ExtraTreesClassifier.py
# The code demonstrates the process of training ExtraTrees Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create an ExtraTreesClassifier model
extra_trees_model = ExtraTreesClassifier()

# train the model on the entire dataset
extra_trees_model.fit(X, y)

# predict classes for the entire dataset
y_pred = extra_trees_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of ExtraTreesClassifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(extra_trees_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "extra_trees_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of ExtraTreesClassifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of ExtraTreesClassifier model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\extra_trees_iris.onnx
Python    
Python    Information about input tensors in ONNX:
Python    1. Name: float_input, Data Type: tensor(float), Shape: [None, 4]
Python    
Python    Information about output tensors in ONNX:
Python    1. Name: output_label, Data Type: tensor(int64), Shape: [None]
Python    2. Name: output_probability, Data Type: seq(map(int64,tensor(float))), Shape: []
Python    
Python    Accuracy of ExtraTreesClassifier model in ONNX format: 1.


2.27.2. Código no MQL5 para trabalhar com o modelo ExtraTreesClassifier

//+------------------------------------------------------------------+
//|                                    Iris_ExtraTreesClassifier.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"
#resource "extra_trees_iris.onnx" as const uchar ExtModel[];

//+------------------------------------------------------------------+
//| Test IRIS dataset samples                                        |
//+------------------------------------------------------------------+
bool TestSamples(long model,float &input_data[][4], int &model_classes_id[])
  {
//--- check number of input samples
   ulong batch_size=input_data.Range(0);
   if(batch_size==0)
      return(false);
//--- prepare output array
   ArrayResize(model_classes_id,(int)batch_size);
//---
   float output_data[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } output_data_map[];
//--- check consistency
   bool res=ArrayResize(output_data,(int)batch_size)==batch_size;
//---
   if(res)
     {
      //--- set input shape
      ulong input_shape[]= {batch_size,input_data.Range(1)};
      OnnxSetInputShape(model,0,input_shape);
      //--- set output shapeы
      ulong output_shape1[]= {batch_size};
      ulong output_shape2[]= {batch_size};
      OnnxSetOutputShape(model,0,output_shape1);
      OnnxSetOutputShape(model,1,output_shape2);
      //--- run the model
      res=OnnxRun(model,0,input_data,output_data,output_data_map);
      //--- postprocessing
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         for(uint n=0; n<output_data_map.Size(); n++)
           {
            int model_class_id=-1;
            int max_idx=-1;
            float max_value=-1;
            //--- copy to arrays
            ArrayCopy(output_keys,output_data_map[n].key);
            ArrayCopy(output_values,output_data_map[n].value);
            //ArrayPrint(output_keys);
            //ArrayPrint(output_values);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
            //--- store the result to the output array
            model_classes_id[n]=model_class_id;
            //Print("model_class_id=",model_class_id);
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Test all samples from IRIS dataset (150)                         |
//| Here we test all samples with batch=1, sample by sample          |
//+------------------------------------------------------------------+
bool TestAllIrisDataset(const long model,const string model_name,double &model_accuracy)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("iris dataset not prepared");
      return(false);
     }
//--- show dataset
   for(int k=0; k<total_samples; k++)
     {
      //PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }
//--- array for output classes
   int model_output_classes_id[];
//--- check all Iris dataset samples
   int correct_results=0;
   for(int k=0; k<total_samples; k++)
     {
      //--- input array
      float iris_sample_input_data[1][4];
      //--- prepare input data from kth iris sample dataset
      iris_sample_input_data[0][0]=(float)iris_samples[k].features[0];
      iris_sample_input_data[0][1]=(float)iris_samples[k].features[1];
      iris_sample_input_data[0][2]=(float)iris_samples[k].features[2];
      iris_sample_input_data[0][3]=(float)iris_samples[k].features[3];
      //--- run model
      bool res=TestSamples(model,iris_sample_input_data,model_output_classes_id);
      //--- check result
      if(res)
        {
         if(model_output_classes_id[0]==iris_samples[k].class_id)
           {
            correct_results++;
           }
         else
           {
            PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_output_classes_id[0],iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
           }
        }
     }
   model_accuracy=1.0*correct_results/total_samples;
//---
   PrintFormat("model:%s   correct results: %.2f%%",model_name,100*model_accuracy);
//---
   return(true);
  }

//+------------------------------------------------------------------+
//| Here we test batch execution of the model                        |
//+------------------------------------------------------------------+
bool TestBatchExecution(const long model,const string model_name,double &model_accuracy)
  {
   model_accuracy=0;
//--- array for output classes
   int model_output_classes_id[];
   int correct_results=0;
   int total_results=0;
   bool res=false;

//--- run batch with 3 samples
   float input_data_batch3[3][4]=
     {
        {5.1f,3.5f,1.4f,0.2f}, // iris dataset sample id=1, Iris-setosa
        {6.3f,2.5f,4.9f,1.5f}, // iris dataset sample id=73, Iris-versicolor
        {6.3f,2.7f,4.9f,1.8f}  // iris dataset sample id=124, Iris-virginica
     };
   int correct_classes_batch3[3]= {0,1,2};
//--- run model
   res=TestSamples(model,input_data_batch3,model_output_classes_id);
   if(res)
     {
      //--- check result
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         //--- check result
         if(model_output_classes_id[j]==correct_classes_batch3[j])
            correct_results++;
         else
           {
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch3[j],input_data_batch3[j][0],input_data_batch3[j][1],input_data_batch3[j][2],input_data_batch3[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- run batch with 10 samples
   float input_data_batch10[10][4]=
     {
        {5.5f,3.5f,1.3f,0.2f}, // iris dataset sample id=37 (Iris-setosa)
        {4.9f,3.1f,1.5f,0.1f}, // iris dataset sample id=38 (Iris-setosa)
        {4.4f,3.0f,1.3f,0.2f}, // iris dataset sample id=39 (Iris-setosa)
        {5.0f,3.3f,1.4f,0.2f}, // iris dataset sample id=50 (Iris-setosa)
        {7.0f,3.2f,4.7f,1.4f}, // iris dataset sample id=51 (Iris-versicolor)
        {6.4f,3.2f,4.5f,1.5f}, // iris dataset sample id=52 (Iris-versicolor)
        {6.3f,3.3f,6.0f,2.5f}, // iris dataset sample id=101 (Iris-virginica)
        {5.8f,2.7f,5.1f,1.9f}, // iris dataset sample id=102 (Iris-virginica)
        {7.1f,3.0f,5.9f,2.1f}, // iris dataset sample id=103 (Iris-virginica)
        {6.3f,2.9f,5.6f,1.8f}  // iris dataset sample id=104 (Iris-virginica)
     };
//--- correct classes for all 10 samples in the batch
   int correct_classes_batch10[10]= {0,0,0,0,1,1,2,2,2,2};

//--- run model
   res=TestSamples(model,input_data_batch10,model_output_classes_id);
//--- check result
   if(res)
     {
      for(int j=0; j<ArraySize(model_output_classes_id); j++)
        {
         if(model_output_classes_id[j]==correct_classes_batch10[j])
            correct_results++;
         else
           {
            double f1=input_data_batch10[j][0];
            double f2=input_data_batch10[j][1];
            double f3=input_data_batch10[j][2];
            double f4=input_data_batch10[j][3];
            PrintFormat("model:%s  FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f)",model_name,model_output_classes_id[j],correct_classes_batch10[j],input_data_batch10[j][0],input_data_batch10[j][1],input_data_batch10[j][2],input_data_batch10[j][3]);
           }
         total_results++;
        }
     }
   else
      return(false);

//--- calculate accuracy
   model_accuracy=correct_results/total_results;
//---
   return(res);
  }
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   string model_name="ExtraTreesClassifier";
//---
   long model=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(model==INVALID_HANDLE)
     {
      PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
     }
   else
     {
      //--- test all dataset
      double model_accuracy=0;
      //-- test sample by sample execution for all Iris dataset
      if(TestAllIrisDataset(model,model_name,model_accuracy))
         PrintFormat("model=%s all samples accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- test batch execution for several samples
      if(TestBatchExecution(model,model_name,model_accuracy))
         PrintFormat("model=%s batch test accuracy=%f",model_name,model_accuracy);
      else
         PrintFormat("error in testing model=%s ",model_name);
      //--- release model
      OnnxRelease(model);
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_ExtraTreesClassifier (EURUSD,H1)   model:ExtraTreesClassifier   correct results: 100.00%
Iris_ExtraTreesClassifier (EURUSD,H1)   model=ExtraTreesClassifier all samples accuracy=1.000000
Iris_ExtraTreesClassifier (EURUSD,H1)   model=ExtraTreesClassifier batch test accuracy=1.000000

A precisão do modelo ONNX exportado no conjunto de dados completo de íris é de 100%, o que corresponde à precisão do original.


2.27.3. Representação ONNX do modelo ExtraTreesClassifier

Fig.41. Representação ONNX do modelo ExtraTrees Classifier em Netron

Fig.41. Representação ONNX do modelo ExtraTrees Classifier em Netron


2.28. Comparação da precisão de todos os modelos

Vamos agora considerar todos os modelos juntos e comparar a qualidade de seu desempenho. Primeiro, faremos a comparação usando Python, depois carregaremos e executaremos os modelos ONNX salvos no MetaTrader 5.

2.28.1. Código para calcular todos os modelos e construir o diagrama de comparação de precisão

O script calcula 27 modelos de classificação do pacote Scikit-learn no conjunto de dados completo de íris de Fisher, exporta os modelos para o formato ONNX, executa-os e compara a precisão dos modelos originais e das versões ONNX.

# Iris_AllClassifiers.py
# The code demonstrates the process of training 27 Classifier models on the Iris dataset, exports them to ONNX format, and making predictions using the ONNX model. 
# It also evaluates the accuracy of both the original and the ONNX models.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.metrics import accuracy_score
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
import matplotlib.pyplot as plt
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create and train each classifier model
from sklearn.svm import SVC
svc_model = SVC()
svc_model.fit(X, y)

from sklearn.ensemble import RandomForestClassifier
random_forest_model = RandomForestClassifier(random_state=42)
random_forest_model.fit(X, y)

from sklearn.ensemble import GradientBoostingClassifier
gradient_boosting_model = GradientBoostingClassifier(random_state=42)
gradient_boosting_model.fit(X, y)

from sklearn.ensemble import AdaBoostClassifier
adaboost_model = AdaBoostClassifier(random_state=42)
adaboost_model.fit(X, y)

from sklearn.ensemble import BaggingClassifier
bagging_model = BaggingClassifier(random_state=42)
bagging_model.fit(X, y)

from sklearn.neighbors import KNeighborsClassifier
knn_model = KNeighborsClassifier()
knn_model.fit(X, y)

from sklearn.neighbors import RadiusNeighborsClassifier
radius_neighbors_model = RadiusNeighborsClassifier(radius=1.0)
radius_neighbors_model.fit(X, y)

from sklearn.tree import DecisionTreeClassifier
decision_tree_model = DecisionTreeClassifier(random_state=42)
decision_tree_model.fit(X, y)

from sklearn.linear_model import LogisticRegression
logistic_regression_model = LogisticRegression(max_iter=1000, random_state=42)
logistic_regression_model.fit(X, y)

from sklearn.linear_model import RidgeClassifier
ridge_classifier_model = RidgeClassifier(random_state=42)
ridge_classifier_model.fit(X, y)

from sklearn.linear_model import PassiveAggressiveClassifier
passive_aggressive_model = PassiveAggressiveClassifier(max_iter=1000, random_state=42)
passive_aggressive_model.fit(X, y)

from sklearn.linear_model import Perceptron
perceptron_model = Perceptron(max_iter=1000, random_state=42)
perceptron_model.fit(X, y)

from sklearn.linear_model import SGDClassifier
sgd_model = SGDClassifier(max_iter=1000, random_state=42)
sgd_model.fit(X, y)

from sklearn.naive_bayes import GaussianNB
gaussian_nb_model = GaussianNB()
gaussian_nb_model.fit(X, y)

from sklearn.naive_bayes import MultinomialNB
multinomial_nb_model = MultinomialNB()
multinomial_nb_model.fit(X, y)

from sklearn.naive_bayes import ComplementNB
complement_nb_model = ComplementNB()
complement_nb_model.fit(X, y)

from sklearn.naive_bayes import BernoulliNB
bernoulli_nb_model = BernoulliNB()
bernoulli_nb_model.fit(X, y)

from sklearn.naive_bayes import CategoricalNB
categorical_nb_model = CategoricalNB()
categorical_nb_model.fit(X, y)

from sklearn.tree import ExtraTreeClassifier
extra_tree_model = ExtraTreeClassifier(random_state=42)
extra_tree_model.fit(X, y)

from sklearn.ensemble import ExtraTreesClassifier
extra_trees_model = ExtraTreesClassifier(random_state=42)
extra_trees_model.fit(X, y)

from sklearn.svm import LinearSVC  # Import LinearSVC
linear_svc_model = LinearSVC(random_state=42)
linear_svc_model.fit(X, y)

from sklearn.svm import NuSVC
nu_svc_model = NuSVC()
nu_svc_model.fit(X, y)

from sklearn.linear_model import LogisticRegressionCV
logistic_regression_cv_model = LogisticRegressionCV(cv=5, max_iter=1000, random_state=42)
logistic_regression_cv_model.fit(X, y)

from sklearn.neural_network import MLPClassifier
mlp_model = MLPClassifier(max_iter=1000, random_state=42)
mlp_model.fit(X, y)

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda_model = LinearDiscriminantAnalysis()
lda_model.fit(X, y)

from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingClassifier
hist_gradient_boosting_model = HistGradientBoostingClassifier(random_state=42)
hist_gradient_boosting_model.fit(X, y)

from sklearn.linear_model import RidgeClassifierCV
ridge_classifier_cv_model = RidgeClassifierCV()
ridge_classifier_cv_model.fit(X, y)

# define a dictionary to store results
results = {}

# loop through the models
for model_name, classifier_model in [
    ('SVC Classifier', svc_model),
    ('Random Forest Classifier', random_forest_model),
    ('Gradient Boosting Classifier', gradient_boosting_model),
    ('AdaBoost Classifier', adaboost_model),
    ('Bagging Classifier', bagging_model),
    ('K-NN Classifier', knn_model),
    ('Radius Neighbors Classifier', radius_neighbors_model),
    ('Decision Tree Classifier', decision_tree_model),
    ('Logistic Regression Classifier', logistic_regression_model),
    ('Ridge Classifier', ridge_classifier_model),
    ('Ridge ClassifierCV', ridge_classifier_cv_model),
    ('Passive-Aggressive Classifier', passive_aggressive_model),
    ('Perceptron Classifier', perceptron_model),
    ('SGD Classifier', sgd_model),
    ('Gaussian Naive Bayes Classifier', gaussian_nb_model),
    ('Multinomial Naive Bayes Classifier', multinomial_nb_model),
    ('Complement Naive Bayes Classifier', complement_nb_model),
    ('Bernoulli Naive Bayes Classifier', bernoulli_nb_model),
    ('Categorical Naive Bayes Classifier', categorical_nb_model),
    ('Extra Tree Classifier', extra_tree_model),
    ('Extra Trees Classifier', extra_trees_model),
    ('LinearSVC Classifier', linear_svc_model),
    ('NuSVC Classifier', nu_svc_model),
    ('Logistic RegressionCV Classifier', logistic_regression_cv_model),
    ('MLP Classifier', mlp_model),
    ('Linear Discriminant Analysis Classifier', lda_model),
    ('Hist Gradient Boosting Classifier', hist_gradient_boosting_model)
]:
    # predict classes for the entire dataset
    y_pred = classifier_model.predict(X)

    # evaluate the model's accuracy
    accuracy = accuracy_score(y, y_pred)

    # define the input data type
    initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

    # export the model to ONNX format with float data type
    onnx_model = convert_sklearn(classifier_model, initial_types=initial_type, target_opset=12)

    # save the model to a file
    onnx_filename = data_path + f"{model_name.lower().replace(' ', '_')}_iris.onnx"
    with open(onnx_filename, "wb") as f:
        f.write(onnx_model.SerializeToString())

    # load the ONNX model and make predictions
    onnx_session = ort.InferenceSession(onnx_filename)
    input_name = onnx_session.get_inputs()[0].name
    output_name = onnx_session.get_outputs()[0].name

    # convert data to floating-point format (float32)
    X_float32 = X.astype(np.float32)

    # predict classes for the entire dataset using ONNX
    y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

    # evaluate the accuracy of the ONNX model
    accuracy_onnx = accuracy_score(y, y_pred_onnx)

    # store results
    results[model_name] = {
        'accuracy': accuracy,
        'accuracy_onnx': accuracy_onnx
    }

    # print the accuracy of the original model and the ONNX model
    #print(f"{model_name} - Original Accuracy: {accuracy}, ONNX Accuracy: {accuracy_onnx}")

# sort the models based on accuracy
sorted_results = dict(sorted(results.items(), key=lambda item: item[1]['accuracy'], reverse=True))

# print the sorted results
print("Sorted Results:")
for model_name, metrics in sorted_results.items():
    print(f"{model_name} - Original Accuracy: {metrics['accuracy']:.4f}, ONNX Accuracy: {metrics['accuracy_onnx']:.4f}")

# create comparison plots for sorted results
fig, ax = plt.subplots(figsize=(12, 8))

model_names = list(sorted_results.keys())
accuracies = [sorted_results[model_name]['accuracy'] for model_name in model_names]
accuracies_onnx = [sorted_results[model_name]['accuracy_onnx'] for model_name in model_names]

bar_width = 0.35
index = range(len(model_names))

bar1 = plt.bar(index, accuracies, bar_width, label='Model Accuracy')
bar2 = plt.bar([i + bar_width for i in index], accuracies_onnx, bar_width, label='ONNX Accuracy')

plt.xlabel('Models')
plt.ylabel('Accuracy')
plt.title('Comparison of Model and ONNX Accuracy (Sorted)')
plt.xticks([i + bar_width / 2 for i in index], model_names, rotation=90, ha='center')
plt.legend()

plt.tight_layout()
plt.show()

Resultado:

Python  Sorted Results:
Python  Random Forest Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Gradient Boosting Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Bagging Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Decision Tree Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Extra Tree Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Extra Trees Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Hist Gradient Boosting Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
Python  Logistic RegressionCV Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
Python  MLP Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
Python  Linear Discriminant Analysis Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
Python  SVC Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
Python  Radius Neighbors Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
Python  Logistic Regression Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
Python  NuSVC Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
Python  K-NN Classifier - Original Accuracy: 0.9667, ONNX Accuracy: 0.9667
Python  LinearSVC Classifier - Original Accuracy: 0.9667, ONNX Accuracy: 0.9667
Python  AdaBoost Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
Python  Passive-Aggressive Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
Python  Gaussian Naive Bayes Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
Python  Multinomial Naive Bayes Classifier - Original Accuracy: 0.9533, ONNX Accuracy: 0.9533
Python  SGD Classifier - Original Accuracy: 0.9333, ONNX Accuracy: 0.9333
Python  Categorical Naive Bayes Classifier - Original Accuracy: 0.9333, ONNX Accuracy: 0.9333
Python  Ridge Classifier - Original Accuracy: 0.8533, ONNX Accuracy: 0.8533
Python  Ridge ClassifierCV - Original Accuracy: 0.8533, ONNX Accuracy: 0.8533
Python  Complement Naive Bayes Classifier - Original Accuracy: 0.6667, ONNX Accuracy: 0.6667
Python  Perceptron Classifier - Original Accuracy: 0.6133, ONNX Accuracy: 0.6133
Python  Bernoulli Naive Bayes Classifier - Original Accuracy: 0.3333, ONNX Accuracy: 0.3333
O script também apresentará uma imagem com os resultados resumidos para todos os 27 modelos.

Fig. 42. Comparação da precisão de 27 modelos de classificação e suas versões ONNX para o conjunto de dados Iris

Fig. 42. Comparação da precisão de 27 modelos de classificação e suas versões ONNX para o conjunto de dados Iris



Com base nos resultados da avaliação de precisão (accuracy) dos modelos originais e suas versões ONNX, podemos fazer as seguintes conclusões:

Sete modelos mostraram precisão perfeita (1.0000) tanto na versão original quanto na versão ONNX. Esses modelos incluem:

  1. Random Forest Classifier
  2. Gradient Boosting Classifier
  3. Bagging Classifier
  4. Decision Tree Classifier
  5. Extra Tree Classifier
  6. Extra Trees Classifier
  7. Hist Gradient Boosting Classifier

As representações ONNX desses modelos também mantêm alta precisão.

Três modelos - Logistic RegressionCV Classifier, MLP Classifier e Linear Discriminant Analysis Classifier - alcançaram alta precisão nas versões original e ONNX com uma precisão de 0.9800. Esses são modelos que funcionam bem em ambas as representações.

Vários modelos, incluindo o classificador SVC, o classificador Radius Neighbors, o classificador NuSVC, o classificador K-NN, o classificador LinearSVC, o classificador AdaBoost, o classificador Passive-Aggressive, o classificador Gaussian Naive Bayes e o classificador Multinomial Naive Bayes, apresentaram boa precisão nas versões original e ONNX, com uma precisão de 0,9733, 0,9667 ou 0,9600. Esses modelos também mantêm sua precisão na representação ONNX.

Modelos como SGD Classifier, Categorical Naive Bayes Classifier, Ridge Classifier, Complement Naive Bayes Classifier, perceptron Classifier e Bernoulli Naive Bayes Classifier têm precisão mais baixa. Eles também lidam bem em manter a precisão em ONNX.

Todos os modelos considerados mantêm sua precisão ao serem exportados para o formato ONNX, indicando que o ONNX oferece uma maneira eficaz de preservar e recuperar modelos de aprendizado de máquina. No entanto, é importante lembrar que a qualidade do modelo exportado pode depender do algoritmo específico e dos parâmetros do modelo.


2.28.2. Código no MQL5 para executar todos os modelos ONNX

O script executa todos os modelos ONNX salvos pelo script 2.28.1 no conjunto de dados completo de íris de Fisher.

//+------------------------------------------------------------------+
//|                                          Iris_AllClassifiers.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"

#include "iris.mqh"

//+------------------------------------------------------------------+
//| TestSampleSequenceMapOutput                                      |
//+------------------------------------------------------------------+
bool TestSampleSequenceMapOutput(long model,sIRISsample &iris_sample, int &model_class_id)
  {
//---
   model_class_id=-1;
   float input_data[1][4];
   for(int k=0; k<4; k++)
     {
      input_data[0][k]=(float)iris_sample.features[k];
     }
//---
   float out1[];
//---
   struct Map
     {
      ulong          key[];
      float          value[];
     } out2[];
//---
   bool res=ArrayResize(out1,input_data.Range(0))==input_data.Range(0);
//---
   if(res)
     {
      ulong input_shape[]= { input_data.Range(0), input_data.Range(1) };
      ulong output_shape[]= { input_data.Range(0) };
      //---
      OnnxSetInputShape(model,0,input_shape);
      OnnxSetOutputShape(model,0,output_shape);
      //---
      res=OnnxRun(model,0,input_data,out1,out2);
      //---
      if(res)
        {
         //--- postprocessing of sequence map data
         //--- find class with maximum probability
         ulong output_keys[];
         float output_values[];
         //---
         model_class_id=-1;
         int max_idx=-1;
         float max_value=-1;
         //---
         for(uint n=0; n<out2.Size(); n++)
           {
            //--- copy to arrays
            ArrayCopy(output_keys,out2[n].key);
            ArrayCopy(output_values,out2[n].value);
            //--- find the key with maximum probability
            for(int k=0; k<ArraySize(output_values); k++)
              {
               if(k==0)
                 {
                  max_idx=0;
                  max_value=output_values[max_idx];
                  model_class_id=(int)output_keys[max_idx];
                 }
               else
                 {
                  if(output_values[k]>max_value)
                    {
                     max_idx=k;
                     max_value=output_values[max_idx];
                     model_class_id=(int)output_keys[max_idx];
                    }
                 }
              }
           }
        }
     }
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| TestSampleTensorOutput                                           |
//+------------------------------------------------------------------+
bool TestSampleTensorOutput(long model,sIRISsample &iris_sample, int &model_class_id)
  {
//---
   model_class_id=-1;
   float input_data[1][4];
   for(int k=0; k<4; k++)
     {
      input_data[0][k]=(float)iris_sample.features[k];
     }
//---
   ulong input_shape[]= { 1, 4};
   OnnxSetInputShape(model,0,input_shape);
//---
   int output1[1];
   float output2[1,3];
//---
   ulong output_shape[]= {1};
   OnnxSetOutputShape(model,0,output_shape);
//---
   ulong output_shape2[]= {1,3};
   OnnxSetOutputShape(model,1,output_shape2);
//---
   bool res=OnnxRun(model,0,input_data,output1,output2);
//--- result for these models in output1[0];
   if(res)
      model_class_id=output1[0];
//---
   return(res);
  }

//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
int OnStart(void)
  {
   sIRISsample iris_samples[];
//--- load dataset from file
   PrepareIrisDataset(iris_samples);
//--- test
   int total_samples=ArraySize(iris_samples);
   if(total_samples==0)
     {
      Print("error in loading iris dataset from iris.csv");
      return(false);
     }
   /*for(int k=0; k<total_samples; k++)
     {
      PrintFormat("%d (%.2f,%.2f,%.2f,%.2f) class %d (%s)",iris_samples[k].sample_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3],iris_samples[k].class_id,iris_samples[k].class_name);
     }*/
//----

   string iris_models[]=
     {
      "random_forest_classifier_iris.onnx",
      "gradient_boosting_classifier_iris.onnx",
      "bagging_classifier_iris.onnx",
      "decision_tree_classifier_iris.onnx",
      "extra_tree_classifier_iris.onnx",
      "extra_trees_classifier_iris.onnx",
      "hist_gradient_boosting_classifier_iris.onnx",
      "logistic_regressioncv_classifier_iris.onnx",
      "mlp_classifier_iris.onnx",
      "linear_discriminant_analysis_classifier_iris.onnx",
      "svc_classifier_iris.onnx",
      "radius_neighbors_classifier_iris.onnx",
      "logistic_regression_classifier_iris.onnx",
      "nusvc_classifier_iris.onnx",
      "k-nn_classifier_iris.onnx",
      "linearsvc_classifier_iris.onnx",
      "adaboost_classifier_iris.onnx",
      "passive-aggressive_classifier_iris.onnx",
      "gaussian_naive_bayes_classifier_iris.onnx",
      "multinomial_naive_bayes_classifier_iris.onnx",
      "sgd_classifier_iris.onnx",
      "categorical_naive_bayes_classifier_iris.onnx",
      "ridge_classifier_iris.onnx",
      "ridge_classifiercv_iris.onnx",
      "complement_naive_bayes_classifier_iris.onnx",
      "perceptron_classifier_iris.onnx",
      "bernoulli_naive_bayes_classifier_iris.onnx"
     };

//--- test all iris dataset sample by sample
   for(int i=0; i<ArraySize(iris_models); i++)
     {
      //--- load ONNX-model
      string model_name="IRIS_models\\"+iris_models[i];
      //---
      long model=OnnxCreate(model_name,0);
      if(model==INVALID_HANDLE)
        {
         PrintFormat("model_name=%s OnnxCreate error %d for",model_name,GetLastError());
        }
      else
        {
         //--- check all samples
         int correct_results=0;
         for(int k=0; k<total_samples; k++)
           {
            int model_class_id=-1;
            //--- select data output processor
            string current_model=iris_models[i];
            if(current_model=="svc_classifier_iris.onnx" || current_model=="linearsvc_classifier_iris.onnx" || current_model=="nusvc_classifier_iris.onnx" || current_model=="ridge_classifier_iris.onnx" || current_model=="ridge_classifiercv_iris.onnx" || current_model=="radius_neighbors_classifier_iris.onnx")
              {
               TestSampleTensorOutput(model,iris_samples[k],model_class_id);
              }
            else
              {
               TestSampleSequenceMapOutput(model,iris_samples[k],model_class_id);
              }
            //---
            if(model_class_id==iris_samples[k].class_id)
              {
               correct_results++;
               //PrintFormat("sample=%d OK [class=%d]",iris_samples[k].sample_id,model_class_id);
              }
            else
              {
               //PrintFormat("model:%s  sample=%d FAILED [class=%d, true class=%d] features=(%.2f,%.2f,%.2f,%.2f]",model_name,iris_samples[k].sample_id,model_class_id,iris_samples[k].class_id,iris_samples[k].features[0],iris_samples[k].features[1],iris_samples[k].features[2],iris_samples[k].features[3]);
              }
           }
         PrintFormat("%d model:%s   accuracy: %.4f",i+1,model_name,1.0*correct_results/total_samples);
         //--- release model
         OnnxRelease(model);
        }
      //---
     }
   return(0);
  }
//+------------------------------------------------------------------+

Resultado:

Iris_AllClassifiers (EURUSD,H1) 1 model:IRIS_models\random_forest_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 2 model:IRIS_models\gradient_boosting_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 3 model:IRIS_models\bagging_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 4 model:IRIS_models\decision_tree_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 5 model:IRIS_models\extra_tree_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 6 model:IRIS_models\extra_trees_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 7 model:IRIS_models\hist_gradient_boosting_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 8 model:IRIS_models\logistic_regressioncv_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) 9 model:IRIS_models\mlp_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) 10 model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) 11 model:IRIS_models\svc_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) 12 model:IRIS_models\radius_neighbors_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) 13 model:IRIS_models\logistic_regression_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) 14 model:IRIS_models\nusvc_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) 15 model:IRIS_models\k-nn_classifier_iris.onnx   accuracy: 0.9667
Iris_AllClassifiers (EURUSD,H1) 16 model:IRIS_models\linearsvc_classifier_iris.onnx   accuracy: 0.9667
Iris_AllClassifiers (EURUSD,H1) 17 model:IRIS_models\adaboost_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) 18 model:IRIS_models\passive-aggressive_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) 19 model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) 20 model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx   accuracy: 0.9533
Iris_AllClassifiers (EURUSD,H1) 21 model:IRIS_models\sgd_classifier_iris.onnx   accuracy: 0.9333
Iris_AllClassifiers (EURUSD,H1) 22 model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx   accuracy: 0.9333
Iris_AllClassifiers (EURUSD,H1) 23 model:IRIS_models\ridge_classifier_iris.onnx   accuracy: 0.8533
Iris_AllClassifiers (EURUSD,H1) 24 model:IRIS_models\ridge_classifiercv_iris.onnx   accuracy: 0.8533
Iris_AllClassifiers (EURUSD,H1) ONNX: Removing initializer 'class_log_prior'. It is not used by any node and should be removed from the model.
Iris_AllClassifiers (EURUSD,H1) 25 model:IRIS_models\complement_naive_bayes_classifier_iris.onnx   accuracy: 0.6667
Iris_AllClassifiers (EURUSD,H1) 26 model:IRIS_models\perceptron_classifier_iris.onnx   accuracy: 0.6133
Iris_AllClassifiers (EURUSD,H1) 27 model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx   accuracy: 0.3333

Comparando com os resultados do script 2.28.1.1:

Python  Random Forest Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
1 model:IRIS_models\random_forest_classifier_iris.onnx   accuracy: 1.0000

Python  Gradient Boosting Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
2 model:IRIS_models\gradient_boosting_classifier_iris.onnx   accuracy: 1.0000

Python  Bagging Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
3 model:IRIS_models\bagging_classifier_iris.onnx   accuracy: 1.0000

Python  Decision Tree Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
4 model:IRIS_models\decision_tree_classifier_iris.onnx   accuracy: 1.0000

Python  Extra Tree Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
5 model:IRIS_models\extra_tree_classifier_iris.onnx   accuracy: 1.0000

Python  Extra Trees Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
6 model:IRIS_models\extra_trees_classifier_iris.onnx   accuracy: 1.0000

Python  Hist Gradient Boosting Classifier - Original Accuracy: 1.0000, ONNX Accuracy: 1.0000
7 model:IRIS_models\hist_gradient_boosting_classifier_iris.onnx   accuracy: 1.0000

Python  Logistic RegressionCV Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
8 model:IRIS_models\logistic_regressioncv_classifier_iris.onnx   accuracy: 0.9800

Python  MLP Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
9 model:IRIS_models\mlp_classifier_iris.onnx   accuracy: 0.9800

Python  Linear Discriminant Analysis Classifier - Original Accuracy: 0.9800, ONNX Accuracy: 0.9800
10 model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx   accuracy: 0.9800

Python  SVC Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
11 model:IRIS_models\svc_classifier_iris.onnx   accuracy: 0.9733

Python  Radius Neighbors Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
12 model:IRIS_models\radius_neighbors_classifier_iris.onnx   accuracy: 0.9733

Python  Logistic Regression Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
13 model:IRIS_models\logistic_regression_classifier_iris.onnx   accuracy: 0.9733

Python  NuSVC Classifier - Original Accuracy: 0.9733, ONNX Accuracy: 0.9733
14 model:IRIS_models\nusvc_classifier_iris.onnx   accuracy: 0.9733

Python  K-NN Classifier - Original Accuracy: 0.9667, ONNX Accuracy: 0.9667
15 model:IRIS_models\k-nn_classifier_iris.onnx   accuracy: 0.9667

Python  LinearSVC Classifier - Original Accuracy: 0.9667, ONNX Accuracy: 0.9667
16 model:IRIS_models\linearsvc_classifier_iris.onnx   accuracy: 0.9667

Python  AdaBoost Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
17 model:IRIS_models\adaboost_classifier_iris.onnx   accuracy: 0.9600

Python  Passive-Aggressive Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
18 model:IRIS_models\passive-aggressive_classifier_iris.onnx   accuracy: 0.9600

Python  Gaussian Naive Bayes Classifier - Original Accuracy: 0.9600, ONNX Accuracy: 0.9600
19 model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx   accuracy: 0.9600

Python  Multinomial Naive Bayes Classifier - Original Accuracy: 0.9533, ONNX Accuracy: 0.9533
20 model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx   accuracy: 0.9533

Python  SGD Classifier - Original Accuracy: 0.9333, ONNX Accuracy: 0.9333
21 model:IRIS_models\sgd_classifier_iris.onnx   accuracy: 0.9333

Python  Categorical Naive Bayes Classifier - Original Accuracy: 0.9333, ONNX Accuracy: 0.9333
22 model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx   accuracy: 0.9333

Python  Ridge Classifier - Original Accuracy: 0.8533, ONNX Accuracy: 0.8533
23 model:IRIS_models\ridge_classifier_iris.onnx   accuracy: 0.8533

Python  Ridge ClassifierCV - Original Accuracy: 0.8533, ONNX Accuracy: 0.8533
24 model:IRIS_models\ridge_classifiercv_iris.onnx   accuracy: 0.8533

Python  Complement Naive Bayes Classifier - Original Accuracy: 0.6667, ONNX Accuracy: 0.6667
25 model:IRIS_models\complement_naive_bayes_classifier_iris.onnx   accuracy: 0.6667

Python  Perceptron Classifier - Original Accuracy: 0.6133, ONNX Accuracy: 0.6133
26 model:IRIS_models\perceptron_classifier_iris.onnx   accuracy: 0.6133

Python  Bernoulli Naive Bayes Classifier - Original Accuracy: 0.3333, ONNX Accuracy: 0.3333
27 model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx   accuracy: 0.3333

notamos que a execução de todos os modelos ONNX salvos no MQL5 corresponde totalmente aos resultados 2.28.1.

Assim, os modelos que examinamos, convertidos para o formato ONNX, mantiveram a precisão de desempenho.

É digno de nota a precisão perfeita de classificação (accuracy=1.0) para o conjunto de dados Iris em 7 modelos:

  1. Random Forest Classifier;
  2. Gradient Boosting Classifier;
  3. Bagging Classifier;
  4. Decision Tree Classifier;
  5. Extra Tree Classifier;
  6. Extra Trees Classifier;
  7. Histogram Gradient Boosting Classifier.

Os outros 20 modelos tiveram erros de classificação.

Se descomentar a linha 208, o script também mostrará amostras do conjunto de dados Iris que foram classificadas incorretamente por cada um dos modelos:

Iris_AllClassifiers (EURUSD,H1) 1 model:IRIS_models\random_forest_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 2 model:IRIS_models\gradient_boosting_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 3 model:IRIS_models\bagging_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 4 model:IRIS_models\decision_tree_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 5 model:IRIS_models\extra_tree_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 6 model:IRIS_models\extra_trees_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) 7 model:IRIS_models\hist_gradient_boosting_classifier_iris.onnx   accuracy: 1.0000
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regressioncv_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regressioncv_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regressioncv_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 8 model:IRIS_models\logistic_regressioncv_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\mlp_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\mlp_classifier_iris.onnx  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\mlp_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) 9 model:IRIS_models\mlp_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 10 model:IRIS_models\linear_discriminant_analysis_classifier_iris.onnx   accuracy: 0.9800
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\svc_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\svc_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\svc_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\svc_classifier_iris.onnx  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) 11 model:IRIS_models\svc_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\radius_neighbors_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\radius_neighbors_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\radius_neighbors_classifier_iris.onnx  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\radius_neighbors_classifier_iris.onnx  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) 12 model:IRIS_models\radius_neighbors_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regression_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regression_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regression_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\logistic_regression_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) 13 model:IRIS_models\logistic_regression_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\nusvc_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\nusvc_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\nusvc_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\nusvc_classifier_iris.onnx  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) 14 model:IRIS_models\nusvc_classifier_iris.onnx   accuracy: 0.9733
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\k-nn_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\k-nn_classifier_iris.onnx  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\k-nn_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\k-nn_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\k-nn_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) 15 model:IRIS_models\k-nn_classifier_iris.onnx   accuracy: 0.9667
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linearsvc_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linearsvc_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linearsvc_classifier_iris.onnx  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linearsvc_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\linearsvc_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 16 model:IRIS_models\linearsvc_classifier_iris.onnx   accuracy: 0.9667
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\adaboost_classifier_iris.onnx  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) 17 model:IRIS_models\adaboost_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\passive-aggressive_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 18 model:IRIS_models\passive-aggressive_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 19 model:IRIS_models\gaussian_naive_bayes_classifier_iris.onnx   accuracy: 0.9600
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=69 FAILED [class=2, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=132 FAILED [class=1, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) 20 model:IRIS_models\multinomial_naive_bayes_classifier_iris.onnx   accuracy: 0.9533
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=65 FAILED [class=0, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=86 FAILED [class=0, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\sgd_classifier_iris.onnx  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) 21 model:IRIS_models\sgd_classifier_iris.onnx   accuracy: 0.9333
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=102 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=122 FAILED [class=1, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=128 FAILED [class=1, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx  sample=143 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) 22 model:IRIS_models\categorical_naive_bayes_classifier_iris.onnx   accuracy: 0.9333
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifier_iris.onnx  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) 23 model:IRIS_models\ridge_classifier_iris.onnx   accuracy: 0.8533
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\ridge_classifiercv_iris.onnx  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) 24 model:IRIS_models\ridge_classifiercv_iris.onnx   accuracy: 0.8533
Iris_AllClassifiers (EURUSD,H1) ONNX: Removing initializer 'class_log_prior'. It is not used by any node and should be removed from the model.
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=51 FAILED [class=2, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=52 FAILED [class=2, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=53 FAILED [class=2, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=54 FAILED [class=2, true class=1] features=(5.50,2.30,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=55 FAILED [class=2, true class=1] features=(6.50,2.80,4.60,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=56 FAILED [class=2, true class=1] features=(5.70,2.80,4.50,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=57 FAILED [class=2, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=58 FAILED [class=2, true class=1] features=(4.90,2.40,3.30,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=59 FAILED [class=2, true class=1] features=(6.60,2.90,4.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=60 FAILED [class=2, true class=1] features=(5.20,2.70,3.90,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=61 FAILED [class=2, true class=1] features=(5.00,2.00,3.50,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=62 FAILED [class=2, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=63 FAILED [class=2, true class=1] features=(6.00,2.20,4.00,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=64 FAILED [class=2, true class=1] features=(6.10,2.90,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=65 FAILED [class=2, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=66 FAILED [class=2, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=67 FAILED [class=2, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=68 FAILED [class=2, true class=1] features=(5.80,2.70,4.10,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=69 FAILED [class=2, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=70 FAILED [class=2, true class=1] features=(5.60,2.50,3.90,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=71 FAILED [class=2, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=72 FAILED [class=2, true class=1] features=(6.10,2.80,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=73 FAILED [class=2, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=74 FAILED [class=2, true class=1] features=(6.10,2.80,4.70,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=75 FAILED [class=2, true class=1] features=(6.40,2.90,4.30,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=76 FAILED [class=2, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=77 FAILED [class=2, true class=1] features=(6.80,2.80,4.80,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=78 FAILED [class=2, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=79 FAILED [class=2, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=80 FAILED [class=0, true class=1] features=(5.70,2.60,3.50,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=81 FAILED [class=2, true class=1] features=(5.50,2.40,3.80,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=82 FAILED [class=2, true class=1] features=(5.50,2.40,3.70,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=83 FAILED [class=2, true class=1] features=(5.80,2.70,3.90,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=84 FAILED [class=2, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=85 FAILED [class=2, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=86 FAILED [class=2, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=87 FAILED [class=2, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=88 FAILED [class=2, true class=1] features=(6.30,2.30,4.40,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=89 FAILED [class=2, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=90 FAILED [class=2, true class=1] features=(5.50,2.50,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=91 FAILED [class=2, true class=1] features=(5.50,2.60,4.40,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=92 FAILED [class=2, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=93 FAILED [class=2, true class=1] features=(5.80,2.60,4.00,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=94 FAILED [class=2, true class=1] features=(5.00,2.30,3.30,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=95 FAILED [class=2, true class=1] features=(5.60,2.70,4.20,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=96 FAILED [class=2, true class=1] features=(5.70,3.00,4.20,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=97 FAILED [class=2, true class=1] features=(5.70,2.90,4.20,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=98 FAILED [class=2, true class=1] features=(6.20,2.90,4.30,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=99 FAILED [class=0, true class=1] features=(5.10,2.50,3.00,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\complement_naive_bayes_classifier_iris.onnx  sample=100 FAILED [class=2, true class=1] features=(5.70,2.80,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) 25 model:IRIS_models\complement_naive_bayes_classifier_iris.onnx   accuracy: 0.6667
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=2 FAILED [class=1, true class=0] features=(4.90,3.00,1.40,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=9 FAILED [class=1, true class=0] features=(4.40,2.90,1.40,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=10 FAILED [class=1, true class=0] features=(4.90,3.10,1.50,0.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=13 FAILED [class=1, true class=0] features=(4.80,3.00,1.40,0.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=21 FAILED [class=1, true class=0] features=(5.40,3.40,1.70,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=26 FAILED [class=1, true class=0] features=(5.00,3.00,1.60,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=31 FAILED [class=1, true class=0] features=(4.80,3.10,1.60,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=35 FAILED [class=1, true class=0] features=(4.90,3.10,1.50,0.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=42 FAILED [class=1, true class=0] features=(4.50,2.30,1.30,0.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=46 FAILED [class=1, true class=0] features=(4.80,3.00,1.40,0.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=102 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=103 FAILED [class=1, true class=2] features=(7.10,3.00,5.90,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=104 FAILED [class=1, true class=2] features=(6.30,2.90,5.60,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=105 FAILED [class=1, true class=2] features=(6.50,3.00,5.80,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=106 FAILED [class=1, true class=2] features=(7.60,3.00,6.60,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=107 FAILED [class=1, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=108 FAILED [class=1, true class=2] features=(7.30,2.90,6.30,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=109 FAILED [class=1, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=110 FAILED [class=1, true class=2] features=(7.20,3.60,6.10,2.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=111 FAILED [class=1, true class=2] features=(6.50,3.20,5.10,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=112 FAILED [class=1, true class=2] features=(6.40,2.70,5.30,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=113 FAILED [class=1, true class=2] features=(6.80,3.00,5.50,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=114 FAILED [class=1, true class=2] features=(5.70,2.50,5.00,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=116 FAILED [class=1, true class=2] features=(6.40,3.20,5.30,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=117 FAILED [class=1, true class=2] features=(6.50,3.00,5.50,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=118 FAILED [class=1, true class=2] features=(7.70,3.80,6.70,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=119 FAILED [class=1, true class=2] features=(7.70,2.60,6.90,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=120 FAILED [class=1, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=121 FAILED [class=1, true class=2] features=(6.90,3.20,5.70,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=122 FAILED [class=1, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=123 FAILED [class=1, true class=2] features=(7.70,2.80,6.70,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=124 FAILED [class=1, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=125 FAILED [class=1, true class=2] features=(6.70,3.30,5.70,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=126 FAILED [class=1, true class=2] features=(7.20,3.20,6.00,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=127 FAILED [class=1, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=128 FAILED [class=1, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=129 FAILED [class=1, true class=2] features=(6.40,2.80,5.60,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=130 FAILED [class=1, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=131 FAILED [class=1, true class=2] features=(7.40,2.80,6.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=132 FAILED [class=1, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=133 FAILED [class=1, true class=2] features=(6.40,2.80,5.60,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=134 FAILED [class=1, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=135 FAILED [class=1, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=136 FAILED [class=1, true class=2] features=(7.70,3.00,6.10,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=137 FAILED [class=1, true class=2] features=(6.30,3.40,5.60,2.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=138 FAILED [class=1, true class=2] features=(6.40,3.10,5.50,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=139 FAILED [class=1, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=140 FAILED [class=1, true class=2] features=(6.90,3.10,5.40,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=141 FAILED [class=1, true class=2] features=(6.70,3.10,5.60,2.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=142 FAILED [class=1, true class=2] features=(6.90,3.10,5.10,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=143 FAILED [class=1, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=144 FAILED [class=1, true class=2] features=(6.80,3.20,5.90,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=145 FAILED [class=1, true class=2] features=(6.70,3.30,5.70,2.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=146 FAILED [class=1, true class=2] features=(6.70,3.00,5.20,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=147 FAILED [class=1, true class=2] features=(6.30,2.50,5.00,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=148 FAILED [class=1, true class=2] features=(6.50,3.00,5.20,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=149 FAILED [class=1, true class=2] features=(6.20,3.40,5.40,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\perceptron_classifier_iris.onnx  sample=150 FAILED [class=1, true class=2] features=(5.90,3.00,5.10,1.80]
Iris_AllClassifiers (EURUSD,H1) 26 model:IRIS_models\perceptron_classifier_iris.onnx   accuracy: 0.6133
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=51 FAILED [class=0, true class=1] features=(7.00,3.20,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=52 FAILED [class=0, true class=1] features=(6.40,3.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=53 FAILED [class=0, true class=1] features=(6.90,3.10,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=54 FAILED [class=0, true class=1] features=(5.50,2.30,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=55 FAILED [class=0, true class=1] features=(6.50,2.80,4.60,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=56 FAILED [class=0, true class=1] features=(5.70,2.80,4.50,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=57 FAILED [class=0, true class=1] features=(6.30,3.30,4.70,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=58 FAILED [class=0, true class=1] features=(4.90,2.40,3.30,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=59 FAILED [class=0, true class=1] features=(6.60,2.90,4.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=60 FAILED [class=0, true class=1] features=(5.20,2.70,3.90,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=61 FAILED [class=0, true class=1] features=(5.00,2.00,3.50,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=62 FAILED [class=0, true class=1] features=(5.90,3.00,4.20,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=63 FAILED [class=0, true class=1] features=(6.00,2.20,4.00,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=64 FAILED [class=0, true class=1] features=(6.10,2.90,4.70,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=65 FAILED [class=0, true class=1] features=(5.60,2.90,3.60,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=66 FAILED [class=0, true class=1] features=(6.70,3.10,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=67 FAILED [class=0, true class=1] features=(5.60,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=68 FAILED [class=0, true class=1] features=(5.80,2.70,4.10,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=69 FAILED [class=0, true class=1] features=(6.20,2.20,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=70 FAILED [class=0, true class=1] features=(5.60,2.50,3.90,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=71 FAILED [class=0, true class=1] features=(5.90,3.20,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=72 FAILED [class=0, true class=1] features=(6.10,2.80,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=73 FAILED [class=0, true class=1] features=(6.30,2.50,4.90,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=74 FAILED [class=0, true class=1] features=(6.10,2.80,4.70,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=75 FAILED [class=0, true class=1] features=(6.40,2.90,4.30,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=76 FAILED [class=0, true class=1] features=(6.60,3.00,4.40,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=77 FAILED [class=0, true class=1] features=(6.80,2.80,4.80,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=78 FAILED [class=0, true class=1] features=(6.70,3.00,5.00,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=79 FAILED [class=0, true class=1] features=(6.00,2.90,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=80 FAILED [class=0, true class=1] features=(5.70,2.60,3.50,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=81 FAILED [class=0, true class=1] features=(5.50,2.40,3.80,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=82 FAILED [class=0, true class=1] features=(5.50,2.40,3.70,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=83 FAILED [class=0, true class=1] features=(5.80,2.70,3.90,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=84 FAILED [class=0, true class=1] features=(6.00,2.70,5.10,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=85 FAILED [class=0, true class=1] features=(5.40,3.00,4.50,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=86 FAILED [class=0, true class=1] features=(6.00,3.40,4.50,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=87 FAILED [class=0, true class=1] features=(6.70,3.10,4.70,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=88 FAILED [class=0, true class=1] features=(6.30,2.30,4.40,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=89 FAILED [class=0, true class=1] features=(5.60,3.00,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=90 FAILED [class=0, true class=1] features=(5.50,2.50,4.00,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=91 FAILED [class=0, true class=1] features=(5.50,2.60,4.40,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=92 FAILED [class=0, true class=1] features=(6.10,3.00,4.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=93 FAILED [class=0, true class=1] features=(5.80,2.60,4.00,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=94 FAILED [class=0, true class=1] features=(5.00,2.30,3.30,1.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=95 FAILED [class=0, true class=1] features=(5.60,2.70,4.20,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=96 FAILED [class=0, true class=1] features=(5.70,3.00,4.20,1.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=97 FAILED [class=0, true class=1] features=(5.70,2.90,4.20,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=98 FAILED [class=0, true class=1] features=(6.20,2.90,4.30,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=99 FAILED [class=0, true class=1] features=(5.10,2.50,3.00,1.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=100 FAILED [class=0, true class=1] features=(5.70,2.80,4.10,1.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=101 FAILED [class=0, true class=2] features=(6.30,3.30,6.00,2.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=102 FAILED [class=0, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=103 FAILED [class=0, true class=2] features=(7.10,3.00,5.90,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=104 FAILED [class=0, true class=2] features=(6.30,2.90,5.60,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=105 FAILED [class=0, true class=2] features=(6.50,3.00,5.80,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=106 FAILED [class=0, true class=2] features=(7.60,3.00,6.60,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=107 FAILED [class=0, true class=2] features=(4.90,2.50,4.50,1.70]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=108 FAILED [class=0, true class=2] features=(7.30,2.90,6.30,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=109 FAILED [class=0, true class=2] features=(6.70,2.50,5.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=110 FAILED [class=0, true class=2] features=(7.20,3.60,6.10,2.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=111 FAILED [class=0, true class=2] features=(6.50,3.20,5.10,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=112 FAILED [class=0, true class=2] features=(6.40,2.70,5.30,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=113 FAILED [class=0, true class=2] features=(6.80,3.00,5.50,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=114 FAILED [class=0, true class=2] features=(5.70,2.50,5.00,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=115 FAILED [class=0, true class=2] features=(5.80,2.80,5.10,2.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=116 FAILED [class=0, true class=2] features=(6.40,3.20,5.30,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=117 FAILED [class=0, true class=2] features=(6.50,3.00,5.50,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=118 FAILED [class=0, true class=2] features=(7.70,3.80,6.70,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=119 FAILED [class=0, true class=2] features=(7.70,2.60,6.90,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=120 FAILED [class=0, true class=2] features=(6.00,2.20,5.00,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=121 FAILED [class=0, true class=2] features=(6.90,3.20,5.70,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=122 FAILED [class=0, true class=2] features=(5.60,2.80,4.90,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=123 FAILED [class=0, true class=2] features=(7.70,2.80,6.70,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=124 FAILED [class=0, true class=2] features=(6.30,2.70,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=125 FAILED [class=0, true class=2] features=(6.70,3.30,5.70,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=126 FAILED [class=0, true class=2] features=(7.20,3.20,6.00,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=127 FAILED [class=0, true class=2] features=(6.20,2.80,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=128 FAILED [class=0, true class=2] features=(6.10,3.00,4.90,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=129 FAILED [class=0, true class=2] features=(6.40,2.80,5.60,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=130 FAILED [class=0, true class=2] features=(7.20,3.00,5.80,1.60]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=131 FAILED [class=0, true class=2] features=(7.40,2.80,6.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=132 FAILED [class=0, true class=2] features=(7.90,3.80,6.40,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=133 FAILED [class=0, true class=2] features=(6.40,2.80,5.60,2.20]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=134 FAILED [class=0, true class=2] features=(6.30,2.80,5.10,1.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=135 FAILED [class=0, true class=2] features=(6.10,2.60,5.60,1.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=136 FAILED [class=0, true class=2] features=(7.70,3.00,6.10,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=137 FAILED [class=0, true class=2] features=(6.30,3.40,5.60,2.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=138 FAILED [class=0, true class=2] features=(6.40,3.10,5.50,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=139 FAILED [class=0, true class=2] features=(6.00,3.00,4.80,1.80]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=140 FAILED [class=0, true class=2] features=(6.90,3.10,5.40,2.10]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=141 FAILED [class=0, true class=2] features=(6.70,3.10,5.60,2.40]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=142 FAILED [class=0, true class=2] features=(6.90,3.10,5.10,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=143 FAILED [class=0, true class=2] features=(5.80,2.70,5.10,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=144 FAILED [class=0, true class=2] features=(6.80,3.20,5.90,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=145 FAILED [class=0, true class=2] features=(6.70,3.30,5.70,2.50]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=146 FAILED [class=0, true class=2] features=(6.70,3.00,5.20,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=147 FAILED [class=0, true class=2] features=(6.30,2.50,5.00,1.90]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=148 FAILED [class=0, true class=2] features=(6.50,3.00,5.20,2.00]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=149 FAILED [class=0, true class=2] features=(6.20,3.40,5.40,2.30]
Iris_AllClassifiers (EURUSD,H1) model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx  sample=150 FAILED [class=0, true class=2] features=(5.90,3.00,5.10,1.80]
Iris_AllClassifiers (EURUSD,H1) 27 model:IRIS_models\bernoulli_naive_bayes_classifier_iris.onnx   accuracy: 0.3333


2.29. Modelos de classificação do Scikit-Learn que não puderam ser convertidos para ONNX

Algumas modelos de classificação não puderam ser convertidos para o formato ONNX devido a erros na função convert_sklearn.


2.29.1. DummyClassifier

O DummyClassifier é um classificador na biblioteca Scikit-learn, que é usado como um modelo básico simples para tarefas de classificação. É destinado a testes e avaliação do desempenho de outros modelos de classificação mais complexos.

Como funciona:

O DummyClassifier opera de maneira muito simples - ele faz previsões aleatórias ou ingênuas, sem levar em conta os dados de entrada. As possíveis estratégias (a estratégia é selecionada através do parâmetro strategy):

  1. most_frequent (Classe mais frequente): Esta estratégia sempre prevê a classe que aparece com mais frequência no conjunto de dados de treinamento. Isso pode ser útil em situações onde as classes estão desbalanceadas e a classe dominante precisa ser prevista.
  2. stratified (Estratificado): Essa estratégia tenta fazer previsões que correspondam à distribuição de classes no conjunto de dados de treinamento. Ela usa um palpite aleatório, mas leva em conta as proporções das classes.
  3. uniform (Distribuição uniforme): Essa estratégia faz previsões aleatórias com igual probabilidade para cada classe. É útil se as classes estão equilibradas e você quer testar como seu modelo se comporta, em média.

Possibilidades:

Limitações:

Em geral, o DummyClassifier é uma ferramenta útil para testes iniciais e avaliação de modelos de classificação, mas seu uso é limitado em tarefas complexas e não pode substituir algoritmos de classificação mais avançados.

2.29.1.1. Código de criação do modelo DummyClassifier

# Iris_DummyClassifier.py
# The code demonstrates the process of training DummyClassifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.dummy import DummyClassifier
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a DummyClassifier model with the strategy "most_frequent"
dummy_classifier = DummyClassifier(strategy="most_frequent")

# train the model on the entire dataset
dummy_classifier.fit(X, y)

# predict classes for the entire dataset
y_pred = dummy_classifier.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of DummyClassifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(dummy_classifier, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "dummy_classifier_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print model path
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of DummyClassifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of DummyClassifier model: 0.3333333333333333
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       0.33      1.00      0.50        50
Python               1       0.00      0.00      0.00        50
Python               2       0.00      0.00      0.00        50
Python    
Python        accuracy                           0.33       150
Python       macro avg       0.11      0.33      0.17       150
Python    weighted avg       0.11      0.33      0.17       150
Python   

A modelo foi construído e executado no Scikit-learn, mas erros ocorreram durante a conversão para ONNX.

Na aba Errors, são exibidas mensagens de erro sobre a conversão do modelo para o formato ONNX:

    onnx_model = convert_sklearn(dummy_classifier, initial_types=initial_type, target_opset=12)    Iris_DummyClassifier.py    44    1
    onnx_model = convert_topology(    convert.py    208    1
    topology.convert_operators(container=container, verbose=verbose)    _topology.py    1532    1
    self.call_shape_calculator(operator)    _topology.py    1348    1
    operator.infer_types()    _topology.py    1163    1
    raise MissingShapeCalculator(    _topology.py    629    1
skl2onnx.common.exceptions.MissingShapeCalculator: Unable to find a shape calculator for type '<class 'sklearn.dummy.DummyClassifier'>'.    _topology.py    629    1
It usually means the pipeline being converted contains a    _topology.py    629    1
transformer or a predictor with no corresponding converter    _topology.py    629    1
implemented in sklearn-onnx. If the converted is implemented    _topology.py    629    1
in another library, you need to register    _topology.py    629    1
the converted so that it can be used by sklearn-onnx (function    _topology.py    629    1
update_registered_converter). If the model is not yet covered    _topology.py    629    1
by sklearn-onnx, you may raise an issue to    _topology.py    629    1
https://github.com/onnx/sklearn-onnx/issues    _topology.py    629    1
to get the converter implemented or even contribute to the    _topology.py    629    1
project. If the model is a custom model, a new converter must    _topology.py    629    1
be implemented. Examples can be found in the gallery.    _topology.py    629    1
Iris_DummyClassifier.py finished in 2071 ms        19    1

Assim, o modelo DummyClassifier não pôde ser convertido para ONNX.


2.29.2. GaussianProcessClassifier

O GaussianProcessClassifier é um classificador que utiliza um processo gaussiano para tarefas de classificação. Ele pertence à família de modelos que usam processos gaussianos e pode ser útil em tarefas onde uma estimativa probabilística das classes é necessária.

Como funciona:

  1. O GaussianProcessClassifier usa um processo gaussiano para modelar o mapeamento do espaço de características para o espaço de estimativas probabilísticas de classes.
  2. Ele constrói um modelo probabilístico para cada classe, estimando a probabilidade de um ponto pertencer a cada classe.
  3. Na classificação, ele escolhe a classe com a maior probabilidade para um determinado ponto.

Possibilidades:

Limitações:

O GaussianProcessClassifier é útil em tarefas onde a estimativa probabilística de classes é importante e quando os custos computacionais são gerenciáveis. Caso contrário, para tarefas de classificação em grandes dados ou com estruturas de dados simples, podem ser mais apropriados algoritmos de classificação.

2.29.2.1. Código de criação do modelo GaussianProcessClassifier

# Iris_GaussianProcessClassifier.py
# The code demonstrates the process of training Iris_GaussianProcess Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a GaussianProcessClassifier model with an RBF kernel
kernel = 1.0 * RBF(1.0)
gpc_model = GaussianProcessClassifier(kernel=kernel)

# train the model on the entire dataset
gpc_model.fit(X, y)

# predict classes for the entire dataset
y_pred = gpc_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of GaussianProcessClassifier model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(gpc_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "gpc_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print the path to the model
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of GaussianProcessClassifier model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of GaussianProcessClassifier model: 0.9866666666666667
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.98      0.98      0.98        50
Python               2       0.98      0.98      0.98        50
Python    
Python        accuracy                           0.99       150
Python       macro avg       0.99      0.99      0.99       150
Python    weighted avg       0.99      0.99      0.99       150
Python   

Erros na aba Errors:

    onnx_model = convert_sklearn(gpc_model, initial_types=initial_type, target_opset=12)    Iris_GaussianProcessClassifier.py    46    1
    onnx_model = convert_topology(    convert.py    208    1
    topology.convert_operators(container=container, verbose=verbose)    _topology.py    1532    1
    self.call_converter(operator, container, verbose=verbose)    _topology.py    1349    1
    conv(self.scopes[0], operator, container)    _topology.py    1132    1
    return self._fct(*args)    _registration.py    27    1
    raise NotImplementedError("Only binary classification is iplemented.")    gaussian_process.py    247    1
NotImplementedError: Only binary classification is iplemented.    gaussian_process.py    247    1
Iris_GaussianProcessClassifier.py finished in 4004 ms        9    1

Assim, também não foi possível converter o modelo GaussianProcessClassifier para ONNX.


2.29.3. LabelPropagation Classifier

LabelPropagation é um método de aprendizado semi-supervisionado usado para tarefas de classificação. A ideia principal deste método é propagar rótulos (classes) de objetos rotulados para objetos não rotulados em uma estrutura de dados em grafo.

Processo de trabalho do LabelPropagation:

  1. Começa com a construção de um grafo, onde os nós representam objetos de dados e as arestas entre nós refletem a semelhança ou proximidade entre os objetos.
  2. Colocação inicial dos rótulos: Objetos rotulados recebem seus rótulos, enquanto objetos não rotulados começam com algum rótulo indefinido.
  3. Os rótulos são propagados pelo grafo: Os rótulos de objetos rotulados são propagados para objetos não rotulados, considerando a semelhança entre os objetos. Essa semelhança pode ser definida de várias maneiras, por exemplo, com base nos vizinhos mais próximos no grafo.
  4. Processo iterativo: Os rótulos podem mudar ao longo de várias iterações, onde cada iteração atualiza os rótulos em objetos não rotulados com base nos rótulos atuais e na semelhança entre os objetos.
  5. Estabilização: O processo continua até que os rótulos se estabilizem ou seja atendido um certo critério de parada.

Vantagens do LabelPropagation:

Limitações do LabelPropagation:

LabelPropagation é um método poderoso, mas requer um ajuste cuidadoso dos parâmetros e análise da estrutura de grafo dos dados para alcançar bons resultados.

2.29.3.1. Código de criação do modelo LabelPropagationClassifier

# Iris_LabelPropagationClassifier.py

# The code demonstrates the process of training LabelPropagation Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.semi_supervised import LabelPropagation
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
from sys import argv

# define the path for saving the model
data_path = argv[0]
last_index = data_path.rfind("\\") + 1
data_path = data_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a LabelPropagation model
lp_model = LabelPropagation()

# train the model on the entire dataset
lp_model.fit(X, y)

# predict classes for the entire dataset
y_pred = lp_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of LabelPropagation model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(lp_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "lp_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print the path to the model
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of LabelPropagation model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of LabelPropagation model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python   

O modelo foi construído, porém, ao converter para o formato ONNX, ocorreram erros.

Erros na aba Errors:

    onnx_model = convert_sklearn(lp_model, initial_types=initial_type, target_opset=12)    Iris_LabelPropagation.py    44    1
    onnx_model = convert_topology(    convert.py    208    1
    topology.convert_operators(container=container, verbose=verbose)    _topology.py    1532    1
    self.call_shape_calculator(operator)    _topology.py    1348    1
    operator.infer_types()    _topology.py    1163    1
    raise MissingShapeCalculator(    _topology.py    629    1
skl2onnx.common.exceptions.MissingShapeCalculator: Unable to find a shape calculator for type '<class 'sklearn.semi_supervised._label_propagation.LabelPropagation'>'.    _topology.py    629    1
It usually means the pipeline being converted contains a    _topology.py    629    1
transformer or a predictor with no corresponding converter    _topology.py    629    1
implemented in sklearn-onnx. If the converted is implemented    _topology.py    629    1
in another library, you need to register    _topology.py    629    1
the converted so that it can be used by sklearn-onnx (function    _topology.py    629    1
update_registered_converter). If the model is not yet covered    _topology.py    629    1
by sklearn-onnx, you may raise an issue to    _topology.py    629    1
https://github.com/onnx/sklearn-onnx/issues    _topology.py    629    1
to get the converter implemented or even contribute to the    _topology.py    629    1
project. If the model is a custom model, a new converter must    _topology.py    629    1
be implemented. Examples can be found in the gallery.    _topology.py    629    1
Iris_LabelPropagation.py finished in 2064 ms        19    1

Assim, não foi possível converter o modelo LabelPropagation Classifier para ONNX.


2.29.4. LabelSpreading Classifier

LabelSpreading é um método de aprendizado semi-supervisionado usado para tarefas de classificação. Ele se baseia na ideia de propagar rótulos (classes) de objetos rotulados para objetos não rotulados em uma estrutura de dados em grafo, similar ao LabelPropagation. No entanto, o LabelSpreading inclui estabilização e regularização adicionais do processo de propagação de rótulos.

Processo de trabalho do LabelSpreading:

  1. Começa com a construção de um grafo, onde os nós representam objetos de dados e as arestas entre nós refletem a semelhança ou proximidade entre os objetos.
  2. Colocação inicial dos rótulos: Objetos rotulados recebem seus rótulos, enquanto objetos não rotulados começam com algum rótulo indefinido.
  3. Os rótulos são propagados pelo grafo: Os rótulos de objetos rotulados são propagados para objetos não rotulados, considerando a semelhança entre os objetos.
  4. Regularização e Estabilização: O LabelSpreading inclui uma regularização, que ajuda a estabilizar o processo de propagação de rótulos e reduzir o sobreajuste. Isso é alcançado levando em consideração não apenas a semelhança entre objetos, mas também a discrepância entre os rótulos dos objetos vizinhos.
  5. Processo iterativo: Os rótulos podem mudar ao longo de várias iterações, onde cada iteração atualiza os rótulos em objetos não rotulados com base nos rótulos atuais e na regularização.
  6. Estabilização: O processo continua até que os rótulos se estabilizem ou seja atendido um certo critério de parada.

Vantagens do LabelSpreading:

Limitações do LabelSpreading:

O LabelSpreading é um método que também requer um ajuste cuidadoso e pode ser uma ferramenta poderosa para o uso de dados não rotulados em tarefas de classificação.

2.29.4.1. Código de criação do modelo LabelSpreadingClassifier

# Iris_LabelSpreadingClassifier.py
# The code demonstrates the process of training LabelSpreading Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.


# import necessary libraries
from sklearn import datasets
from sklearn.semi_supervised import LabelSpreading
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
import sys

# get the script path
script_path = sys.argv[0]
last_index = script_path.rfind("\\") + 1
data_path = script_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a LabelSpreading model
ls_model = LabelSpreading()

# train the model on the entire dataset
ls_model.fit(X, y)

# predict classes for the entire dataset
y_pred = ls_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of LabelSpreading model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(ls_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "ls_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print the path to the model
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of LabelSpreading model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of LabelSpreading model: 1.0
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       1.00      1.00      1.00        50
Python               2       1.00      1.00      1.00        50
Python    
Python        accuracy                           1.00       150
Python       macro avg       1.00      1.00      1.00       150
Python    weighted avg       1.00      1.00      1.00       150
Python   

Na aba Errors, são exibidas informações sobre erros de conversão para ONNX.

    onnx_model = convert_sklearn(ls_model, initial_types=initial_type, target_opset=12)    Iris_LabelSpreading.py    45    1
    onnx_model = convert_topology(    convert.py    208    1
    topology.convert_operators(container=container, verbose=verbose)    _topology.py    1532    1
    self.call_shape_calculator(operator)    _topology.py    1348    1
    operator.infer_types()    _topology.py    1163    1
    raise MissingShapeCalculator(    _topology.py    629    1
skl2onnx.common.exceptions.MissingShapeCalculator: Unable to find a shape calculator for type '<class 'sklearn.semi_supervised._label_propagation.LabelSpreading'>'.    _topology.py    629    1
It usually means the pipeline being converted contains a    _topology.py    629    1
transformer or a predictor with no corresponding converter    _topology.py    629    1
implemented in sklearn-onnx. If the converted is implemented    _topology.py    629    1
in another library, you need to register    _topology.py    629    1
the converted so that it can be used by sklearn-onnx (function    _topology.py    629    1
update_registered_converter). If the model is not yet covered    _topology.py    629    1
by sklearn-onnx, you may raise an issue to    _topology.py    629    1
https://github.com/onnx/sklearn-onnx/issues    _topology.py    629    1
to get the converter implemented or even contribute to the    _topology.py    629    1
project. If the model is a custom model, a new converter must    _topology.py    629    1
be implemented. Examples can be found in the gallery.    _topology.py    629    1
Iris_LabelSpreading.py finished in 2032 ms        19    1

Não foi possível converter o modelo LabelPropagation Classifier para ONNX.


2.29.5. NearestCentroid Classifier

O NearestCentroid é um método de classificação baseado na ideia de determinar o centroide para cada classe e classificar os objetos com base no centroide mais próximo. Este método é adequado para tarefas com múltiplas classes e funciona bem em conjuntos de dados com classes linearmente separáveis.

Processo de trabalho do NearestCentroid:

  1. Para cada classe, calcula-se o centroide, que representa o valor médio das características de todos os objetos pertencentes a essa classe. Isso pode ser feito calculando a média de cada característica para os objetos de uma dada classe.
  2. Na classificação de um novo objeto, calcula-se o seu centroide mais próximo entre os centroides de todas as classes.
  3. O novo objeto é atribuído à classe cujo centroide está mais próximo dele no espaço métrico.

Vantagens do NearestCentroid:

Limitações do NearestCentroid:

O NearestCentroid é um método de classificação simples e interpretável que pode ser útil em certos cenários, especialmente quando as classes são linearmente separáveis e não há valores atípicos nos dados.

2.29.5.1.Código de criação do modelo NearestCentroid

# Iris_NearestCentroidClassifier.py
# The code demonstrates the process of training NearestCentroid Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.neighbors import NearestCentroid
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
import sys

# get the script path
script_path = sys.argv[0]
last_index = script_path.rfind("\\") + 1
data_path = script_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a NearestCentroid model
nc_model = NearestCentroid()

# train the model on the entire dataset
nc_model.fit(X, y)

# predict classes for the entire dataset
y_pred = nc_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of NearestCentroid model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(nc_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "nc_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print the path to the model
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of NearestCentroid model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of NearestCentroid model: 0.9266666666666666
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.87      0.92      0.89        50
Python               2       0.91      0.86      0.89        50
Python    
Python        accuracy                           0.93       150
Python       macro avg       0.93      0.93      0.93       150
Python    weighted avg       0.93      0.93      0.93       150
Python   

Erros na aba Errors:

    onnx_model = convert_sklearn(nc_model, initial_types=initial_type, target_opset=12)    Iris_NearestCentroid.py    45    1
    onnx_model = convert_topology(    convert.py    208    1
    topology.convert_operators(container=container, verbose=verbose)    _topology.py    1532    1
    self.call_shape_calculator(operator)    _topology.py    1348    1
    operator.infer_types()    _topology.py    1163    1
    raise MissingShapeCalculator(    _topology.py    629    1
skl2onnx.common.exceptions.MissingShapeCalculator: Unable to find a shape calculator for type '<class 'sklearn.neighbors._nearest_centroid.NearestCentroid'>'.    _topology.py    629    1
It usually means the pipeline being converted contains a    _topology.py    629    1
transformer or a predictor with no corresponding converter    _topology.py    629    1
implemented in sklearn-onnx. If the converted is implemented    _topology.py    629    1
in another library, you need to register    _topology.py    629    1
the converted so that it can be used by sklearn-onnx (function    _topology.py    629    1
update_registered_converter). If the model is not yet covered    _topology.py    629    1
by sklearn-onnx, you may raise an issue to    _topology.py    629    1
https://github.com/onnx/sklearn-onnx/issues    _topology.py    629    1
to get the converter implemented or even contribute to the    _topology.py    629    1
project. If the model is a custom model, a new converter must    _topology.py    629    1
be implemented. Examples can be found in the gallery.    _topology.py    629    1
Iris_NearestCentroid.py finished in 2131 ms        19    1
Também não foi possível converter o modelo NearestCentroid Classifier para ONNX.


2.29.6. Quadratic Discriminant Analysis Classifier

A Análise Discriminante Quadrática (QDA) é um método de classificação que utiliza um modelo probabilístico para separar dados em classes. É uma generalização da análise discriminante linear (LDA) e permite considerar a covariância das características dentro de cada classe. A ideia principal do QDA é modelar a distribuição das características para cada classe e, em seguida, usar essa distribuição para classificar novos objetos.

Processo de trabalho do QDA:

  1. Para cada classe, são calculados parâmetros de distribuição, como a média e a matriz de covariância das características. Esses parâmetros são estimados com base nos dados de treinamento para cada classe.
  2. Com os parâmetros obtidos, pode-se calcular as densidades de probabilidade para cada classe usando a distribuição normal multivariada (ou função de distribuição quadrática).
  3. Na classificação de um novo objeto, são calculados os valores de densidade de probabilidade para cada classe, e o objeto é atribuído à classe com a maior probabilidade.

Vantagens da Análise Discriminante Quadrática (QDA):

Limitações da Análise Discriminante Quadrática (QDA):

A Análise Discriminante Quadrática (QDA) é um método de classificação poderoso, adequado para vários tipos de dados e capaz de considerar a covariância das características dentro das classes. No entanto, também possui limitações que devem ser consideradas ao utilizá-lo.

2.29.6.1.Código de criação do modelo Quadratic Discriminant Analysis

# Iris_QuadraticDiscriminantAnalysisClassifier.py
# The code demonstrates the process of training Quadratic Discriminant Analysis Classifier model on the Iris dataset, exporting it to ONNX format, and making predictions using the ONNX model.
# It also evaluates the accuracy of both the original model and the ONNX model.
# Copyright 2023, MetaQuotes Ltd.
# https://www.mql5.com

# import necessary libraries
from sklearn import datasets
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.metrics import accuracy_score, classification_report
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as ort
import numpy as np
import sys

# get the script path
script_path = sys.argv[0]
last_index = script_path.rfind("\\") + 1
data_path = script_path[0:last_index]

# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# create a QuadraticDiscriminantAnalysis model
qda_model = QuadraticDiscriminantAnalysis()

# train the model on the entire dataset
qda_model.fit(X, y)

# predict classes for the entire dataset
y_pred = qda_model.predict(X)

# evaluate the model's accuracy
accuracy = accuracy_score(y, y_pred)
print("Accuracy of Quadratic Discriminant Analysis model:", accuracy)

# display the classification report
print("\nClassification Report:\n", classification_report(y, y_pred))

# define the input data type
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]

# export the model to ONNX format with float data type
onnx_model = convert_sklearn(qda_model, initial_types=initial_type, target_opset=12)

# save the model to a file
onnx_filename = data_path + "qda_iris.onnx"
with open(onnx_filename, "wb") as f:
    f.write(onnx_model.SerializeToString())

# print the path to the model
print(f"Model saved to {onnx_filename}")

# load the ONNX model and make predictions
onnx_session = ort.InferenceSession(onnx_filename)
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name

# display information about input tensors in ONNX
print("\nInformation about input tensors in ONNX:")
for i, input_tensor in enumerate(onnx_session.get_inputs()):
    print(f"{i + 1}. Name: {input_tensor.name}, Data Type: {input_tensor.type}, Shape: {input_tensor.shape}")

# display information about output tensors in ONNX
print("\nInformation about output tensors in ONNX:")
for i, output_tensor in enumerate(onnx_session.get_outputs()):
    print(f"{i + 1}. Name: {output_tensor.name}, Data Type: {output_tensor.type}, Shape: {output_tensor.shape}")

# convert data to floating-point format (float32)
X_float32 = X.astype(np.float32)

# predict classes for the entire dataset using ONNX
y_pred_onnx = onnx_session.run([output_name], {input_name: X_float32})[0]

# evaluate the accuracy of the ONNX model
accuracy_onnx = accuracy_score(y, y_pred_onnx)
print("\nAccuracy of Quadratic Discriminant Analysis model in ONNX format:", accuracy_onnx)

Resultado:

Python    Accuracy of Quadratic Discriminant Analysis model: 0.98
Python    
Python    Classification Report:
Python                   precision    recall  f1-score   support
Python    
Python               0       1.00      1.00      1.00        50
Python               1       0.98      0.96      0.97        50
Python               2       0.96      0.98      0.97        50
Python    
Python        accuracy                           0.98       150
Python       macro avg       0.98      0.98      0.98       150
Python    weighted avg       0.98      0.98      0.98       150
Python    
Python    Model saved to C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\qda_iris.onnx

Desta vez, o modelo foi salvo em ONNX, mas ao executá-lo na aba Errors, erros são exibidos:

    onnx_session = ort.InferenceSession(onnx_filename)    Iris_QuadraticDiscriminantAnalysisClassifier.py    55    1
    self._create_inference_session(providers, provider_options, disabled_optimizers)    onnxruntime_inference_collection.py    383    1
    sess = C.InferenceSession(session_options, self._model_path, True, self._read_config_from_model)    onnxruntime_inference_collection.py    424    1
onnxruntime.capi.onnxruntime_pybind11_state.InvalidGraph: [ONNXRuntimeError] : 10:00 INVALID_GRAPH : Load model from C:\Users\user\AppData\Roaming\MetaQuotes\Terminal\D0E8209F77C8CF37AD8BF550E51FF075\MQL5\Scripts\qda_iris.onnx failed:This is an invalid mode    onnxruntime_inference_collection.py    424    1
Iris_QuadraticDiscriminantAnalysisClassifier.py finished in 2063 ms        5    1

A conversão do modelo Análise Discriminante Quadrática Classifier para ONNX ocorreu com erro.


Considerações finais

Um estudo de 33 modelos de classificação disponíveis na biblioteca Scikit-learn versão 1.2.2 foi realizado usando o conjunto de dados Iris.

1. Deste conjunto, 6 modelos enfrentaram dificuldades na conversão para o formato ONNX:

  1. DummyClassifier: classificador dummy (Dummy Classifier);
  2. GaussianProcessClassifier:  classificador de processos gaussianos (Gaussian Process Classifier);
  3. LabelPropagation : classificador de propagação de rótulos (Label Propagation Classifier);
  4. LabelSpreading : classificador de disseminação de rótulos (Label Spreading Classifier);
  5. NearestCentroid: classificador de centroide mais próximo (Nearest Centroid Classifier);
  6. QuadraticDiscriminantAnalysis: classificador de análise discriminante quadrática (Quadratic Discriminant Analysis Classifier).

Aparentemente, esses modelos são mais complexos em termos de sua estrutura e/ou lógica, e sua adaptação para execução no formato ONNX pode requerer esforços adicionais. Também é possível que eles usem estruturas de dados ou algoritmos específicos que não são totalmente suportados ou adequados para o formato ONNX.

2. Os outros 27 modelos foram convertidos com sucesso para o formato ONNX e demonstraram manter sua precisão, destacando a eficácia do ONNX como meio de preservar e restaurar modelos de aprendizado de máquina. Isso possibilita transferir facilmente modelos entre diferentes ambientes e utilizá-los em várias aplicações, mantendo a qualidade de seu desempenho.

Lista completa dos modelos convertidos com sucesso para o formato ONNX:

  1. SVC: classificador de vetores de suporte (Support Vector Classifier);
  2. LinearSVC: classificador de vetores de suporte linear (Linear Support Vector Classifier);
  3. NuSVC: classificador de vetores de suporte nu (Nu Support Vector Classifier);
  4. AdaBoostClassifier: classificador com boosting adaptativo (Adaptive Boosting Classifier);
  5. BaggingClassifier: classificador com agregação bootstrap (Bootstrap Aggregating Classifier);
  6. BernoulliNB: naive bayes bernoulli (Bernoulli Naive Bayes);
  7. CategoricalNB: naive bayes categórico (Categorical Naive Bayes);
  8. ComplementNB: naive bayes complementar (Complement Naive Bayes);
  9. DecisionTreeClassifier: classificador de árvore de decisão (Decision Tree Classifier);
  10. ExtraTreeClassifier: classificador de árvore extra (Extra Tree Classifier);
  11. ExtraTreesClassifier: classificador de árvores extras (Extra Trees Classifier);
  12. GaussianNB: naive bayes gaussiano (Gaussian Naive Bayes);
  13. GradientBoostingClassifier: classificador de boosting gradiente (Gradient Boosting Classifier);
  14. HistGradientBoostingClassifier: classificador de boosting gradiente baseado em histograma (Histogram-Based Gradient Boosting Classifier);
  15. classificador k-vizinhos mais próximos (KNeighborsClassifier);
  16. LinearDiscriminantAnalysis: análise discriminante linear (Linear Discriminant Analysis);
  17. LogisticRegression: classificador de regressão logística (Logistic Regression Classifier);
  18. LogisticRegressionCV: classificador de regressão logística com validação cruzada (Logistic Regression Classifier with Cross-Validation);
  19. MLPClassifier: classificador de perceptron de múltiplas camadas (Multi-Layer perceptron Classifier);
  20. MultinomialNB: naive bayes multinomial (Multinomial Naive Bayes);
  21. PassiveAggressiveClassifier: classificador passivo-agressivo (Passive-Aggressive Classifier);
  22. Perceptron: perceptron (Perceptron);
  23. RadiusNeighborsClassifier: classificador de vizinhos por raio (Radius Neighbors Classifier);
  24. RandomForestClassifier: classificador de floresta aleatória (Random Forest Classifier);
  25. RidgeClassifier: classificador ridge (Ridge Classifier);
  26. RidgeClassifierCV: classificador ridge com validação cruzada (Ridge Classifier with Cross-Validation);
  27. SGDClassifier: classificador de descida de gradiente estocástico (Stochastic Gradient Descent Classifier).

3. Além disso, durante a pesquisa, foram destacados modelos que demonstraram eficácia notável na tarefa de classificação do conjunto de dados Iris. Os modelos de classificação, como o classificador Random Forest, o classificador Gradient Boosting, o classificador Bagging, o classificador Decision Tree, o classificador Extra Tree, o classificador Extra Trees e o classificador Hist Gradient Boosting, obtiveram uma precisão perfeita nas previsões. Isso significa que elas são capazes de determinar com alta precisão a qual classe cada amostra de íris no conjunto de dados pertence.

Esses resultados podem ser particularmente úteis ao escolher o melhor modelo para uma tarefa específica de classificação. Modelos que alcançaram precisão perfeita nos dados do Iris podem ser a escolha ideal se sua tarefa estiver relacionada à análise ou classificação de dados semelhantes.

Assim, a pesquisa realizada destaca a importância da escolha correta do modelo para uma tarefa específica e permite identificar as opções mais promissoras para futuras pesquisas e aplicação em tarefas práticas.


Considerações finais

O artigo analisou 33 modelos de classificação usando o conjunto de dados Iris com a biblioteca Scikit-learn versão 1.2.2.

Dentre todos os modelos considerados, 6 mostraram-se desafiadores para conversão no formato ONNX. Esses modelos incluem o Dummy Classifier, Gaussian Process Classifier, Label Propagation Classifier, Label Spreading Classifier, Nearest Centroid Classifier, e o Quadratic Discriminant Analysis Classifier. Provavelmente, suas estruturas ou lógicas complexas requerem adaptação adicional para uma conversão bem-sucedida para o formato ONNX.

Os outros 27 modelos foram convertidos com sucesso para o formato ONNX e demonstraram manter sua precisão. Isso confirma que o ONNX é um meio eficaz para preservar e restaurar modelos de aprendizado de máquina, garantindo sua portabilidade e a manutenção da qualidade de seu desempenho.

É importante notar que os modelos de classificação, como o classificador Random Forest, o classificador Gradient Boosting, o classificador Bagging, o classificador Decision Tree, o classificador Extra Tree, o classificador Extra Trees e o classificador Hist Gradient Boosting, obtiveram uma precisão perfeita nas previsões. Esses modelos podem ser particularmente atraentes para tarefas de classificação onde a alta precisão é crucial.

Este estudo ressalta a importância da escolha adequada do modelo para tarefas específicas e demonstra as vantagens de usar o ONNX para preservar e aplicar modelos de aprendizado de máquina em tarefas de classificação.

Todos os scripts do artigo também estão disponíveis em um projeto público no MQL5\Shared Projects\Scikit.Classification.ONNX.