MQL4和MQL5编程文章

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章

DoEasy 函数库中的价格(第六十三部分):市场深度及其抽象请求类

在本文中,我将着手开发操控市场深度的功能。 我还将创建市场深度抽象订单对象,及其衍生类。

DoEasy 函数库中的价格(第六十二部分):实时更新即时报价序列,为操控市场深度做准备

在本文中,我将实现即时报价数据的实时更新,并为操控市场深度的品种对象类(DOM 本身将在下一篇文章中实现)做准备。

DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。

多层感知机与反向传播算法

这两种方法的普及性日益增加,因此在 Matlab、R、Python、C++ 等领域开发了大量的库,它们接收到一个训练集作为输入,并自动为问题创建合适的网络。让我们试着理解基本的神经网络类型是如何工作的(包括单神经元感知机和多层感知机)。我们将探讨一个令人兴奋的算法,它负责网络训练 - 梯度下降和反向传播。现有的复杂模型往往基于这样简单的网络模型。

DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。

自适应算法(第三部分): 放弃优化

如果采用基于历史数据的优化方法来选择参数,就不可能得到真正稳定的算法。一个稳定的算法应该知道在任何时候操作任何交易工具时需要哪些参数。它不应该预测或猜测,它应该确定知道。

神经网络变得轻松(第十部分):多目击者关注

我们以前曾研究过神经网络中的自关注机制。 在实践中,现代神经网络体系结构会采用多个并行的自关注线程来查找序列元素之间的各种依存关系。 我们来研究这种方法的实现,并评估其对整体网络性能的影响。

神经网络在交易中的实际应用 (第二部分). 计算机视觉

利用计算机视觉可以训练神经网络对价格图表和指标的直观表示。这种方法可以对整个复杂的技术指标进行更广泛的操作,因为不需要将它们以数字形式输入神经网络。

神经网络变得轻松(第九部分):操作归档

我们已经经历了很长一段路,并且函数库中的代码越来越庞大。 这令跟踪所有连接和依赖性变得难以维护。 因此,我建议为先前创建的代码创建文档,并保持伴随每个新步骤进行更新。 正确准备的文档将有助我们看到操作的完整性。

利用 CatBoost 算法寻找外汇市场的季节性模式

本文探索了用时间过滤器建立机器学习模型,并讨论了这种方法的有效性。现在,只要简单地指示模型在一周中某一天的某个时间进行交易,就可以消除人为因素。模式搜索可以由单独的算法提供。

直推和主动机器学习中的梯度提升

在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。

DoEasy 函数库中的时间序列(第五十七·部分):存储一次即时报价数据的对象

从本文开始,着手创建操控价格数据的函数库功能。 今天,创建一个对象类,存储到达的即时报价的全部价格数据。

开发自适应算法 (第二部分): 提高效率

在本文中,我将通过改进先前创建的算法的灵活性来继续本主题的开发。随着分析窗口中烛形数量的增加,或烛形超额阈值百分比的增加,算法变得更加稳定。我不得不做出妥协,并设置一个更大的样本量进行分析或更大的烛形超额百分比。

DoEasy 函数库中的时间序列(第五十八部分):指标缓冲区数据的时间序列

关于操控时间序列的主题总结,诸如组织存储、针对存储在指标缓冲区中的数据进行搜索和分类,如此即可在程序里利用函数库创建指标值,并进一步据其执行分析。 函数库的所有集合类的一般概念,能够轻松地在相应的集合中找到必要的数据。 在今天创建的类中,也可分别完成同样功能。

开发自适应算法(第一部分):寻找基本模式

在接下来的系列文章中,我将演示探讨大多数市场因素的自适应算法的开发,以及如何将这些情况系统化,用逻辑描述它们,并在您的交易活动中应用它们。我将从一个非常简单的算法开始,这个算法将逐渐获得理论,并发展成一个非常复杂的项目。

神经网络变得轻松(第八部分):关注机制

在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。

使用电子表格建立交易策略

本文介绍了使用电子表格(Excel、Calc、Google)分析任何策略的基本原则和方法。所得结果与 MetaTrader 5 测试器进行了比较。

MetaTrader 5 中的 WebSockets

在引入随 MQL5 API 更新而提供的网络功能之前,MetaTrader 程序与基于 WebSocket 的服务连接和接口的能力受到许多限制。当然,这一切都改变了,在本文中,我们将探讨纯 MQL5 中 WebSocket 库的实现。WebSocket 协议的简要描述将与如何使用生成的库的逐步指南一起给出。

DoEasy 函数库中的时间序列(第五十七·部分):指标缓冲区数据对象

在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。

模式搜索的暴力算法(第三部分):新视野

本文延续了暴力算法的主题,并在程序算法中引入了市场分析的新机会,从而加快了分析速度,提高了结果质量。新的添加使得在这种方法中可以看到最高质量的全局模式。

DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据

本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。

神经网络变得轻松(第七部分):自适应优化方法

在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。

市场及其全局模式中的物理学

在本文中,我将尝试测试这样一个假设,即任何对市场了解甚微的系统都可以在全局范围内运行。我不会发明任何理论或模式,但我只会使用已知的事实,逐步将这些事实转化为数学分析的语言。

基于暴力算法的 CatBoost 模型高级重采样与选择

本文描述了一种可能的数据转换方法,旨在提高模型的通用性,并讨论了 CatBoost 模型的采样和选择。

无需 Python 或 R 语言知识的 Yandex CatBoost 机器学习算法

本文通过一个具体的例子提供了机器学习过程的主要阶段的代码和描述。您不需要 Python 或 R 语言知识就能够获得模型。此外,基本的MQL5知识已经足够了- 这正是我的水平。因此,我希望这篇文章能为广大读者提供一个很好的指导,帮助那些对评估机器学习能力感兴趣的人,并在他们的课程中实现这些能力。

DoEasy 函数库中的时间序列(第五十五部分):指标集合类

本文继续开发指标对象类及其集合。 为每个指标对象创建其描述和正确的集合类,从而实现无错存储,并从集合列表中获取指标对象。

梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法

在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。

使用 DeMark Sequential 和 Murray-Gann 水平分析图表

Thomas DeMark Sequential (序列)擅长显示价格变动的平衡变化。如果我们把它的信号与水平指标例如 Murray 水平相结合,就更为明显。这篇文章主要是为初学者和那些仍然找不到他们的“圣杯”。我还将展示一些我在其他论坛上没有看到的构建水平的功能。因此,这篇文章可能对高级交易者也很有用。欢迎提出建议和合理批评。

神经网络在交易中的实际应用 Python (第一部分)

在本文中,我们将分析一个基于Python的深层神经网络编程的交易系统的分步实现。这将使用谷歌开发的 TensorFlow 机器学习库执行。我们还将使用 Keras 库来描述神经网络。

手工图表和交易工具包(第二部分)。 图表图形绘图工具

这是该系列的下一篇文章,在其中我展示了如何创建一个函数库来,从而看便利地用键盘快捷键手动绘制图表图形。 所用工具包括直线及其组合。 在这一部分中,我们将查看如何在绘图工具里应用第一部分中讲述的函数。 该函数库可连接到任何 EA 或指标,这将大大简化绘图任务。 此方案未使用外部 dll,而所有命令都是由内置 MQL 工具实现的。

模式搜索的暴力方法(第二部分):深入

在本文中,我们将继续讨论暴力方法。我将尝试使用我的应用程序的新改进版本来更好地解释这种模式。我还将尝试使用不同的时间间隔和时间框架来找出稳定性的差异。

神经网络变得轻松(第六部分):神经网络学习率实验

我们之前已研究过各种类型的神经网络及其实现。 在所有情况下,训练神经网络时都使用梯度下降法,为此我们需要选择学习率。 在本文中,我打算通过示例展示正确选择学习率的重要性,及其对神经网络训练的影响。

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生

本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。

开发和分析交易系统的最佳方法

在这篇文章中,我将展示在选择一个系统或信号来投资你的资金时所使用的标准,以及描述开发交易系统的最佳方法,并强调这个问题在外汇交易中的重要性。

DoEasy 函数库中的时间序列(第五十三部分):抽象基准指标类

本文研究创建一个抽象指标,其将进一步用作创建函数库标准指标和自定义指标对象的基类。

神经网络变得轻松(第五部分):OpenCL 中的多线程计算

我们早前已经讨论过某些类型的神经网络实现。 在所研究的网络中,每个神经元都重复相同的操作。 逻辑上进一步应利用现代技术提供的多线程计算功能来加快神经网络学习过程。 本文介绍了一种可能的实现方式。

网格和马丁格尔:它们是什么?如何使用它们?

在本文中,我将试图详细解释什么是网格和马丁格尔,以及它们的共同点。此外,我将试着分析这些策略到底有多可行。这篇文章同时包含了数学和实践部分。

模式搜索的暴力方法

在本文中,我们将搜索市场模式,根据确定的模式创建 EA 交易,并检查这些模式,如果它们保持有效的话,保持有效的时间有多少。

DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质

在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。

神经网络变得轻松(第四部分):循环网络

我们继续研究神经网络的世界。 在本文中,我们将研究另一种类型的神经网络,循环网络。 此类型建议与时间序列配合使用,其在 MetaTrader 5 交易平台中由价格图表呈现。