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Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR: W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model isnot a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden unitsh ∈ {0, 1}P (see
Fig. 1). The energy of the state{v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

whereθ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments ofL andJ are set to 0. The probability that the
model assigns to a visible vectorv is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

wherep∗ denotes unnormalized probability, andZ(θ) is
the partition function. Theconditional distributions over

1We have omitted the bias terms for clarity of presentation
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” featuresand
the bottom layer represents a vector of stochastic binary “visi-
ble” variables.Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +

P
∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +

D
∑

k=1\i

Likvj

)

, (5)

whereσ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)

∆L = α
(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as thedata-dependent expectation,
and EPmodel

[·] as themodel’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting bothJ=0 andL=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distributionp(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Letθt andXt be the cur-
rent parameters and the state. ThenXt andθt are updated
sequentially as follows:

• GivenXt, a new stateXt+1 is sampled from a transi-
tion operatorTθt

(Xt+1; Xt) that leavespθt
invariant.

• A new parameterθt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect toXt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by settingαt = 1/t. Typically, in prac-
tice, the sequence|θt| is bounded, and the Markov chain,
governed by the transition kernelTθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the



R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variablesp(h|v; θ) for each training vectorv, is replaced
by an approximate posteriorq(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) +H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

whereH(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi whereP is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parametersµ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rametersθ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as tomaximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
statesgiven the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set ofN data vectors{v}N
n=1.

1. Randomly initialize parametersθ0 andM fantasy parti-
cles.{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training examplevn, n=1 to N

• Randomly initializeµ and run mean-field up-
dates Eq. 8 until convergence.

• Setµn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state(ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample(ṽt,m, h̃t,m).

(c) Update

W
t+1 = W

t + αt

„

1

N

N
X

n=1

v
n(µn)⊤ −

1

M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parametersL andJ .

(d) Decreaseαt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promising way of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.
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Figure 2:Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine.Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state{v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

whereθ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vectorv is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model isnot a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form adirected generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h
1 defined by the parameters. The second

RBM in the stack replacesp(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006),p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution overh

1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placingp(h1;W1) by a better model, it would be possible
to inferp(h1;W1,W2) by averaging the two models ofh

1

which can be done approximately by using1/2W
1 bottom-

up and1/2W
2 top-down. UsingW1 bottom-up andW2

top-down would amount to double-counting the evidence
sinceh2 is dependent onv.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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take the form:

p(h1
j = 1|h2) = σ

(

∑

m

W 2
jmh2

m +
∑

m

W 2
jmh2

m

)

(17)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
jmh1

j

)

. (18)

When these two modules are composed to form a single
system, the total input coming into the first hidden layer is
halved which leads to the following conditional distribution
overh1:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

)

. (19)

The conditional distributions overv and h
2 remain the

same as defined by Eqs. 16, 18.

Observe that the conditional distributions defined by the
composed model are exactly the same conditional distri-
butions defined by the DBM (Eqs. 11, 12, 13). Therefore
greedily pretraining the two modified RBM’s leads to an
undirected model with symmetric weights – a deep Boltz-
mann machine. When greedily training a stack of more
than two RBM’s, the modification only needs to be used
for the first and the last RBM’s in the stack. For all the
intermediate RBM’s we simply halve their weights in both
directions when composing them to form a deep Boltzmann
machine.

Greedily pretraining the weights of a DBM in this way
serves two purposes. First, as we show in the experimental
results section, it initializes the weights to sensible values.
Second, it ensures that there is a very fast way of perform-
ing approximate inference by a single upward pass through
the stack of RBM’s. Given a data vector on the visible
units, each layer of hidden units can be activated in a single
bottom-up pass by doubling the bottom-up input to com-
pensate for the lack of top-down feedback (except for the
very top layer which does not have a top-down input). This
fast approximate inference is used to initialize the mean-
field method, which then converges much faster than with
random initialization.

3.2 Evaluating DBM’s

Recently, Salakhutdinov and Murray (2008) showed that
a Monte Carlo based method, Annealed Importance Sam-
pling (AIS) (Neal, 2001), can be used to efficiently estimate
the partition function of an RBM. In this section we show
how AIS can be used to estimate the partition functions of
deep Boltzmann machines. Together with variational infer-
ence this will allow us obtain good estimates of the lower
bound on the log-probability of thetest data.

Suppose we have two distributions defined on some space
X with probability density functions:pA(x) = p∗A(x)/ZA

andpB(x) = p∗B(x)/ZB . Typically pA(x) is defined to be
some simple distribution with knownZA and from which

we can easily drawi.i.d. samples. AIS estimates the ratio
ZB/ZA by defining a sequence of intermediate probabil-
ity distributions: p0, ..., pK , with p0 = pA andpK = pB.
For each intermediate distribution we must be able to easily
evaluate the unnormalized probabilityp∗k(x), and we must
also be able to samplex′ given x using a Markov chain
transition operatorTk(x′;x) that leavespk(x) invariant.

Using the special layer-by-layer structure of deep Boltz-
mann machines, we can derive a more efficient AIS scheme
for estimating the model’s partition function. Let us
again consider a two-layer Boltzmann machine defined by
Eq. 10. By explicitly summing out the visible unitsv and
the 2nd-layer hidden unitsh2, we can easily evaluate an
unnormalized probabilityp∗(h1; θ). We can therefore run
AIS on a much smaller state spacex = {h1} with v and
h

2 analytically summed out. The sequence of intermediate
distributions, parameterized byβ, is defined as follows:

pk(h1) =
∑

v,h2

p(v,h1,h2) =

=
1

Zk

∏

i

(1 + e(βk

P

j
h1

jW 1

ij))
∏

k

(1 + e(βk

P

j
h1

j W 2

jk)).

This approach closely resembles simulated annealing. We
gradually changeβk (or inverse temperature) from 0 to 1,
annealing from a simple “uniform” model to the final com-
plex model. Using Eqs. 11, 12, 13, it is straightforward
to derive an efficient block Gibbs transition operator that
leavespk(h1) invariant.

Once we obtain an estimate of the global partition function
Ẑ, we can estimate, for a given test casev

∗, the variational
lower bound of Eq. 7:

ln p(v∗; θ) ≥ −
∑

h

q(h; µ)E(v∗,h; θ) +H(q)− lnZ(θ)

≈ −
∑

h

q(h; µ)E(v∗,h; θ) +H(q)− ln Ẑ,

where we definedh = {h1,h2}. For each test vector, this
lower bound is maximized with respect to the variational
parametersµ using the mean-field update equations.

Furthermore, by explicitly summing out the states of the
hidden unitsh2, we can obtain a tighter variational lower
bound on the log-probability of the test data. Of course, we
can also adopt AIS to estimate

∑

h1,h2 p∗(v,h1,h2), and
together with an estimate of the global partition function
we can actually estimate the true log-probability of the test
data. This however, would be computationally very expen-
sive, since we would need to perform a separate AIS run
for each test case.

When learning a deep Boltzmann machine with more than
two layers, and no within-layer connections, we can explic-
itly sum out either odd or even layers. This will result in a
better estimate of the model’s partition function and tighter
lower bounds on the log-probability of the test data.
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Figure 4:Left: Two deep Boltzmann machines used in experiments.Right: Random samples from the training set, and samples gen-
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Figure 3:After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posteriorq(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s

After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vectorv, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginalsq(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
noreq(h2|v), i.e. drive the first-layer connectionsW2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layerW1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results

In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also setto
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST

The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORB.Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Table 1:Results of estimating partition functions of BM models,
along with the estimates of lower bound on the average training
and test log-probabilities. For all BM’s we used 20,000 interme-
diate distributions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

ln Ẑ ln (Ẑ ± σ̂) Test Train

2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

To estimate how loose the variational bound is, we ran-
domly sampled 100 test cases, 10 of each class, and ran
AIS to estimate the true test log-probability3 for the 2-layer
Boltzmann machine. The estimate of the variational bound
was -83.35 per test case, whereas the estimate of the true
test log-probability was -82.86. The difference of about
0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mix-
ture of Bernoullis models with 10, 100, and 500 compo-
nents. The corresponding average test log-probabilities
were −168.95, −142.63, and −137.64. Compared to
DBM’s, a mixture of Bernoullis performs very badly. The
difference of over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test
set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task.
The 3-layer BM gives a slightly worse error rate of 1.01%.
This is compared to 1.4% achieved by SVM’s (Decoste and
Schölkopf, 2002), 1.6% achieved by randomly initialized
backprop, and 1.2% achieved by the deep belief network,
described in Hinton et al. (2006).

3Note that computationally, this is equivalent to estimating
100 partition functions.

4.2 NORB

Results on MNIST show that DBM’s can significantly out-
perform many other models on the well-studied but rela-
tively simple task of handwritten digit recognition. In this
section we present results on NORB, which is consider-
ably more difficult dataset than MNIST. NORB (LeCun
et al., 2004) contains images of 50 different 3D toy ob-
jects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is cap-
tured from different viewpoints and under various lighting
conditions. The training set contains 24,300 stereo image
pairs of 25 objects, 5 per class, while the test set contains
24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into
its generic class. From the training data, 4,300 were set
aside for validation.

Each image has 96×96 pixels with integer greyscale values
in the range [0,255]. To speed-up experiments, we reduced
the dimensionality of each image from 9216 down to 4488
by using larger pixels around the edge of the image4. A ran-
dom sample from the training data used in our experiments
is shown in Fig. 5.

To model raw pixel data, we use an RBM with Gaussian
visible and binary hidden units. Gaussian-binary RBM’s
have been previously successfully applied for modeling
greyscale images, such as images of faces (Hinton and
Salakhutdinov, 2006). However, learning an RBM with
Gaussian units can be slow, particularly when the input di-
mensionality is quite large. In this paper we follow the
approach of (Nair and Hinton, 2008) by first learning a
Gaussian-binary RBM and then treating the the activities
of its hidden layer as “preprocessed” data. Effectively, the
learned low-level RBM acts as a preprocessor that converts

4The resulting dimensionality of each training vector, repre-
senting a stereo pair, was 2×4488 = 8976.
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greyscale pixels into binary representation which we then
use for learning a deep Boltzmann machine.

The number of hidden units for the preprocessing RBM
was set to 4000 and the model was trained using contrastive
divergence learning for 500 epochs. We then trained a two-
layer DBM with each layer containing 4000 hidden units,
as shown in Fig. 5, left panel. Note that the entire model
was trained in a completely unsupervised way. After the
subsequent discriminative fine-tuning, the “unrolled” DBM
achieves a misclassification error rate of 10.8% on the full
test set. This is compared to 11.6% achieved by SVM’s
(Bengio and LeCun, 2007), 22.5% achieved by logistic re-
gression, and 18.4% achieved by the K-nearest neighbours
(LeCun et al., 2004).

To show that DBM’s can benefit from additionalunla-
beled training data, we augmented the training data with
additional unlabeled data by applying simple pixel transla-
tions, creating a total of 1,166,400 training instances. Af-
ter learning a good generative model, the discriminative
fine-tuning (using only the 24300 labeled training examples
without any translation) reduces the misclassification error
down to 7.2%. Figure 5 shows samples generated from the
model by running prolonged Gibbs sampling. Note that the
model was able to capture a lot of regularities in this high-
dimensional highly-structured data, including differentob-
ject classes, various viewpoints and lighting conditions.

Although the DBM model contains about 68 million pa-
rameters, it significantly outperforms many of the compet-
ing methods. Clearly, unsupervised learning helps gener-
alization because it ensures that most of the information in
the model parameters comes from modeling the input data.
The very limited information in the labels is used only to
slightly adjust the layers of features already discovered by
the deep Boltzmann machine.

5 Conclusions

We have presented a new learning algorithm for training
multilayer Boltzmann machines, and showed that it can be
used to successfully learn good generative models. This
procedure readily extends to learning Boltzmann machines
with real-valued, count, or tabular data, provided the distri-
butions are in the exponential family (Welling et al., 2005).
We also showed how an AIS estimator, along with varia-
tional inference, can be used to estimate a lower bound on
the log-probability that a Boltzmann machine with multiple
hidden layers assigns to test data. Finally, we showed that
the discriminatively fine-tuned DBM’s perform well on the
MNIST digit and NORB 3D object recognition tasks.
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