
DEEP LEARNING VIA STACKED SPARSE AUTOENCODERS FOR AUTOMATED
VOXEL-WISE BRAIN PARCELLATION BASED ON FUNCTIONAL CONNECTIVITY

(Thesis format: Monograph)

by

Céline Gravelines

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Céline Gravelines 2014

ii

Abstract

Functional brain parcellation – the delineation of brain regions based on functional

connectivity – is an active research area lacking an ideal subject-specific solution

independent of anatomical composition, manual feature engineering, or heavily labelled

examples. Deep learning is a cutting-edge area of machine learning on the forefront of

current artificial intelligence developments. Specifically, autoencoders are artificial neural

networks which can be stacked to form hierarchical sparse deep models from which high-

level features are compressed, organized, and extracted, without labelled training data,

allowing for unsupervised learning. This thesis presents a novel application of stacked sparse

autoencoders to the problem of parcellating the brain based on its components’ (voxels’)

functional connectivity, focusing on the medial parietal cortex. Various depths of

autoencoders are investigated, yielding results of up to (68 ± 3)% accuracy compared with

ground truth parcellations using Dice’s coefficient. This data-driven functional parcellation

technique offers promising growth to both the neuroimaging and machine learning

communities.

Keywords

Deep Learning, Machine Learning, Unsupervised, Sparse, Stacked, Autoencoders, Brain

Parcellation, Segmentation, fMRI, Functional Connectivity.

iii

Acknowledgments

I wish to express my sincere thanks to my supervisor Mark Daley for encouraging me to

pursue my Master’s degree and for the constant guidance, advice, and support along the way.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Appendices ... ix

Chapter 1 ... 1

1 Introduction and Literature Review ... 1

1.1 History of Artificial Neural Networks .. 1

1.2 Modern Artificial Neural Networks .. 3

1.3 Deep Learning ... 4

1.4 Restricted Boltzmann Machines and Deep Belief Networks 9

1.5 Training a Deep Model ... 12

1.6 Autoencoders .. 13

1.7 Brain Parcellation.. 18

Chapter 2 ... 25

2 Methodology .. 25

2.1 Prepare the Data .. 25

2.2 Pre-train the autoencoder .. 28

2.2.1 Initialize parameters .. 29

2.2.2 Optimize parameters ... 29

2.2.3 Compute the activation vector .. 35

2.3 Train the softmax classifier ... 36

2.4 Fine-tune the stacked autoencoder .. 39

v

2.5 Parcellate new fMRI data .. 40

2.6 Visualize the parcellation .. 40

Chapter 3 ... 42

3 Implementation and Results ... 42

3.1 Preprocessing .. 42

3.2 Implementation Details ... 43

3.3 Results ... 44

4 Discussion and Conclusion .. 50

4.1 Discussion ... 51

4.2 Contributions... 51

4.3 Threats to Validity .. 53

4.4 Future Work .. 54

References ... 56

Appendices .. 61

Curriculum Vitae .. 76

vi

List of Tables

Table 1: The hyperparameters used for training the autoencoders of various depths. 44

Table 2: The minimum, maximum, mean, and standard deviation of the Dice coefficients for

parcellations implemented with autoencoders of various depths. .. 46

vii

List of Figures

Figure 1: A single neuron with 3 input values, a bias term, and 1 output hypothesis value

(Ng, Ngiam, Foo, Mai, & Suen, 2013) ... 3

Figure 2: A neural network organized into 3 layers. L1 represents the input layer, L2 is a

hidden layer, and L3 is the output layer. (Ng, Ngiam, Foo, Mai, & Suen, 2013) 4

Figure 3: Facial recognition using a deep neural network, demonstrating the multiple levels

of abstraction of the task, from low dimensional pixels to complex shapes and objects

defining a human face. (Jones, 2014) ... 6

Figure 4: A restricted Boltzmann Machine with weighted connections between a layer of 4

visible input units, x, and a layer of 3 latent hidden units, h. .. 10

Figure 5: A single layer autoencoder which will be the first in the stack. The weighted

connections from the input layer, , join to the hidden layer, , represented by a matrix, ,

and the weights from the hidden layer, , to the output units, , (the representation of the

input) are stored in the matrix (Ng, Ngiam, Foo, Mai, & Suen, 2013). 16

Figure 6: The second autoencoder in the stack. The output from the first autoencoder’s

hidden feature layer (Figure 5) is used as input to the second autoencoder (Ng, Ngiam, Foo,

Mai, & Suen, 2013). .. 17

Figure 7: A 442 442 matrix depicting the global patterns of functional connectivity

among the 442 voxels from the fMRI data. One row of the matrix represents one voxel’s

connectivity with each of the 442 voxels representing in the columns. The closer is to 1

(red/darker), the stronger the association. ... 27

Figure 8: Continuing to build the stacked autoencoder from Figures 5 and 6, the activation

vector resulting from the last hidden layer in the network is used as input to the softmax

classifier which determines the probability of each possible label (Ng, Ngiam, Foo, Mai, &

Suen, 2013). .. 36

viii

Figure 9: The entire stacked autoencoder with two hidden layers, viewed as a single model

capable of classification. The output activations of the second (and final) hidden layer are

input into the softmax classifier (Ng, Ngiam, Foo, Mai, & Suen, 2013). 39

Figure 10: Violin and box plots depicting the distribution of Dice coefficients from

parcellations trained and tested on autoencoders with 2 – 6 hidden layers. 46

Figure 11: Each row depicts 3 dimensions of a single parcellation of the medial parietal

cortex: (a) displays the ground truth parcellation verified by anatomists; autoencoders trained

and tested with (b) 3 hidden layers, = 0.638 ± 0.037, (c) 4 hidden layers = 0.676 ±

0.026, (d) 5 hidden layers, = 0.679 ± 0.029. .. 48

Figure 12: Zoomed-in parcellations of the medial parietal cortex where (a) shows the ground

truth parcellation based on expert verified labels of functional regions in 3 dimensions and

(b) shows a parcellation acquired from a deep autoencoder with 5 hidden layers. The spatial

overlap between the two parcellations is described by = 0.679 ± 0.029. 49

ix

List of Appendices

Appendix A: Dice coefficients comparing parcellations acquired from autoencoders trained

and tested with 2 hidden layers versus the ground truth parcellation provided by anatomists.

The bolded row represents the parcellation with the maximum accuracy. 61

Appendix B: Dice coefficients comparing parcellations acquired from autoencoders trained

and tested with 3 hidden layers versus the ground truth parcellation provided by anatomists.

The bolded row represents the parcellation with the maximum accuracy. 62

Appendix C: Dice coefficients comparing parcellations acquired from autoencoders trained

and tested with 4 hidden layers versus the ground truth parcellation provided by anatomists.

The bolded row represents the parcellation with the maximum accuracy. 64

Appendix D: Dice coefficients comparing parcellations acquired from autoencoders trained

and tested with 5 hidden layers versus the ground truth parcellation provided by anatomists.

The bolded row represents the parcellation with the maximum accuracy. 72

1

Chapter 1

1 Introduction and Literature Review

Artificial intelligence has developed significantly in recent years as machine learning and

classification algorithms have become more sophisticated and powerful. Currently, one of

the most popular and promising approaches to machine learning is deep learning (Ng,

Ngiam, Foo, Mai, & Suen, 2013). Deep learning involves learning the hierarchical

structure of data by initially learning simple low-level features which are in turn used to

successively build up more complex representations, capturing the underlying regularities

of the data. Stacked sparse autoencoders are a type of deep network capable of achieving

unsupervised learning – a type of machine learning algorithm which draws inferences

from the input data and does not use labelled training examples. Sections 1.1 – 1.6

discuss the history and theory behind deep learning.

Functional brain parcellation is the task of delineating the brain based on functional

connectivity. This active area of neuroscientific research lacks an ideal standard protocol

as the current techniques assume unrealistic similarity of anatomic composition among

subjects, depend on manual feature engineering, or heavily labelled examples (further

discussed in section 1.7). Therefore, the motivation of this thesis will be to develop a

solution for unsupervised brain parcellation using a deep network to automatically

delineate brain regions based on functional connectivity.

1.1 History of Artificial Neural Networks

Research of artificial neural networks was developed for two distinct areas of study: to

model biological processes in the brain, and to investigate the application of neural

networks to artificial intelligence (AI). While there are parallels between the two

domains, neural networks used in AI are generally simplified models of biological neural

processing and the degree to which artificial neural networks imitate actual brain function

is not fundamentally relevant to the machine learning processes presented.

2

Artificial neural networks were initially developed by McCulloch and Pitts in 1943. A

neuron is used to represent a computational unit that takes some input values and

produces an output, based on an activation function (McCulloch & Pitts, 1943). For

example, a binary threshold activation function (commonly known as the Heaviside step

function) is an all-or-nothing approach which will result in the neuron “firing”

(outputting results) if the output value is 1, while it will not fire if the output value is 0.

McCulloch and Pitts developed this neural model using electric circuits and proposed that

modelling neurons using this binary threshold activation function mimics first order logic

sentences. That is, providing a neuron with different combinations of 0 (false) and 1

(true) inputs can accurate represent AND, OR, NOT, NAND, and NOR statements at the

output. However, it was later shown that the single model (one neuron) could solve

neither the exclusive-or (XOR) nor exclusive-nor (XNOR) (Minsky & Papert, 1969).

In the late 1940s, Donald Hebb improved the neural network by proposing that neural

pathways are strengthened the more they are used, pointing out that this concept is

fundamental to the process of human learning and memory (Hebb, 1949). Thus,

McCulloch and Pitts's neuron model was altered to account for this learning process. The

solution involved assigning non-identical weights to each input. Consequently, an input

of 1 may possess more or less weight, relative to the total threshold. Based on these new

developments, Frank Rosenblatt introduced the perceptron, a neural model took input

values (to) and corresponding weights (to) (Rosenblatt, 1962). Each of the

input values is weighted and summed at the node which only “fires” (outputs) if the

threshold value is reached. While the perceptron model offered hope for artificial neural

networks, it was later shown that the perceptron could not be trained to recognize many

classes of patterns as this single layer network was only capable of learning linearly

separable patterns. Added the fact that XOR and XNOR statements could not be

represented, the 1960s to 1990s saw a drastic decline of the use neural networks for

practical machine learning (Larochelle, Bengio, Louradour, & Lamblin, 2009) as large

single layer neural networks were inefficient and ineffective at learning tasks (Minsky &

Papert, 1969).

3

1.2 Modern Artificial Neural Networks

Based on the perceptron, Figure 1 shows the simplest neural network consisting of just a

single neuron (computational unit) that takes input values, , and a bias

intercept term which is a constant term (not included in the input) used to shift the

activation function to the left or right.

Figure 1: A single neuron with 3 input values, a bias term, and 1 output hypothesis value

(Ng, Ngiam, Foo, Mai, & Suen, 2013)

Given an input, , the network outputs a hypothesis () where and are weight

and bias parameters which can be learned from the input data (Ng, Ngiam, Foo, Mai, &

Suen, 2013). Thus, this input data acts as a training set to train the network to learn these

parameters. This neuron’s hypothesized output is defined as

 () (∑

)

Equation 1

where and represent the weight connection and input to the -th of units,

respectively. In addition, is equal to the activation function, , which will

correspond to the sigmoid function used to scale the outputs to a range of [0,1]:

 ()

Equation 2

The sigmoid function is an alternative to the threshold function used in earlier literature.

4

A more complex neural network is formed by joining many neurons together, so that the

output of one neuron can be the input to any another neuron in the network. These

neurons can be organized into layers, as shown in Figure 2.

Figure 2: A neural network organized into 3 layers. L1 represents the input layer, L2 is a

hidden layer, and L3 is the output layer. (Ng, Ngiam, Foo, Mai, & Suen, 2013)

In Figure 2, the input values are also denoted as neuron-like units. The leftmost layer of

the network is the input layer. The +1 bias unit corresponds to the intercept term. This

network has 3 input units (not counting the bias). The rightmost layer is the output layer

which happens to only have 1 output unit. Meanwhile, the middle layer is referred to as a

hidden layer, as its values are not visible in the input or output data. There are 3 hidden

units in this network. The connections between each unit (excluding the bias units) each

represent a weight connection. A matrix, , can be composed of all the weighted

connections between units of the adjacent layers, and . Therefore the parameters of

the network are () where () () for the 3 layer model. The

output of each unit in layer is represented by an activation vector, , which represents

learned features from that layer, analogous to the hypothesis ().

1.3 Deep Learning

When tasked with a problem to solve, humans often decompose the problem into smaller,

easier-to-solve sub-problems at different levels of representation. Humans are able to

5

inadvertently exploit intuition and describe concepts in hierarchical ways, based on

multiple levels of abstraction. For example, an individual seeks to identity an image.

Taking the entire image into account, the individual looks specifically at the important

features of the image. The individual sees a human form in the image, notices facial hair,

body structure, and clothing and determines that the image is a man. That is, the

individual has identified the image by breaking it down into smaller features, such as

“has beard”, “has broad shoulders”, “is wearing a suit” and then determined a

classification for the image. The problem is broken down on many levels. Without much

conscious thought, humans look at much smaller features of images, such as lines,

curves, and edges to determine the higher-level features. These numerous highly-varying,

non-linear features organized into layers are what constitute a deep network (Bengio,

Lamblin, Popovici, & Larochelle, 2007).

Deep learning generally refers to learning models which use feature hierarchies with

many layers. Thus, a deep artificial neural network is a multi-layer network composed of

input and output layers, in addition to numerous hidden layers between the input and

output. Those hidden layers are composed of hidden (or “latent”) units that can be used to

describe underlying features of the data. Figure 3 depicts a common facial recognition

task, in which the input layer represents the pixels of the image while the output is the

corresponding identity (or classification) of the face, while the hidden layers can

represent low-level features, such as edges and shapes, to high-level features, such as

“big eyes” or “small nose”. Learning the structure of a deep architecture aims to

automatically discover these abstractions, from the lowest to highest levels. Favourable

learning algorithms would be unsupervised, depending on minimal human effort, while

allowing the network to discover these latent variables on its own, rather than requiring a

pre-defined set of all possible abstractions. The ability to achieve this task while requiring

little human input is particularly important for higher-level abstractions as humans are

often unable to explicitly identify potential hidden, underlying factors of the raw input

(Bengio, 2009). Thus, the power to automatically learn important underlying features

fuels the popularity of deep architectures as the wide applications of deep machine

learning become increasingly attainable.

6

Figure 3: Facial recognition using a deep neural network, demonstrating the multiple

levels of abstraction of the task, from low dimensional pixels to complex shapes and

objects defining a human face. (Jones, 2014)

Deep networks were introduced in the 1980s in Fukushima's Neocognitron (Fukushima,

1980) which presented a hierarchical multi-layered neural network used for pattern

recognition, such as the recognition and classification of handwritten characters.

However, early deep multilayer networks were often believed to be too difficult to train

and they were empirically found to be less effective than networks with only one or two

hidden layers (Tesauro, 1992). Consequently, deep learning was not investigated much in

machine learning literature.

7

Sepp Hochreiter’s 1991 thesis identified the issue as “the vanishing gradient problem”

which had led to this major failure of deep artificial neural network (Hochreiter, 1991).

The problem stemmed from the fact that as a layer of neural network eventually learned a

task reasonably well, the learned features were not successfully propagated to successive

layers in the network. The deeper layers did not receive information in order to account

for these new learned features. Backpropagation via gradient descent had become a

crucial step of training deep networks (Werbos, 1974). However, due to the lack of

computing power available at the time, it was thought to be too slow of an algorithm for

practical training of neural networks, resulting in simple methods such as Support Vector

Machines (SVMs) monopolizing the field (Mourão-Miranda, Bokde, Born, Hampel, &

Stetter, 2005). SVMs are sufficient models for basic, linearly separable data, but lacked

the capability of neural networks to learn for complex, non-linear data.

In 1992, Hochreiter’s mentor, Jürgen Schmidhuber, attempted to solve the problem

associated with deep networks by organizing a multi-level deep hierarchy which could be

effectively pre-trained one level at a time via random initialization and unsupervised

learning, followed by a supervised backpropagation pass for fine-tuning (Schmidhuber,

1992). This method allows each level of the hierarchy to learn a compressed

representation of the input observation which is in turn fed into the next level as the

successive input. The “vanishing gradient problem” was solved, but it was not until 2006

that deep learning regained and surpassed its original popularity.

By the mid-1990s to early 2000s, the standard learning strategy for deep neural networks

often involved randomly initializing the weights of the network (pre-training), followed

by backpropagation via gradient descent. However, this method has been empirically

shown to find poor solutions for networks with multiple hidden layers (Larochelle,

Bengio, Louradour, & Lamblin, 2009). The computational power to arrive at satisfactory

results was still out of reach. As a result, shallow architectures continued to be the

predominant structure for machine learning algorithms. These shallow architectures

consist of only two-to-three levels of data-dependent computational elements. For

example, kernel machines, such as Support Vector Machines (SVMs), and single-layer

neural networks were popular learning algorithms that made use of shallow architectures.

8

However, it has been shown that deep architectures can be significantly more efficient

(sometimes exponentially) than shallow architectures with respect to computational

elements and parameters needed to fully represent some functions (Bengio, Lamblin,

Popovici, & Larochelle, 2007). Shallow architectures are seriously flawed in their

inefficiency regarding the number of computational units (hidden units), and

consequently require a large supply of training examples (Bengio & LeCun, 2007). On

the contrary, the non-linearity of deep architectures allows highly-varying functions to be

represented compactly, requiring fewer parameters (Bengio, Lamblin, Popovici, &

Larochelle, 2007). While it is not the case that deep architectures are always optimal over

shallow architectures (Salakhutdinov & Murray, 2008), complex high-dimensional

problems with sufficient data to capture the complexity are solved more efficiently and

accurately when adopting a deep architecture for learning (Larochelle, Bengio,

Louradour, & Lamblin, 2009; Lee, Laine, & Klein, 2011). Thus, determining efficient

learning algorithms for deep architectures became a popular area of interest in the

machine learning field.

While deep architectures were promising, the issue remained that many negative

experimental results were suggesting that gradient-based training of randomly initialized

supervised deep neural networks easily got stuck in local minima or plateaus (Bengio,

Lamblin, Popovici, & Larochelle, 2007) and that it becomes increasingly difficult to find

a good generalization as the architecture got deeper (more layers) (Larochelle, Bengio,

Louradour, & Lamblin, 2009).

The algorithm popularized by Geoff Hinton in 2006 revolutionized deep learning as it

employs a deep architecture and introduces a fast, greedy learning method used to

construct multilayer directed networks, layer-by-layer (Hinton, Osindero, & Teh, 2006).

As a result, this algorithm offers a solution to the issue of poor optimization which

originally stemmed from random initialization of the network’s parameters. The

algorithm can quickly find a good set of parameters for the network, even in models with

millions of parameters and many hidden layers. The training method also involves a fine-

tuning component which is capable of learning a very successful generative model,

outperforming discriminative methods and yielding state-of-the-art results of

9

classification of hand-written digits (Hinton, Osindero, & Teh, 2006). A major

breakthrough of this generative model is that it can easily interpret the distributed

representations in the hidden layers of the deep network.

1.4 Restricted Boltzmann Machines and Deep Belief

Networks

The network used by Hinton is composed of several stacked restricted Boltzmann

machines (RBMs). RBMs (originally named “Harmoniums”) were first introduced in

1986 by Paul Smolensky. A single RBM consists of a layer of unconnected “visible”

input units, , that have undirected, symmetrical connections with another single layer of

hidden units, . The network is fully connected between the two layers, yet no units

within the same layer are connected to one another, forming a bipartite graph

(Smolensky, 1986). Each connection between units of the two layers has an associated

weight that must be learned, represented by a weight matrix, (Figure 4). Data can be

generated from an RBM by initializing a random state in one of the layers and then

performing alternating Gibbs sampling, a Markov Chain Monte Carlo algorithm which

approximates the distribution based solely on previous states. Given the current states of

the units in one layer, all the units of the other layer are then updated simultaneously.

This process is repeated until the entire system is sampling from its equilibrium

distribution (Hinton, Osindero, & Teh, 2006). RBMs are generative models, meaning that

the training period results in a probability distribution of the training data being learned.

When the model is later used for testing, it may encounter new, unfamiliar data, but the

probability distribution can account for these previously unseen occurrences, yielding a

likely, probabilistic output.

10

Figure 4: A restricted Boltzmann Machine with weighted connections between a layer of

4 visible input units, x, and a layer of 3 latent hidden units, h.

Hinton’s proposed learning algorithm acts on several RBMs stacked on top of one

another to form a generative model called a Deep Belief Network (DBN). The leftmost

layers (or “lower layers” in some graphical representations) of the network are able to

extract low-level features from the input, . These lower level features are fed into the

rightmost layers (or “upper” levels) which represent more abstract features and concepts

which can explain the input observation. That is, the model initially learns simple

concepts which it uses to build more abstract, higher-order concepts (Hinton, Osindero,

& Teh, 2006; Larochelle, Bengio, Louradour, & Lamblin, 2009). To achieve this

learning, the algorithm involves greedily pre-training one layer at a time, using

unsupervised learning at each level in order to preserve information from the input,

followed by a supervised fine-tuning pass through the entire network (Bengio, Lamblin,

Popovici, & Larochelle, 2007) Once the stack of RBMs has been learned, the entire

stacked DBN can be viewed as a single probabilistic model.

This algorithm is particularly interesting as it provides a method for high-level

representations to be learned from low-level data, depending mostly on a large supply of

unlabelled input and limited labelled data which is used to slightly fine-tune the model

for the current task. This revolutionary learning algorithm for deep architectures

eliminates the problem caused by random initialization leading to poor optimization

solutions. This greedy layer-wise training strategy is a crucial tool for improved

optimizations as it initializes the weights in a region near a good local minimum

(greedily), resulting in internal representations that are high-level abstractions of the

input, leading to better generalizations (Bengio, Lamblin, Popovici, & Larochelle, 2007).

11

The learning strategy is greedy in that optimization occurs by initializing the parameters

of each layer near a good local minimum, independent of the other layers. Adjustments to

the strength each neuron-like unit depends only on the states of the pre-synaptic and post-

synaptic neurons (Hinton, Osindero, & Teh, 2006). The greedy layer-wise algorithm

involves first learning the parameters between the first 2 layers, while assuming all the

other parameters in the remainder of the network are frozen (tied; unchanging). Once the

first set of parameters is learned, the algorithm freezes all layers except the parameters

between the next 2 layers. This process continues until the parameters between every

layer in the network are optimized.

There is no exact solution to the number of hidden layers required to create an optimal

deep network, nor for the number of hidden units per layer. The most common approach

is to validate the model by training and testing on various numbers of hidden layers and

units. The optimal number of hidden layers in the network tends to depend on the nature

of the input data, specifically how it is organized hierarchically in various levels of

abstraction (Heaton, 2008). The decision of units used is crucial to the success of the

model as it greatly influences the outcome. Too few hidden units results in underfitting,

where the model is unable to adequately detect the structure in complex datasets.

Meanwhile, too many hidden units increase the amount of training time and cause

overfitting, where the information contained in the training set is not enough to train all

the neurons (Heaton, 2008). Various pieces of literature provide different “rules of

thumb” regarding the number of hidden units per layer where each layer should have 2/3

the number of input units (Heaton, 2008), between the number of input and output units

(Blum & Rivest, 1992), twice the number of input units (Berry & Linoff, 1997), or 1/30

of the number of training cases (Heaton, 2008). However, there is no generally accepted

support for these suggestions, so validation with test cases is frequently used to crudely

determine the optimal number for the particular dataset.

Deep networks have developed as tools for a wide variety of applications including

classification tasks (Bengio, Lamblin, Popovici, & Larochelle, 2007; Larochelle, Bengio,

Louradour, & Lamblin, 2009), regression (Salakhutdinov & Hinton, 2008),

dimensionality reduction (Hinton & Salakhutdinov, 2006), robotics (Hadsell, Erkan,

12

Sermanet, Scoffier, Muller, & LeCun, 2008), and natural language processing (Collobert

& J. Weston, 2008).

Thus, the original idea of deep learning was not wrong. The earlier setbacks associated

with deep architectures were results of not using enough data and being limited in

computational power. Previous deep neural networks did not successfully learn because

they were not given enough time. However, pre-training allows the network to build a

model that is likely to succeed (rather than starting from randomly initialized

parameters), resulting in less time required by the network to learn.

1.5 Training a Deep Model

Hinton, et al. (2006) provide an algorithm to pre-train each layer of the DBN using an

unsupervised approach. This greedy layer-wise unsupervised learning algorithm first

involves training the lower layer of the model with an unsupervised learning algorithm

which yields some initial set of parameters for that first layer of the network. That output

from the first layer is a reduced representation of the input. This output then acts as the

input for the following layer which is similarly trained, resulting in initial parameters for

that layer. Again, the output from this second layer is used as the input for the next layer

until the parameters for each layer are initialized. The overall output of the network is

delivered as the final activation vector.

Following this unsupervised pre-training phase of stacked layers, the entire network can

then be fine-tuned in the opposite direction using backpropagation in this supervised

learning phase. Backpropagation works by continually readjusting the weights of the

connections between units of the network. The readjustment maintains the goal of

minimizing the difference between the actual output vector of the network (the network’s

activation) and the desired output vector (the true target value). As the weights are

adjusted, the internal hidden units better represent important features of the task domain

which are not explicitly part of the input or output values. This ability to capture useful

new features from the data makes backpropagation a more successful algorithm than

13

earlier, simpler techniques such as the perceptron’s convergence procedure (Rumelhart,

Hinton, & Williams, 1986).

1.6 Autoencoders

In artificial neural networks, backpropagation was developed for improved representation

learning. The process of backpropagation involves readjusting the weights, depending the

on the existence of some expected output. In the 1980s, autoencoders (also called “auto-

associators”) were introduced in order to perform backpropagation without a teacher

(Bourlard & Kamp, 1988). That is, autoencoders offer a method of automatically learning

features from unlabelled data, allowing for unsupervised learning.

An autoencoder is an artificial neural network that is able to be trained in a fully

unsupervised way. In previous neural networks, labelled data were required to act as

training examples essential to the backpropagation fine-tuning pass as those labels were

used to readjust the parameters. However, autoencoders provide the opportunity to learn

without this dependence on labelled data. An autoencoder neural network performs

backpropagation by setting the target output values equal to the input values, and thus the

autoencoder is trained to minimize the discrepancy between the data and its

reconstruction (that is, the difference between the actual output vector and the expected

output vector where that expected output is the same as the input vector). As a result,

autoencoders are able to learn without a teacher.

An autoencoder consists of three or more layers: an input layer; some number of hidden

layers which forms the encoding; and an output layer whose units correspond to the input

layer. Hinton et al. defined an autoencoder as a nonlinear generalization of principal

components analysis (PCA) which uses an adaptive, multilayer “encoder” network to

transform the high-dimensional input data into a low-dimensional code, while a similar

“decoder” network is able to recover the data from the code (Hinton & Salakhutdinov,

2006). That is, an autoencoder network with the same number of hidden units as input

and output units would be a (linear) PCA model.

14

Since the outputs of the network are equal to the input, the autoencoder’s goal is to learn

an approximation of the identity function (Ng, Ngiam, Foo, Mai, & Suen, 2013). While

this may seem like a trivial learning task, placing constraints on the network can reveal

interesting structure of the data. An example of a constraint on the network is a limitation

to the number of hidden units in the hidden layer, thus forcing the network to learn a

compressed representation of the input. This method allows for the discovery of internal

representations of the data that rely on fewer intermediate features. For example, for a

facial recognition task, each pixel of the image may be represented at the input layer.

That data is compressed in the hidden layer into features such as “small mouth” or “wide

eyes.” That is, the input data of the face can be described using less data than is actually

given in the image. That compressed data can then be uncompressed in order to re-

represent the input data at the output layer, allowing the facial image to be reconstructed

entirely from the learned features.

Rather than limiting the number of hidden units, an alternative constraint to the network

could be the sparsity of hidden units that are activated. Sparsity is a useful constraint

when the number of hidden units is large (even larger than the number of input values)

that can allow for the discovery of interesting structure of the data (Ng, Ngiam, Foo, Mai,

& Suen, 2013). A sparse autoencoder has very few neurons that are active. A neuron in

an artificial neural network is informally considered “active” (or “firing”) if its output

value is close to 1, while it is considered “inactive” if its output value is close to 0. The

concept of creating a sparse autoencoder involves constraining the neurons to be inactive

most of the time (Ng, Ngiam, Foo, Mai, & Suen, 2013). As a result, even with many

hidden units, the data is constrained, forcing the network to learn the important features

of the data in order to reconstruct it.

With deep architectures, learning-feature hierarchies are formed when lower-level

features are learned and used to compose higher levels of the hierarchy. Similar to how

RBMs are stacked to form DBNs, this deep approach can be extended to non-linear

autoencoders to form a stacked autoencoder network (Bengio, Lamblin, Popovici, &

Larochelle, 2007; Larochelle, Bengio, Louradour, & Lamblin, 2009). A stacked sparse

autoencoder is a neural network composed of multiple layers of sparse autoencoders in

15

which the outputs of each layer is fed into the inputs of the successive layer (Ng, Ngiam,

Foo, Mai, & Suen, 2013). However, optimizing the weights of autoencoders is a

challenging task. Large initial weights cause autoencoders to find poor local minima,

while small initial weights result in tiny gradients in the early layers, proving it infeasible

to train many-layered autoencoders in this condition (Hinton & Salakhutdinov, 2006).

However, if the initial weights are already close to a good solution, optimization

techniques, such as gradient descent, work well. It follows that employing a similar

“greedy layer-wise” learning algorithm (which was used for DBNs) to stacked

autoencoders is an effective method of pre-training the network of a deep autoencoder

(Hinton & Salakhutdinov, 2006).

To see the structural composition of this stacked autoencoder, first consider the single

layer autoencoder network in Figure 5. Let
 represents the weighted connection

between the unit of layer , and unit of layer , while
 is the bias associated with

unit i in the layer . These values (

) are organized in the matrices for each

unit and layer of the network. Considering a single independent layer model (i.e.: a single

autoencoder of the stack, composed of an input, output, and hidden layer), the matrix

is composed of the weighted connection between the input data and the hidden units,

while contains the weighted connection between the hidden units and the output.

Similarly, represents the biases from the bias unit in the input layer to each hidden

unit, while represents the bias from the bias unit in the hidden layer to the output

layer. That is, each single layer module has a set of parameters ()

representing the weights and biases from the input units to the hidden units, and from the

hidden units to the output units, as shown in Figure 5.

16

Figure 5: A single layer autoencoder which will be the first in the stack. The weighted

connections from the input layer, , join to the hidden layer, , represented by a matrix,

 , and the weights from the hidden layer, , to the output units, ̂, (the representation

of the input) are stored in the matrix (Ng, Ngiam, Foo, Mai, & Suen, 2013).

Note that the output units of the single autoencoder in Figure 5 will not actually present

in the stacked autoencoder. They are simply used for the training of the single layer.

Rather, the activation vector which represents the features detected from the hidden layer

are used as input to the following autoencoder which is added to the stack, as seen in

Figure 6. That is, the hidden units of the first autoencoder can be considered the visible

input units to the next autoencoder. As expected, the output units of the second

autoencoder in the stack are a representation of the hidden units of the first autoencoder

(i.e.: the current autoencoder’s input units). Recalling that each single autoencoder has a

set of parameters () representing the weights and biases from the

input units to the hidden units, and from the hidden units to the output units, let

 represent the parameters for the -th autoencoder.

𝑊 𝑊

𝑏
𝑏

𝑊 𝑊

𝑏 𝑏

17

Figure 6: The second autoencoder in the stack. The output from the first autoencoder’s

hidden feature layer (Figure 5) is used as input to the second autoencoder (Ng, Ngiam,

Foo, Mai, & Suen, 2013).

To perform this greedy layer-wise pre-training, consider a stacked autoencoder composed

to layers. The stacked autoencoder can be greedily pre-trained in order to initialize the

parameters of this deep network, in a similar way as the DBN was trained: train the first

layer using the raw input to obtain parameters for the first

autoencoder in the stack, while the rest of the parameters in the remainder of the network

remain fixed. With these initialized parameters, the raw input can be transformed into a

vector, , consisting of the activations (learned features) of the hidden units. The

autoencoder is able to map the input directly to the hidden layer using a parameterized

closed-form equation called an encoder (Ng, Ngiam, Foo, Mai, & Suen, 2013): Noting

that represents the initial input to the network, x, the activation vector of a layer, l, is

given as

 () Equation 3

𝑊 𝑊

𝑏 𝑏

18

where () is the sigmoid function, while the step is run forward to acquire the following

variable such that

 Equation 4

In other words, denotes the total input to the layer , including the bias, which is

calculated based on the previous activation vector. This encoding step is thus able to

transform the high-dimensional input data into a lower-dimensional code.

The decoding steps are similarly used to map from these learned features from the hidden

space back to the reconstruction of that input. The decoder is a parameterized closed-

form equation used to “undo” the encoding function where

 () Equation 5

 Equation 6

Thus the decoder recovers the high-dimensional data from the code in order to create the

reconstruction of the input (Ng, Ngiam, Foo, Mai, & Suen, 2013).

This output activation vector, , can then be used as input to train the second layer,

yielding the parameters , and thus a new set of features given by the

activation vector is provided. This procedure is repeated for all subsequent layers of the

network, as the output of each new layer serves as input into the next layer, while the

remaining layers are frozen. Finally, the output activation vector from the final layer

 gives the activation of the deepest layer of hidden units which, for the autoencoder, is

the reconstruction of the input vector.

1.7 Brain Parcellation

While the fixed anatomical structure of the brain has been thoroughly studied and

documented, the functional connectivity of the brain is a dynamic, elusive, and less-

understood domain. Unlike other organs, such as the heart, which have dynamic structure

19

with well-defined functions, the brain's static structural networks gives rise to dynamic

functional connectivity which performs a vast array of tasks, facilitating perception,

cognition, and actions (Park & Friston, 2013). The mapping of functional connectivity

through the analysis of resting-state fMRI was first demonstrated in 1995 (Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995), leading neuroscientists to examine the relationship

between resting-state connectivity and the functional organization of the brain, associated

with processes such as language, motor skills, and memory. To better understand how

such diverse, complex function can arise from the brain's static neuronal architecture,

researchers aim to accurately parcellate individual brains based on its functional

connectivity.

Brain parcellation refers to the delineation of structural and functional regions of the

brain (Lee, Laine, & Klein, 2011). It is an important and challenging task to establish

these correspondences across structural and functional brain images. The ability to parcel

out functional brain regions non-invasively would enhance the quality of various

experimental investigations, leading to more accurate across-subject comparisons of

independent functional regions (Cohen, et al., 2008). Successful brain parcellation

provides great benefits to clinical neuroscience and cognitive psychology as the relations

between structure and function become better defined.

Parcellation can be performed by analyzing functional images of the brain. Functional

neuroimaging allows researchers to study the brain's dynamic functional relationships in

real-time, based on the current state of the brain's activity, rather than simply the fixed

anatomical structure of the brain. Current modes of acquiring functional neuroimaging

include fMRI, PET (invasive), fNIRS, EEG and MEG (poor spatial resolution).

Functional magnetic resonance imaging (fMRI) permits researchers to associate

functional activity with specific neuroanatomical regions of the brain with a high degree

of spatial resolution. This non-invasive tool detects changes in blood oxygenation levels

and changes in blood flow resulting from neural activity. When a brain region is more

active, it consumes more oxygen, resulting in increased blood flow to the active area

(Devlin, 2008). As a result, fMRI are able to map parts of the brain which are involved in

20

a particular mental process. The 3-dimensional brain image is composed of units called

voxels, each representing a cube of brain tissue. A voxel is a 3-dimensional building

block of a 3-dimensional fMRI volume, analogous to a pixel being a 2-dimensional

building block of a 2-dimensional image on a screen. Advances in fMRI analysis have

led to the discovery of biomarkers and diagnostic indicators for a variety of psychological

and neurodegenerative disorders (Henley, Bates, & Tabriz, 2005). The ability to

accurately label various brain regions based on function is imperative to understanding

the relationships between brain function and structural appearance. A full understanding

of these correspondences can be applied to understanding the underlying causes of

various metabolic diseases and fine-scale lesions in the brain, potentially leading to major

advancements in treating and curing diseases such as Alzheimer's disease (Henley, Bates,

& Tabriz, 2005).

Many experiments have been developed which use functional neuroimaging to identify

brain regions associated with various cognitive processes. Oftentimes, these

investigations study which brain areas are activated while some task is being performed

(relative to other tasks). However, these experiments are based on a priori hypotheses

since those experiments are designed for the purpose of acquiring this knowledge

(Mourão-Miranda, Bokde, Born, Hampel, & Stetter, 2005). Ideally, a natural, a posteriori

method of searching for functional localization can be developed and implemented for

general use.

There currently exists no standard protocol for such parcellation of the brain into discrete

regions (Bohland, Bokil, Allen, & Mitra, 2009). A variety of software parcellation

packages are available, many of which depend on a labelled brain atlas which associate

physical structure with function. However, each atlas is often developed using a

parcellation protocol which has only been applied to a single individual or it is simply an

amalgamation of various brains (Lee, Laine, & Klein, 2011), thus these software

packages are often inconsistent as they offer different descriptions of neuroanatomical

organization. An alternate approach to parcellation involves researchers co-registering

brain images to each other, using a template or labelled brain atlas of the same imaging

modality. However, these registration methods assume image similarity is a stand-in for

21

anatomical similarly which is often not the case (Lee, Laine, & Klein, 2011). Recent

large-scale efforts have been established to manually apply standard brain parcellation

techniques to many different brain images (www.braincolor.org/protocols), but manual

parcellation is tedious, time-consuming, and heavily dependent on expertise the area

(Lee, Laine, & Klein, 2011). Automatic brain parcellation is a significantly more

reasonable approach than manual, yet the intrinsic variability of the human brain makes

the task of defining consistent correspondences across brains a challenging one for both

humans and computers (Lee, Laine, & Klein, 2011).

The ability to parcellate functional regions of the brain without relying on standard

mappings allows for subject-specific parcellation, providing better diagnoses and

understanding of unhealthy or abnormal brains. For example, stroke patients suffer

permanent damage resulting in lesions in the brain and they subsequently lose the ability

to perform corresponding functions which were originally attributed to the now-damaged

area. However, some patients are able to recover the lost function over months or years.

While the irreversible damage is still present, this re-learning of the function indicates

that another area of the brain has learned to compensate and provide the functionally lost

(Schmah, Hinton, Zemel, Small, & Strother, 2008). Therefore, a subject-specific

functional parcellation technique which relies only on the functional connectivity (and

not anatomic structure) would allow specialists to see the area of the brain providing the

recovering function.

To help alleviate the challenges stemming from subject specific parcellations, automated

parcellation schemes have been developed which do not depend on the use of a brain

atlas. Automatic learning techniques such as Support Vector Machines (Mourão-

Miranda, Bokde, Born, Hampel, & Stetter, 2005), Principal Component Analysis (Zhong,

Wang, Lu, Zhang, Jiao, & Liu, 2009), independent component analysis (McKeown &

Sejnowski, 1998) or single-layer neural networks are used to learn the appropriate

neuroanatomical categorization of fMRI image data. However, a major drawback of

current automatic brain parcellation strategies is that they typically depend on algorithms

with shallow architectures which have been shown to be limited and non-optimal when

http://www.braincolor.org/protocols

22

learning complex high-dimensional features (Bengio & LeCun, 2007). In addition, these

techniques heavily rely on labelled training examples data for supervised learning.

Data-driven clustering algorithms offer another approach to partition the brain into

distinct functional regions. Kelly et al. (2012) present a voxel-wise classification of brain

imaging data into natural subsets (clusters) based on intrinsic functional connectivity

using clustering algorithms. The algorithm used assigns each unit of data (each voxel) to

the same cluster, given that the voxel is more similar to voxels assigned to that particular

cluster than any other cluster (Kelly, et al., 2012). The similarity between all pairs of

voxels of intrinsic functional connectivity patterns used for this partition can be

quantified using . The metric is used to measure effect size, which represents the

strength of the relationship between two variables. When used to evaluate the similarity

(as a ratio of variance) of each voxel against every other voxel, the value for each pair

ranges between 0 (no agreement) and 1 (identical). Cohen et al. (2008) introduced the

statistic for the purpose of delineation based on functional connectivity, suggesting that it

provides a better measure of similarity between two images than spatial correlation

because it accounts for differences in scaling and offset between images, while

correlation does not take these factors into account (Cohen, et al., 2008). The matrix

can be calculated as

∑ ()

 ()

∑ () ()

Equation 7

where and are the values of the voxel at location in the maps and (i.e.: a

correlation matrix), is the mean value of and (i.e.: ()), and is the

grand total mean of across all voxels. The k-means clustering algorithm uses this

statistic to measure similarity in order to partition each voxel into a cluster which

represents a functional brain region. The algorithm was used to delineate the functional

areas of the brain's insula – a component of the brain used for tasks including sensory,

somatic, cognitive, and emotional processing (Kelly, et al., 2012).

23

Most current automatic partitioning techniques continue to depend on heuristic manual

feature engineering (Lee, Laine, & Klein, 2011) which is costly, error-prone, and

impractically dependent on human expertise in the problem domain, thus compromising

the generalizability of the model. For example, while k-means clustering is relatively

effective approach to partitioning, it depends on human expertise and interpretation of the

problem domain in order to select a k-value to represent the number of clusters a priori.

K-means clustering discriminates and is biased towards the training data set. For

example, consider a k-means algorithm set to organize the data into 5 clusters. If an input

that should (ideally) be partitioned into some 6
th

 cluster is encountered, it will be

classified incorrectly. K-means clustering can be biased in this way and it often does not

generalize well, especially for more complex data sets. Additionally, k-means clustering

is very sensitive to initial conditions, thus with different starting conditions, the same k-

means algorithm may result in different partitions of the same data set. Furthermore,

while deep learning can be regarded as high-level feature-extraction, k-means clusters

can be a feature-extractor as well. However, k-means is conceptually equivalent to a

single layer of a deep network and thus suffers the disadvantages associated with shallow

architectures.

In general, the drawbacks of current automated brain parcellation are that they 1) employ

algorithms with shallow architectures, 2) they are based on heuristic manual feature

engineering, or 3) they assume the validity of the underlying feature model (Lee, Laine,

& Klein, 2011). Lee et al. (2011) have attempted to account for these shortcomings by

approaching the task of brain parcellation via deep learning. Specifically, convolutional

deep neural networks are used: Training of the deep network is initiated by performing a

forward propagation pass. Two-dimensional fMRI images were broken up into 28 by 28

image sites where context-aware feature learning is used to obtain the parcellation labels

with the greatest probability, composing the convolutional layers of the network. The

output of these convolutional layers are fed into simple subsampling (pooling) layers in

order to reduce the computational expense of the model, while introducing scale

invariance of the learned features. The output nodes of the network are then compared

with expected labels provided by human experts. The errors can be backpropagated

24

through the network to iteratively fine-tune the parameters. The parcellation is validated

by the Dice coefficient, , which is used to measure the agreement between the expected

output (provided by experts) and the learned brain parcels. The score ranges from 0 to 1

where 1 indicates a perfect agreement. In general, was low for small brain parcels

when compared to larger brain structures, indicating less accurate parcellation of finer

functional areas. The low parcellation performance and the high inter-subject variability

were attributed to the limited training set used for the study (Lee, Laine, & Klein, 2011).

Regardless, the architecture, learning process, and consequent results indicate that deep

learning is a viable tool for successful two-dimensional brain parcellation.

The method presented in Chapter 2 proposes a promising approach for automated voxel-

wise brain parcellation using stacked sparse autoencoders for unsupervised learning of

three-dimensional fMRI data. Semi-supervised softmax regression will be used for voxel

classification based on ground-truth labels of brain regions. This technique is

implemented under the hypothesis that the patterns of connectivity underlying the fMRI

data are of high dimension with features organized complexly in multiple levels of

abstraction which can be extracted most effectively by a nonlinear deep autoencoder. The

implementation details and parcellation results will be presented in Chapter 3, while

Chapter 4 will serve as a final discussion and conclusion of the thesis’s findings,

weaknesses and significance.

25

Chapter 2

2 Methodology

The design and methodology of developing the presented solution to automated brain

parcellation via deep learning will be outlined in this chapter. Beginning with raw

resting-state fMRI data, a sparse deep autoencoder will be implemented in the Python

programming language, learning to classify neural voxels based only on their functional

connectivity with one another, without regard for their anatomic relations. A general

summary of the algorithm for brain parcellation is outlined in the following 6 steps which

will be further investigated in this chapter: 2.1) Prepare the data, 2.2) Pre-train the

autoencoder, 2.3) Train the softmax classifier, 2.4) Fine-tune the entire network, 2.5)

Parcellate new data, and 2.6) Visualize the parcellation.

2.1 Prepare the Data

The fMRI data of 10 different subjects were used for the training of the autoencoder. The

size of this dataset allows for feasible runtime, but further investigation of this approach

would benefit from a larger sample size. For each subject, the raw preprocessed data is

first loaded into a xifti file format – a format developed for storing neuroimaging data

with metadata for use with Python and C programs. The subject's functional and

anatomical brain images are also loaded into the program to provide reference for the

xifti file. From that file, a correlation matrix is produced using Python’s NumPy library,

associating the time course of each brain voxel against every other voxel. Thus a single

row represents the similarity between a single voxel and every other voxel. Consider the

case with voxels, . An matrix can be formed, composed of Pearson

product-moment correlation coefficients, , such that the coefficient of is at position

 in the matrix. The coefficient is defined as the covariance of two variables (i.e.:

), divided by the product of their standard deviations. That is,

 ()

 [()()]

 Equation 8

26

where is the covariance, is the standard deviation of , is the mean of , and

is the expectation (the expected outcome given the probability of each potential

outcome). The coefficients range from [-1,1] such that 0 indicates no correlation, 1

indicates perfect positive correlation, and -1 indicates negative correlation between the

voxels. The matrix is symmetric since the correlation between voxels equals the

correlation between voxels . Additionally, the diagonal of the matrix is always 1

since there is perfect correlation between a voxel’s time-series and itself.

From a row-wise comparison of the matrix, similarities among rows indicate stronger

global associations of connectivity. To measure these associations, this correlation matrix

of voxels will be converted to an matrix, as seen in Figure 7. (Note that “ ”

is the alphabetical character referring to the number of voxels, while “ ” is the Greek

character “eta” described as follows) while The statistic (Equation 4) describes the

strength of the similarity between the voxels, as it represents the ratio of variance

between each voxel and all the other voxels. Like the correlation matrix, the matrix

will be symmetric where a single row represents the strength of the connectivity between

a single voxel and each other voxel.

27

Figure 7: A 442 442 matrix depicting the global patterns of functional connectivity

among the 442 voxels from the fMRI data. One row of the matrix represents one voxel’s

connectivity with each of the 442 voxels representing in the columns. The closer is to

1 (red/darker), the stronger the association.

Using such a matrix allows for the analysis of global correlation patterns among voxels.

Rather than just investigating the interaction between each two voxels, the matrix allows

for the investigation of how each voxel relates to the rest of the voxels as a whole.

Therefore, it is the entire normalized matrix that serves as the initial low-level features

of input fed into the stacked autoencoder. Each row of the matrix is a vector acting as a

single input (visible) unit into the network from which the inherent latent factors will be

extracted, activating the hidden layers of the network.

The whole brain can be investigated using the data or, if a particular area is of interest, a

mask can be applied to the data, allowing the learning procedure to only act on that

brain area. While less information is learned if an area is masked out, the problem

becomes much smaller and easier to manage, resulting in a faster runtime. For this

reason, this thesis will be focusing on the functional connectivity of the medial parietal

cortex – an area of the brain associated with sensorimotor integration, regulating the

28

relationship between the sensory and motor systems for tasks such as hand-eye

coordination. Therefore, only the data associated with this region is considered as the

remainder of the data is masked out and ignored.

Once the fMRI data is in the suitable form of input data (a normalized matrix), the

deep sparse autoencoder and softmax classifier will be trained and used for parcellation

of the brain region’s voxels. The final program is dynamic, allowing the user to input

new fMRI data while specifying the desired number of hidden layers and hidden units per

layer in the autoencoder. The remainder of this chapter outlines the procedure followed to

achieve this goal.

2.2 Pre-train the autoencoder

Previous deep learning approaches used random initialization of parameters before

training a network. This was a major downfall of previous deep neural networks as a vast

amount of time was required for the networks to learn, making the technique infeasible

for practical learning. However, Hinton's more recent method involved greedy layer-wise

pre-training of each layer by initializing the parameters near a local minimum (Hinton &

Salakhutdinov, Reducing the dimensionality of data with neural networks, 2006). By pre-

training each layer, less time is required to learn the optimal parameters and the model

becomes significantly more computationally powerful. Recall that with a stacked

autoencoder, each subset of adjacent layers can be viewed as a single-layer autoencoder.

Therefore the output activation vector from the first autoencoder in the stack is then used

as input to the second autoencoder in the stack. Pre-training involves setting the

parameters between adjacent single-layer autoencoders independent of the other

autoencoders in the network. As one set of parameters is being determined (e.g.: the

parameters between layers 1 and 2), the remaining parameters of the network (between

layers 2 and 3, layers 3 and 4, etc.) remained fixed. Recall that the parameters of the

network are () where and are matrices representing the weighted connections

and biases, respectively, joining the units of adjacent layers of network.

29

The following process outlines the method for pre-training each set of parameters

between layers of the network, while also computing the activation features extracted

from each unit of that hidden layer. This activation vector output of each layer is in turn

used as input for the pre-training of the following layer in the stacked autoencoder. This

process demonstrates that the greedy layer-wise pre-training makes use of the same

algorithm applied multiple times, once to each layer of the network, until the entire

network has been pre-trained with optimized parameters.

Given a network of layers, the pre-training will be performed on each layer

independently. Thus, for each layer, , in the network:

2.2.1) Initialize the parameters () to small near-zero values

 2.2.2) Optimize the parameters by minimizing the cost function, ()

 2.2.3) Calculate the output activation vector, , and set it as the input for layer

 . If (i.e.: the last layer), , is stored for input to the softmax model

The following subsections elaborate of these pre-training steps for a single layer of the

autoencoder.

2.2.1 Initialize parameters

The goal of the pre-training is to minimize the cost, (), as a function of and

 in order to set the parameters in a good neighbourhood for further training. In order to

do so, these parameters at each layer must be initialized to some small, random, near-zero

value. It is crucial that these parameters are not simply originating at values of 0 as such

an initialization would result in all the hidden layer units learning the same function of

the input (Ng, Ngiam, Foo, Mai, & Suen, 2013).

2.2.2 Optimize parameters

2.2.2.1 Optimization Method

The cost function is minimized using the Limited memory BFGS (L-BFGS) optimization

algorithm provided in SciPy's optimization package. BFGS is a quasi-Newton

optimization method. Newton optimization methods require the gradient of partial

30

derivatives of the function, as well as the inverse Hessian matrix (matrix of second order

partial derivatives) – a large, costly, and complex factor to store and compute, making it

infeasible for large optimization tasks. However, quasi-Newton techniques overcome this

obstacle by instead using an approximation of the inverse Hessian matrix, which the

method can extract from the first partial derivatives. Regardless, even the quasi-Newton

BFGS method’s approximation of dense inverse Hessian requires significant memory

resources. Therefore, the Limited memory BFGS method offers a solution to this

limitation by only using minimal vectors to represent the matrix implicitly, rather than

fully calculating and storing the full inverse Hessian in memory (Galen & Jianfeng,

2007).

Stochastic gradient descent (SGD) is a simple alternative optimization technique

commonly used in training. However, it not only requires addition fine-tuning of

parameters (a learning rate), but it has been shown to be outperformed by L-BFGS when

training large datasets. In particular, when comparing the two approaches for sparse

autoencoder optimization, L-BFGS has demonstrated faster and more stable training (Le,

Ngiam, Coates, Lahiri, Prochnow, & Ng, 2011). L-BFGS is a sophisticated, yet easy-to-

use off-the-shelf optimization method that offers fast, reliable results, while requiring

only the function to optimize and its gradient. For these reasons, L-BFGS is used

throughout the project for optimization.

2.2.2.2 Cost Function

Starting with randomly assigned, near-zero values for the parameters, pre-training is done

by training each layer individually. Thus as the first layer is pre-trained to find some

optimal parameters, the remaining layers remain fixed. The input data of the entire model

is used as the input data to the first layer. This data is used to determine the parameters

which minimize the cost function of the sparse autoencoder, (), and the

corresponding derivatives of () with respect to the parameters ().

The () cost function is the sum of three components: a) the average sum-of-

squares error term, b) the weight decay term, and c) the sparsity penalty. The following

subsections build the complete equation needed for the stacked sparse autoencoder.

31

a) Average Sum-of-Squares Error Term

The first term of () is the average sum-of-squares error term. This term

measures the discrepancy between the observed data and the expected/estimated data.

Given a set of training examples, () () , where is the -th input

and is its corresponding label, a neural network can be trained using L-BFGS

optimization. The cost function of a single training example () can initially be defined

as

 ()

‖ (

) ‖

 Equation 9

where is the hypothesized output of the particular unit, indicating the likelihood that

the neuron will be firing. Specifically, () (∑)
 (Equation 1), as

calculated in the encoding step of the autoencoder. Recall that () is the sigmoid

function ()

 used to scale the output within the range [0,1]. Meanwhile,

‖ (
) ‖ is the Euclidean distance between and . Thus to define the mean

sum-of-squares error over all training examples, the cost function starts out as

 () [

∑

‖ (

) ‖

] Equation 10

b) Weight Decay Term

The second term of the cost function is the weight decay term. Also called a

regularization term, a weight decay term is used to add a penalty to the error function.

This term is useful for decreasing the magnitudes of the weight, thus minimizing the risk

of overfitting. Without this penalty, large weights can cause excessive variance to the

output (Geman, Bienenstock, & Doursat, 1992). Therefore the weight decay term is used

to regularize the weights by decreasing their magnitude.

The weight decay parameter, λ, is used to control the relative importance of the weight

decay term of the cost function. Too small of a λ will tend to overfit the data, while too

32

large values of λ likely underfits the data, both leading the poor predictions. The value is

optimized using a grid search. As a result of adding the weight decay term, the cost

function is now

 () [

∑

‖ (

) ‖

]

∑ ∑ ∑(

)

Equation 11

where is total number of layers in the network and is the number of hidden units in

the layer.

c) Sparsity Penalty Term

While
 represents the output activation of the j-th hidden unit of the first autoencoder

in the stack, let
 () explicitly represent the output activation of that same hidden unit

given some particular input .

The sparse functional connectivity of the brain has been justified through observation as

neurological findings have demonstrated that neurological processes usually only directly

interact with few other brain regions (Huang, et al., 2009). Therefore, under the

reasonable assumption that the underlying data from the fMRI is sparse, a sparsity

constraint is placed on the network, limiting the activation of the hidden units with the

goal of discovering the underlying structure of the data, regardless of the number of

hidden units used. To establish the sparsity constraint on the autoencoder, ̂ represents

the average activation of a particular hidden unit, resulting from all the inputs to that unit.

That is,

 ̂

∑[

 ()]

 Equation 12

where ̂ represents the average activation of the hidden unit j averaged over the set of m

training examples. Further, the constraint is set such that ̂ where is the sparsity

parameter of the entire network, the value of which is typically close to 0 so that the

distribution of activations is highly peaked at zero in order to maintain overall sparsely

33

active neurons in the network. For example, if = 0.05, most of the hidden units must

have activations close to 0 in order to maintain an average activation of each hidden unit

in the network near 0.05, the desired overall sparsity.

To achieve this requirement of equality between ̂ and , an additional penalty term

based on Kullback-Leibler divergence is added to the cost function, used to penalize ̂

when deviating significantly from (Hinton, A Practical Guide to Training Restricted

Boltzmann Machines, 2010). KL-divergence measures the difference between two

probability distributions. Specifically,

∑ (̂

) ∑(

 ̂
 ()

 ̂
)

Equation 13

is a measure of the information lost when is used to approximate ̂, while summing

over all the hidden units in the layer.

Thus, the term enforcing sparse activation is added to the cost function, penalizing the

units of the autoencoder that are active:

 () [

∑

‖ (

) ‖

]

∑ ∑ ∑(

)

 ∑ (̂

)

 Equation 14

where is the sparsity parameter, used to control the relative weight of the sparsity

penalty term.

2.2.2.3 Gradient

Backpropagation is used to determine the gradient vector of the partial derivatives of the

function. Common backpropagation procedures require some expected results to compare

with the actual results, and are therefore reliant on supervision. However, recall that the

fundamental concept behind autoencoders dictates that the output of the network is a

reconstruction of the input, where the hypothesized output is approximated by the input

(i.e.: ()).

34

The gradient of the overall cost function, (), is determined from the following

partial deriviatives (noting the weight decay term is only applicable with respect to W,

not b):

 () [

∑

 ()

]

 Equation 15

 ()

∑

 ()

 Equation 16

where the partial derivatives of the cost function, (), with respect to a

single training example, (), are given as

 ()

 Equation 17

 ()

 Equation 18

These partial derivatives of individual examples are determined via backpropagation. The

output activation value of each node in the layer ,
 is calculated using the encoding

equation with the current parameters and then compared with the expected output (i.e.: a

reconstruction of the input value since it is an autoencoder) and an error term,
 , is

calculated to represent the amount that the node contributed to the discrepancies

between the actual and expected output.

The error term is first calculated at the last layer, then propagated backwards through the

preceding layers. For the last layer in the network, when , the error term is defined

as

 ‖ ()‖

 (

) (
) Equation 19

Note that if ()

 is the sigmoid function, the derivative is given by

35

 () ()(()). Since the activation of a network is defined as
 (

),

then (
)

 (
)

For each remaining layer, , in the network (from) the error term

is based on the error of layer (the succeeding layer) and takes sparsity into account,

defined as

 ((∑

) (

 ̂

 ̂
)) ()

Equation 20

Now that the cost function and partial derivatives which make up the gradient vector have

been determined (Equations 15 and 16), the L-BFGS algorithm is run and the parameters

are updated.

2.2.3 Compute the activation vector

Once the cost function for the current layer has been minimized and the optimal

parameters are returned, those parameters of the current layer are then fed into the feed-

forward encoding steps (Equations 3 and 4), thus extracting the activation feature output

of that layer, scaled to a value within the range of [0,1] by the sigmoid function.

In order to stack each single layer autoencoder to form a deep autoencoder, the output of

the preceding layer is in turn used as the input for the following layer of the autoencoder.

So while the raw data is used as input into the first layer of the network, the input for

each following layer is now set to be the value of the activation vector of the previous

layer. The above pre-training process (parameter initialization, optimization, and

encoding of activation vectors) continues until the entire network of layers has been

pre-trained. Finally, the activation of the last layer in the network, , will be calculated,

fundamental in achieving the ultimate goal of this project – to parcellate voxels into

functional brain regions.

36

2.3 Train the softmax classifier

After having trained each layer of the network on the unlabelled data, the parameters are

now starting at a better location in parameter space than if they had been randomly

initialized – thus accounting for a fundamental flaw in previous deep networks. In

addition, the final output of the network, , has been calculated – a feature vector which

provides a reconstruction of the input with respect to its high-level features. These

features can be fed into a classifier in order to perform classification of the sparse stacked

autoencoder’s input value. Continuing from the stacked autoencoder being constructed in

Figures 5 and 6, Figure 8 illustrates the concept of the last hidden layer’s activation

vector serving as raw input to the softmax classifier. Note that the softmax classifier is

not considered an additional layer in the network.

Figure 8: Continuing to build the stacked autoencoder from Figures 5 and 6, the

activation vector resulting from the last hidden layer in the network is used as input to the

softmax classifier which determines the probability of each possible label (Ng, Ngiam,

Foo, Mai, & Suen, 2013).

In general, a classifier can be defined as a function that receives values of various

features from training examples (independent variables) and provides an output which

predicts the class or category that each training example belongs to (dependent variables)

(Pereira, Mitchell, & Botvi, 2009). In the case of this project, each row of the matrix

37

represents a comparison of a voxel’s global pattern of functional connectivity with those

of all other voxels, which serves as input to the network. The goal of the classifier being

trained is to segment the voxels based on their patterns of functional connectivity.

Logistic regression is a common supervised classification model used to classify data into

one of two possible categories. However, brain segmentation is much more complex and

there exist many potential functional brain regions in which a voxel may reside.

Therefore, a softmax regression model (also known as “multinomial logistic regression”

– which generalizes logistic regression) will be used for this multi-class classification,

allowing each voxel to be classified into one of many possible function brain regions.

Since these regression models require labelled data, the softmax classifier will be training

using a limited number of labelled training examples in the form of ground truth labels

provided by two neuroanatomist at the Rotman Research Institute at Baycrest Hospital in

Toronto. As a result, the classification step is neither supervised nor unsupervised, but

rather semi-supervised. The labels used are well-defined within their functional regions,

thus not compromising the accuracy of the classification.

Given a limited set of labelled training examples, () () , where is

the -th input and is its corresponding label/classification, a softmax regression model

dictates that can take on any one of possible values (where is the total number of

potential classifications), such that . By contrast, binary classification with

logistic regression limits the label such that . The softmax model performs the

classification by predicting the probabilities of the possible outcomes given the inputs.

For convenience, consider an alternate notation for representing the parameters of the

network. For each layer, , let represent a single long, one-dimensional vector

consisting of the flattened parameter matrices of () concatenated together.

Furthermore, let represent a matrix stacking
 thus storing all parameters of

the network in a single variable.

The cost function associated with binary logistic regression is defined by the following

equation:

38

 ()

[∑∑ { } (|)

] Equation 21

where 1{∙} is an indicator function. The function evaluates to 1 if {∙} is true, otherwise it

evaluates to 0 if {∙} is false. That is, 1{true} = 1 (e.g.: 1{1+1 = 2} = 1) and 1{false} = 0

(e.g.: 1{1+1=3} = 0). For the purpose of this project, the indicator function will represent

the correspondence with standard ground truth labels. Thus if the output corresponds to

the ground truth label, the term indicator function evaluates to 1.

Note that when dealing with multi-class softmax regression, the function must sum over

all possible values (i.e.: from rather than). In addition, softmax

regression holds that given some input , the probability of the unit ’s label taking on the

each of the potential values () is represented as

 ()

∑

 Equation 22

In continuing to develop the softmax regression cost function, the problem of over-

parameterization must be addressed: the function allows multiple parameter settings to

exist that result in the same output. Therefore, a weight decay term will be added to the

cost function, penalizing excessively large values of the parameters, thus preventing

overfitting.

As a result of these changes to the logistic regression cost function, the softmax

regression cost function is formally defined as

 ()

[∑ ∑

∑

]

[∑∑

] Equation 23

To implement softmax regression, this function will be optimized via L-BFGS. The

gradient is

39

 ()

∑ ({ } (|))

 Equation 24

Now given the cost function and gradient, the final activation vector output from the last

layer of the stacked autoencoder determined during pre-training, , is used as input to

the softmax classifier (Figure 9). The cost function is minimized using the L-BFGS

optimization algorithm to train the classifier and further improve the parameters.

Figure 9: The entire stacked autoencoder with two hidden layers, viewed as a single

model capable of classification. The output activations of the second (and final) hidden

layer are input into the softmax classifier (Ng, Ngiam, Foo, Mai, & Suen, 2013).

2.4 Fine-tune the stacked autoencoder

A fine-tuning pass is commonly used in training to improve the performance of the

stacked autoencoder. While layer-wise pre-training is used for finding the features of the

network, fine-tuning is used to slightly modify the features of the network in order to

adjust the boundaries between the classification classes (Hinton, 2007). To implement

fine-tuning of the entire network, all the layers must be treated as a single model. A

single iteration of fine-tuning improves all the weights of the stacked autoencoder, at

every level. A similar technique can be used for this fine-tuning step as was used to pre-

40

train the parameters by minimizing the () function by implementing a similar

backpropagation step to get the gradients. Using the latest parameters discovered during

classification, fine-tuning involves performing L-BFGS optimization with the goal of

reducing the error between the actual output of the softmax model and the expected

output (i.e.: the reconstruction of the input). The same cost function and gradient defined

in Equations 23 and 24 are used, respectively, and the parameters are updated for the

final time.

2.5 Parcellate new fMRI data

Now that both the network and the classifier are fully trained with putatively optimal

parameters, entirely new data can be fed into the stacked autoencoder for classification

provided by new subjects. While fMRI data from 10 subjects was used to train the

autoencoder, the fMRI data from 2 subjects were retained for testing. For each test, 1 of

the 2 test subjects was randomly selected for the new parcellation. Note that the training

data was not used for testing. The new subject’s fMRI data is processed into a normalized

 matrix to represent the global patterns of functional connectivity among voxels using

the approach presented in Section 2.1. Starting from this low level data, higher level

features will be extracted at each new layer of the autoencoder. Finally, the trained

softmax classifier outputs a vector of digital labels where each row of the matrix (each

voxel) yields a corresponding label. This vector of labels can then be re-associated with

the anatomical structure of the brain to depict the parcellation.

2.6 Visualize the parcellation

NIfTI (Neuroimaging Informatics Technology Initiative) is a data format in which the

classification of each voxel can be assigned to its anatomical counterpart in brain space.

The 3D NIfTI image resulting from the predicted labels will colour-code voxels such that

voxels belonging to the same functional brain region will the same colour. An anatomical

3D image of the brain may underlay the labels to illustrate the parcellation directly on the

brain’s structure. Alternatively, the NIfTI image of the predicted labels may be compared

with a NIfTI image created from the ground truth labels that are commonly accepted

41

among experts. This comparison allows for the general visual analysis of the success of

the functional brain parcellation via unsupervised deep learning.

Chapter 3 presents the findings of implementing this stacked autoencoder for automated

brain parcellation. The results will be analyzed and compared with expected functional

segmentations, measuring the accuracy and success of this solution.

42

Chapter 3

3 Implementation and Results

3.1 Preprocessing

The deep sparse autoencoder was trained on fMRI data from 10 different subjects. The

dataset contains resting-state fMRI scans (and associated anatomical scans) for 10 right-

handed adults (5 male) ranging in age from 21 to 35 years. None of these participants had

a history of neurological or psychiatric illness. MRI data were acquired with a 3 T

Siemens TimTrio MRI scanner using a 32-channel head coil. Functional volumes

consisted of 36 slices acquired parallel to the ACPC axis using an interleaved slice

acquisition order and an echo-planar imaging pulse sequence (TR = 2000 ms, TE = 30

ms, flip angle = 78 , 64 × 64 matrix, 21.1 × 21.1 cm FOV, 3 × 3 × 3 mm voxel

resolution). A total of 300 functional volumes were collected from each participant. In

addition, a high-resolution anatomical scan (192 slices, 256 × 256 matrix, 21.1 × 21.1 cm

FOV, 1 × 1 × 1 mm voxel resolution MP-RAGE pulse sequence) was acquired from each

participant to assist in visualizing the results of functional analyses and aid in

preprocessing.

The use of 10 subject samples allowed for a variable unlabelled training set, while the

sample size was small enough to be computationally feasible in training and testing

hundreds of autoencoders with various parameters. However, further investigates of this

technique would likely benefit from a larger dataset if the resources are available. The

study focuses specifically on the functional parcellation of the medial parietal cortex,

therefore a mask is applied to the fMRI information to isolate that region of interest.

Therefore the input data is composed of the intersection of the total fMRI data with the

mask, ignoring the rest of the brain. By doing so, less of the brain is segmented, but the

algorithm runs faster on the drastically reduced number of voxels – a requirement given

the limited resources and the need for a combinatorial parameter search. The medial

parietal cortex, composed of 442 voxels, will be segmented by the deep autoencoder.

43

Thus a single matrix for one subject is a 442 442 matrix where each row represents

the global patterns of functional connectivity between that voxel and all other voxels of

the medial parietal cortex. A total of 10 matrices are used as unlabelled training sets

for the autoencoder to optimize its parameters during training. Once training is

completed, the autoencoder can be used to parcellate new fMRI data, the resulting output

of which will be a 1 442 array of labels corresponding with the 442 voxels of the

subject’s medial parietal cortex in the common functional reference space.

3.2 Implementation Details

The training of the deep autoencoder is performed multiple times, using a range of hidden

layers and a range of hidden units per layer for each run. Consider an autoencoder with

hidden layers. Each of the hidden layers are trained and tested with a range of hidden

units from 200 to 1000, in increments of 200, such that each combination is used. That is,

since there are 5 possible numbers of hidden units per layer (200, 400, 600, 800, 1000),

there is a total of 5
n
 autoencoders trained and tested for an autoencoder with hidden

layers. As outlined in chapter 1, the choice of number of hidden units per layer is not well

established as it ranges from suggestions of two-thirds to twice the number of input units.

However, these rules of thumb are not heavily supported either empirically or

theoretically, so many tests are performed with varying numbers of hidden units.

Deep autoencoders with 2, 3, and 4 hidden layers will be investigated using this process.

Networks with 5 and 6 hidden layers are of interest, but infeasible to test using the same

strategy as the addition of more layers (of hundreds of units) drastically increases the

training time (5
5
 = 3125 and 5

6
 = 15625 runs of training and testing would be required).

Therefore, networks with 5 and 6 hidden layers are tested with 200, 600, and 1000 units

per hidden layer (a total of 3
5
 = 243 and 3

6
 = 729 runs, respectively).

While the parameters of the neural network are represented as (), the training of the

network also depends on the hyperparameters , , and which represent the weight

decay parameter, sparsity parameter, and weight of the sparsity penalty of network’s cost

function, respectively. The values of the hyperparameters were determined independently

for networks with each number of hidden layers. A grid search was used, keeping all

44

hyperparameters constant expect the one being optimized. Table 1 shows the final

optimal values discovered for these hyperparameteres.

Table 1: The hyperparameters used for training the autoencoders of various depths.

Number of Hidden Layers

2 0.00003 0.040 0.3

3 0.00005 0.035 0.5

4 0.00001 0.045 0.3

5 0.00001 0.045 0.1

6 0.00003 0.040 0.5

In addition to the deep autoencoders trained and tested, an autoencoder with 1 hidden

layer was implemented to provide a comparison of the deep model with a model similar

to PCA. As introduced in Chapter 1, an autoencoder with a single linear hidden layer

behaves similarly to PCA. The thesis investigates deep autoencoders under the hypothesis

that the functional connectivity of the voxels captured in the fMRI data is nonlinear,

therefore the results from this PCA model will provide insight as to the nature of the

input used and whether a deep learning approach is worth the significant computational

cost (training time and computational resources) when compared to a linear approach.

3.3 Results

As outlined in Chapter 1, there does not exist a standard method of parcellating

functional brain regions into discrete regions nor is there a gold standard parcellation to

use for comparisons, thus limiting the quantitative analysis of the resulting parcellation.

However, for the purpose of investigating the success of the deep autoencoder, the

learned labels which represent the grouping of voxels are compared with a set ground

truth, commonly accepted labels, which were verified by two neuroanatomists, to check

for validity.

The Dice coefficient is a statistic to measure the spatial overlap (similarity) of two

samples, commonly used for segmentation evaluation in medical imaging (Lee, Laine, &

Klein, 2011). Using this metric to evaluate the algorithm will allow for simple

comparisons with other studies and alternative approaches. The Dice coefficient, , is

determined by the following equation:

45

Equation 25

where and are the two sets being compared, indicates the size of the set, and the

operator represents the union of its operands. In the case of the parcellation technique

being examined, the two sets are the ground truth labels and the parcellation labels

acquired from the algorithm. The value of ranges between 0 (no overlap) and 1

(perfect agreement).

The Dice coefficient is calculated for each parcellation resulting from each trained

autoencoder with every combination of hidden units per layer. Appendices A - D show

tables of the resulting values for each autoencoder trained and tested with 2 – 5 hidden

layers. The most successful parcellation with = 0.678 was achieved with 5 hidden

layers of 600, 600, 1000, 1000, 200 units per respective layer.

Investigating the trend of parcellation accuracy with respect to the number of hidden

layers of the autoencoder, Figure 10 shows the value for all the runs, grouped by

number of hidden layers in the autoencoder, organized in a violin plot with a boxplot

overlaid. A violin plot is similar to a box plot, but it roughly shows the probability

density of the data at various values. That is, the figure shows the distribution of

values for all tests for each number of hidden layers. The wider the plot, the greater

proportion of runs with that particular were recorded.

46

Figure 10: Violin and box plots depicting the distribution of Dice coefficients from

parcellations trained and tested on autoencoders with 2 – 6 hidden layers.

From the graph, it is evident that the parcellations were most accurate when 4 and 5

hidden layers were used in the autoencoder. At the 6
th

 layer, the accuracy declines. As

shown in the graph, the distribution of for autoencoders of the various depths is

approximately normal. The minimum, maximum, and mean values are summarized in

Table 2. The standard error of the mean of for each number of hidden layers,

, is calculated as

√
 where is the standard deviation and is the

number of runs performed for that particular number of hidden layers.

Table 2: The minimum, maximum, mean, and standard deviation of the Dice coefficients

for parcellations implemented with autoencoders of various depths.

Number of Hidden Layers

2 0.455 0.552 0.508 ± 0.005 0.023

3 0.452 0.638 0.563 ± 0.003 0.037

4 0.514 0.676 0.595 ± 0.001 0.026

5 0.518 0.679 0.592 ± 0.002 0.029

6 0.443 0.607 0.523 ± 0.005 0.039

47

Running ANOVA on the results yields a p-value of 3.3 × 10
-10

 between all groups of

hidden layers. Such a small p-value implies statistical significance between the accuracy

of the segmentations resulting from the various depths of the autoencoder.

The linear shallow autoencoder implemented to model PCA had a single hidden layer of

442 hidden units. Upon optimizing the parameters, the most accurate single layer

parcellation is described by a Dice coefficient of 0.467.

Focusing on the deep autoencoder, Figure 11 shows a sample of parcellation results of

the medial parietal cortex projected back into brain space. All voxels of the same colour

represent a segmentation of voxels belonging to the same functional region. Recall that

the parcellations are performed based on no anatomical dependencies – only the

functional connectivity among the voxels is considered as input for the segmentation.

Each row of three images in the figure represents one segmentation, viewed in three

dimensions. The first segmentation (the first row) depicts the ground truth delineation

based on the labels verified by neurologists, while the following rows show the most

accurate segmentation resulting from 3, 4, and 5 hidden layers, respectively.

48

Figure 11: Each row depicts 3 dimensions of a single parcellation of the medial parietal

cortex: (a) displays the ground truth parcellation verified by anatomists; autoencoders

trained and tested with (b) 3 hidden layers, = 0.638 ± 0.037, (c) 4 hidden layers =

0.676 ± 0.026, (d) 5 hidden layers, = 0.679 ± 0.029.

(d)

(c)

(b)

(a)

49

While Figure 11 (above) shows the parcellations in the context of the whole brain, Figure

12 (below) shows close-up views of for the ground truth parcellation and the most

accurate parcellation resulting from 5 layers, allowing for easier visual comparison. In

other words, Figure 12 depicts zoomed in views of Figure 11 (a) and (d).

Figure 12: Zoomed-in parcellations of the medial parietal cortex where (a) shows the

ground truth parcellation based on expert verified labels of functional regions in 3

dimensions and (b) shows a parcellation acquired from a deep autoencoder with 5 hidden

layers. The spatial overlap between the two parcellations is described by = 0.679 ±

0.029.

(a)

(b)

50

4 Discussion and Conclusion

This thesis represents a first step in developing and exploring deep sparse autoencoders

for voxel-wise automated parcellation of functional brain regions. Functional brain

parcellation is the task of delineating regions of the brain, based on the functional

connectivity of the components within the brain (voxels). To perform this task, an

artificial neural network called a deep autoencoder is constructed and trained with

unsupervised learning. It works by minimizing the reconstruction error between the input

data and the reconstruction of that input data at the output, in an unsupervised manner.

The process of training and testing the autoencoder for parcellation begins by converting

a subject's raw fMRI data to a normalized matrix, where each row represents a voxel's

global patterns of functional connectivity with other voxels. Therefore, each row serves

as an input feature vector to the autoencoder from which higher level features will be

extracted, enabling the classification of each voxel to a functional region. The deep

autoencoder is composed of several single-layered autoencoders stacked together, where

the features discovered at each layer are able to progressively represent higher-level

features of the input data as the output of one becomes the input to the next. By pre-

training each set of adjacent layers of the network independently, a good solution is

found near the local minima prior to the rest of the training, making deep learning a

significantly more feasible pursuit than otherwise thought. Sparsity is also introduced,

limiting the overall activation of the network, thus modelling the expected sparse

connectivity of the brain. The autoencoder uses a semi-supervised softmax regression

model to segment the voxels based on potential ground truth functional regions, before a

final backpropagating fine-tuning pass is performed. As a result, the putatively optimal

parameters of the network are discovered and new fMRI data (converted to an matrix)

can be fed into the autoencoder, resulting in a parcellation of the voxels based solely on

their functional connectivity.

51

4.1 Discussion

The most accurate parcellations were performed by autoencoders with 4-5 hidden layers,

thus supporting the hypothesis that the patterns of functional connectivity underlying the

fMRI are not linear, but rather of high dimension and complexly organized at multiple

levels of abstraction. The deep autoencoder, in comparison to the linear PCA approach,

was able to extract those high level features in order to train the classifier and build

resulting parcellations. Furthermore, once the autoencoder consisted of over 5 hidden

layers, it is likely that the model suffered from overfitting, leading to less accurate

parcellations.

The study performed by Lee et al. (2011) which implemented deep learning in the form

of a convolutional network to two-dimensional fMRI images performed mean

segmentations with Dice coefficients of 0.85 ± 0.04 and 0.73 ± 0.04 (for two slightly

different approaches). The segmentations using the autoencoder implemented in this

thesis with 5 hidden layers had a mean Dice coefficient of 0.592 ± 0.002 and a maximum

of 0.68 ± 0.03 (i.e.: (68 ± 3)% accuracy compared with the ground truth) – modest, but

respectable values demonstrating the potential of the approach. The fact that the deep

learning parcellation technique implemented with autoencoders provides these promising

results with no anatomical dependencies for training is an important step for the fields of

both neuroscience and applied machine learning.

4.2 Contributions

Currently, there does not exist a single acknowledged standard method for automatic

brain parcellation of functional regions. Existing protocols rely heavily on static labelled

brain atlases (which assume significant anatomical similarity among brains), manual

feature engineering (which are tedious and prone to human error), or use classification

methods which do not scale well to fMRI's complex data sets (such as k-means

clustering). This thesis presents a novel solution to automated functional parcellation of

three-dimensional fMRI data via deep autoencoders. The ability to accurately parcel

52

functional regions automatically enhances the quality of further experimental

investigations, as more accurate segmentations can be discovered and investigated.

In addition, a major contribution of the parcellation technique presented is that, unlike

many alternative approaches, the project presented does not rely on the anatomical

structure of the data to delineate the brain space. That is, the physical locations of the

voxels do not play a role in the resulting delineation. Rather, only the degree of

functional connectivity among voxels discovered in the raw fMRI data is used to train the

autoencoder for the segmentation discovered. Therefore this research offers new insights

to both the neuroscience and machine learning communities.

In a practical setting, an automated unsupervised method of parcellation permits

neurologists to apply the parcellation technique directly to their patients. After an fMRI

scan, the preprocessed data can be fed into the program developed. From there, the data

are converted to a normalized eta-squared matrix which is used as input to the trained

stacked autoencoder, resulting in a segmentation of the voxels in the brain. This

technique requires neither human input nor machine learning expertise from the user of

the program. As a result, the user will have access to a customized delineated brain

image, based on specific functional connectivity of the subject, rather than a brain image

segmented by simply associating standard structural regions with functions. The

segmentation technique can be used in clinical neuroscience and cognitive psychology to

better under the brain's connectivity and perhaps provide better diagnoses and treatment

to individuals with neurodegenerative diseases such as Alzheimer's. Subtle abnormalities

in functional connectivity can be indicative of Alzheimer’s disease years before clinical

diagnoses (Sheline & Raichle, 2013). Therefore, the parcellations depicted from this

deteriorating functional connectivity may serve as an instrument for early detection of the

disease. The research has the potential to provide the medical community with a feasible,

automated way of modelling the relationship between structure and function in the brain

that can be consistently and repeatedly applied to different subjects of varying health. It is

the intent that the current research effort will contribute to a more accurate and precise

mapping of function within the brain. Through the advances of this data-driven machine

learning technique, this methodology may be extend beyond the neuroimaging

53

community and benefit communities in any domain which can be modelled as a network,

eliminating the need for guesswork and prior knowledge.

In addition, this thesis contributes to the machine learning research community a novel

application of a deep autoencoder, stacked for the classification of functional brain

regions. Applying this approach to a task as large in scale and complex as the human

brain will undoubtedly prove informative for the growth of the practical deep

learning. Furthermore, deep learning is a relatively young research area. Successful

application of techniques from unsupervised deep learning to the important, real-world

problem of brain parcellation will help to validate what has been, for much of its history,

a largely supervised enterprise.

4.3 Threats to Validity

A criticism of the parcellations performed is that for each test, the deep autoencoder was

consistently trained using the fMRI data of the medial parietal cortex from only 10

subjects. This sample size was chosen as a balance between fair representation and

efficiency. Nevertheless, the sample size used is relatively small. While using more

subjects' data would have been infeasible (time-wise) for the number of tests run

(individual tests – out of thousands – ranged from approximately 2 minutes – 1.5 hours

running on 8 processors, depending on the size of the autoencoder), additional data would

provide more reputable training data. Therefore, the accuracy of the test runs likely

suffered as a result of this limited training set.

In addition, deep networks are notoriously difficult to train due to the difficult

optimization of the algorithm’s hyperparameters. Although the training was performed

from empirically “good” hyperparameters, it is possible that the optimization algorithm

got stuck in poor local optima, preventing the most effective parameters from being used.

Furthermore, the hyperparameters could not be optimized for every combination of

number of hidden units per layer, so even if the best hyperparameters were found via

optimization, they are not necessarily ideal for every test.

54

A fundamental challenge of this project stems from the lack of gold standard with which

the results of the parcellation can be compared for analysis. A segmentation derived via

k-means which was approved by anatomists is used as the “ground truth” for the sake of

validating the parcellation, but it is crucial to acknowledge that the brain is a dynamic

organ, and somewhat unique for each individual. A major motivation of this study is to

find an alternative to applying a single parcellation to multiple subjects, so the reliance on

it for comparisons compromises the measure of the method’s ability to capture subject-

specific functional variability. The ground truth labels are determined from healthy

subjects, and therefore do not take abnormalities in connectivity into consideration. As a

result, while the ground truth labels offer confidence to the measure of parcellation

success, the labels used for validation do not provide ideal confirmation of the subject-

specific accuracy. Nevertheless, this investigation has demonstrated that a deep learning

approach to the problem is both feasible and meritorious of further study.

4.4 Future Work

To further develop this approach, it would be prudent to attempt the parcellation with

more training data than from 10 subjects. While more subject data can be acquired

experimentally, the NIH Human Connectome Project data offers a large database of

highly reliable neuroimaging data as the Project aims to map anatomical and functional

connectivity within the brain (The Human Connectome Project, 2014). The vast number

of subject data provided from this database would result in a more credible conclusion as

a large sample size can be used – hundreds of different brains can be used for training

and validation of the parcellation technique. In addition, parcellation of the entire brain –

not just the medial parietal cortex – would provide insight into the accuracy of the

approach at a larger scale.

Additionally, since there is no gold standard functional segmentation of the brain, the

ground truth labels used for validation are not necessarily accurate for each specific

subject. Objective and accurate evaluation of any segmentation method is crucial for a

technique to be accepted in practice. Therefore, a prudent step for improved validation

would be to manually segment each subject's brain based on functional connectivity. Of

55

course, while a motivation of this investigation is to eliminate the need for this tedious,

time-consuming task, a comparison to a subject-specific manual segmentation may

provide additional insight into the true accuracy of the deep autoencoder.

Another future step in improving this parcellation technique would be to implement the

deep autoencoder on a GPU. The algorithm implemented makes heavy use of matrix

multiplication and element-wise operations. Such calculations associated with deep

learning have been found to be 10 – 30 times faster when implemented on a GPU

compared with common CPUs (Bergstra, Bastien, Turian, Pascanu, & Delalleau, 2010).

By implementing the deep autoencoder in this way, the optimization of parameters (and

hyperparameters) will be significantly more efficient, allowing for more accurate

parcellations in less time.

Furthermore, a future step for improving this parcellation technique would be to

implement a more efficient search of the hyperparameters. While the most widely used

strategies make use of a manual and grid searches, Bergstra and Bengio (2012) propose

that random searches for hyperparameters are most efficient and effective, as this method

of optimization does not treat each hyperparameter with equal importance, therefore not

wasting resources optimizing a value which does not play an crucial role to the overall

function.

In closing, the future directions of this work may expand upon this novel and promising

approach which serves as an important initial step in developing a deep learning approach

for voxel-wise functional brain parcellation.

56

References

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends in

Machine Learning, 1-127.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards AI. Large-Scale

Kernel Machines, 34.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise

training of deep networks. Advances in neural information processing systems,

153.

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.

Journal of Machine Learning Research, 281-305.

Bergstra, J., Bastien, F., Turian, J., Pascanu, R., & Delalleau, O. (2010). Deep Learning

on GPUs with Theano. Montreal: Universite de Montreal.

Berry, M. J., & Linoff, G. (1997). Data mining techniques. John Wiley & Sons, Inc.

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo‐planar mri.

Magnetic resonance in medicine, 34(4), 537-541.

Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is NP-complete.

Neural Networks, 117-127.

Bohland, J. W., Bokil, H., Allen, C. B., & Mitra, P. P. (2009). The brain atlas

concordance problem: quantitative comparison of anatomical parcellations. PLoS

One, 4(9), e7200.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and

singular value decomposition. Biological cybernetics, 59(4-5), 291-294.

57

Cohen, A. L., Fair, D. A., Dosenbach, N. U., Miezin, F. M., Dierker, D., Van Essen, D.

C., et al. (2008). Defining functional areas in individual human brains using

resting functional connectivity MRI. Neuroimage, 41(1), 45-57.

Collobert, R., & J. Weston, J. (2008). A unified architecture for natural language. The

Twenty-fifth International Conference on Machine Learning (pp. 160–167).

Helsinki: AMC.

Devlin, H. (2008). What is Functional Magnetic Resonance Imaging (fMRI)? Retrieved

from PsychCentral: http://psychcentral.com/lib/what-is-functional-magnetic-

resonance-imaging-fmri

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

cybernetics, 36(4), 193-202.

Galen, A., & Jianfeng, G. (2007). Scalable Training of L1-Regularized Log-Linear

Models. International Conference on Machine Learning.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the

Bias/Variance Dilemma. Neural Computation, 1-58.

Hadsell, R., Erkan, A., Sermanet, P., Scoffier, M., Muller, U., & LeCun, Y. (2008). Deep

belief net learning in a long-range vision system for autonomous offroad.

Intelligent Robots and Systems, 628–633.

Heaton, J. (2008). Introduction to Neural Networks for Java, Second Edition. St. Louis:

Heaton Research, Inc.

Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.

Henley, S., Bates, G., & Tabriz, S. (2005). Biomarkers for neurodegenerative diseases.

Current Opinion in Neurology, 18(6), 698-705.

58

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in cognitive

sciences, 428-434.

Hinton, G. E. (2010). A Practical Guide to Training Restricted Boltzmann Machines.

University of Toronto.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504-507.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural computation, 18(7), 1527-1554.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma

thesis. Institut f. Informatik, Technische Univ. Munich.

Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., et al. (2009). Learning Brain

Connectivity of Alzheimer's Disease from Neuroimaging Data. NIPS, 808-816.

Jones, N. (2014). Computer science: The learning machines. Nature, 146–148.

Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., et al.

(2012). A convergent functional architecture of the insula emerges across imaging

modalities. Neuroimage, 61(4), 1129-1142.

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies for

training deep neural networks. The Journal of Machine Learning Research, 1-40.

Le, Q., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A. (2011). On

optimization methods for deep learning. Proceedings of the 28th International

Conference on Machine Learning (ICML-11), (pp. 265-272).

Lee, N., Laine, A. F., & Klein, A. (2011). Towards a deep learning approach to brain

parcellation. International Symposium on Biomedical Imaging (pp. 321-324).

Chicago, IL: IEEE.

59

McCulloch, W., & Pitts, W. (1943). A Logical Calculus of IDeas Immanent in Nervous

Activity. Bulletin of Mathematical Biophysics, 5(4), 115 - 133.

McKeown, M. J., & Sejnowski, T. J. (1998). Independent component analysis of fMRI

data: examining the assumptions. Human brain mapping, 368-372.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.

Mourão-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005).

Classifying brain states and determining the discriminating activation patterns:

support vector machine on functional MRI data. Neuroimage, 28(4), 980-995.

Ng, A., Ngiam, J., Foo, C., Mai, Y., & Suen, C. (2013, April 7). UFLDL Tutorial.

Retrieved from Stanford Deep Learning:

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

Park, H., & Friston, K. (2013). Structural and Functional Brain Networks: From

Connections to Cognition. Science, 342(6158).

Pereira, F., Mitchell, T., & Botvi, M. (2009). Machine learning classifiers and fMRI: a

tutorial overview. Neuroimage, 199-209.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533-536.

Salakhutdinov, R. R., & Hinton, G. E. (2008). Using deep belief nets to learn covariance.

In J. K. Platt, Advances in Neural Information Processing (pp. 1249–1256).

Cambridge, MA: MIT Press.

Salakhutdinov, R., & Murray, I. (2008). On the quantitative analysis of deep belief

networks. International Conference on Machine Learning. Helsinki.

60

Schmah, T., Hinton, G. E., Zemel, R., Small, S., & Strother, S. (2008). Generative versus

discriminative training of RBMs for classification of fMRI images. NIPS, 1409-

1416.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of

history compression. Neural Computation, 4(2), 234-242.

Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in

preclinical Alzheimer’s disease. Biological psychiatry, 340-347.

Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J., & Leach, M. O. (2013). Stacked

Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection

in a Pilot Study Using 4D Patient Data. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1930-1943.

Smolensky, P. (1986). Chapter 6: Information Processing in Dynamical Systems:

Foundations of Harmony Theory. In D. E. Rumelhart, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition (pp. 194 - 281).

Cambridge, MA: MIT Press.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

257–277.

The Human Connectome Project. (2014). The National Institute of Health Human

Connectome Project. Retrieved from Laboratory of Neuro Imaging and Martinos

Center for Biomedical Imaging: http://www.humanconnectomeproject.org/

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD Thesis. Harvard University.

Zhong, Y., Wang, H., Lu, G., Zhang, Z., Jiao, Q., & Liu, Y. (2009). Detecting functional

connectivity in fMRI using PCA and regression analysis. Brain topography, 134-

144.

61

Appendices

Appendix A: Dice coefficients comparing parcellations acquired from autoencoders

trained and tested with 2 hidden layers versus the ground truth parcellation provided by

anatomists. The bolded row represents the parcellation with the maximum accuracy.

Units per Hidden Layer

200 200 0.515747

200 400 0.538371

200 600 0.522534

200 800 0.49086

200 1000 0.506697

400 200 0.540633

400 400 0.508959

400 600 0.506697

400 800 0.529321

400 1000 0.533846

600 200 0.454661

600 400 0.486335

600 600 0.486335

600 800 0.529321

600 1000 0.551946

800 200 0.506697

800 400 0.527059

800 600 0.49991

800 800 0.479548

800 1000 0.486335

1000 200 0.502172

1000 400 0.488597

1000 600 0.495385

1000 800 0.522534

1000 1000 0.479548

62

Appendix B: Dice coefficients comparing parcellations acquired from autoencoders

trained and tested with 3 hidden layers versus the ground truth parcellation provided by

anatomists. The bolded row represents the parcellation with the maximum accuracy.

Units per Hidden Layer

200 200 200 0.52262

200 200 400 0.45249

200 200 600 0.54751

200 200 800 0.51584

200 200 1000 0.61086

200 400 200 0.51584

200 400 400 0.45928

200 400 600 0.51584

200 400 800 0.50452

200 400 1000 0.52036

200 600 200 0.49095

200 600 400 0.53846

200 600 600 0.47285

200 600 800 0.51584

200 600 1000 0.45249

200 800 200 0.54977

200 800 400 0.57014

200 800 600 0.57919

200 800 800 0.5905

200 800 1000 0.57014

200 1000 200 0.59729

200 1000 400 0.50905

200 1000 600 0.52941

200 1000 800 0.53167

200 1000 1000 0.51131

400 200 200 0.56561

400 200 400 0.56787

400 200 600 0.58371

400 200 800 0.56787

400 200 1000 0.58824

400 400 200 0.58145

400 400 400 0.55656

400 400 600 0.55656

400 400 800 0.59276

400 400 1000 0.56787

400 600 200 0.53394

400 600 400 0.6086

400 600 600 0.60407

400 600 800 0.61086

400 600 1000 0.55656

400 800 200 0.55204

400 800 400 0.54977

400 800 600 0.57692

400 800 800 0.53846

400 800 1000 0.60633

400 1000 200 0.5905

400 1000 400 0.5543

400 1000 600 0.58145

400 1000 800 0.55656

400 1000 1000 0.63801

600 200 200 0.52489

600 200 400 0.57014

600 200 600 0.58824

600 200 800 0.60407

600 200 1000 0.55656

600 400 200 0.62896

600 400 400 0.54751

600 400 600 0.55656

600 400 800 0.50452

600 400 1000 0.54751

600 600 200 0.56787

600 600 400 0.57014

600 600 600 0.54751

600 600 800 0.58824

600 600 1000 0.6086

600 800 200 0.63122

600 800 400 0.57466

600 800 600 0.54977

600 800 800 0.54299

63

600 800 1000 0.61086

600 1000 200 0.57466

600 1000 400 0.57692

600 1000 600 0.54072

600 1000 800 0.58371

600 1000 1000 0.62443

800 200 200 0.54751

800 200 400 0.55656

800 200 600 0.5362

800 200 800 0.60407

800 200 1000 0.57466

800 400 200 0.53394

800 400 400 0.55656

800 400 600 0.58597

800 400 800 0.57466

800 400 1000 0.61991

800 600 200 0.54299

800 600 400 0.55204

800 600 600 0.55882

800 600 800 0.6086

800 600 1000 0.58145

800 800 200 0.53846

800 800 400 0.5543

800 800 600 0.61991

800 800 800 0.59955

800 800 1000 0.57466

800 1000 200 0.58597

800 1000 400 0.57014

800 1000 600 0.60633

800 1000 800 0.62896

800 1000 1000 0.60407

1000 200 200 0.5362

1000 200 400 0.53846

1000 200 600 0.5905

1000 200 800 0.62443

1000 200 1000 0.5543

1000 400 200 0.55656

1000 400 400 0.58145

1000 400 600 0.61312

1000 400 800 0.5543

1000 400 1000 0.57692

1000 600 200 0.58597

1000 600 400 0.56335

1000 600 600 0.52262

1000 600 800 0.5905

1000 600 1000 0.5181

1000 800 200 0.56787

1000 800 400 0.53846

1000 800 600 0.54525

1000 800 800 0.54751

1000 800 1000 0.57692

1000 1000 200 0.54751

1000 1000 400 0.54751

1000 1000 600 0.60181

1000 1000 800 0.55204

1000 1000 1000 0.58145

64

Appendix C: Dice coefficients comparing parcellations acquired from autoencoders

trained and tested with 4 hidden layers versus the ground truth parcellation provided by

anatomists. The bolded row represents the parcellation with the maximum accuracy.

Units per Hidden Layer

200 200 200 200 0.579186

200 200 200 400 0.597285

200 200 200 600 0.631222

200 200 200 800 0.617647

200 200 200 1000 0.579186

200 200 400 200 0.58371

200 200 400 400 0.59276

200 200 400 600 0.556561

200 200 400 800 0.665158

200 200 400 1000 0.606335

200 200 600 200 0.638009

200 200 600 400 0.556561

200 200 600 600 0.576923

200 200 600 800 0.599548

200 200 600 1000 0.595023

200 200 800 200 0.588235

200 200 800 400 0.658371

200 200 800 600 0.61991

200 200 800 800 0.613122

200 200 800 1000 0.665158

200 200 1000 200 0.608597

200 200 1000 400 0.597285

200 200 1000 600 0.595023

200 200 1000 800 0.588235

200 200 1000 1000 0.631222

200 400 200 200 0.606335

200 400 200 400 0.565611

200 400 200 600 0.556561

200 400 200 800 0.633484

200 400 200 1000 0.567873

200 400 400 200 0.624434

200 400 400 400 0.676471

200 400 400 600 0.61086

200 400 400 800 0.58371

200 400 400 1000 0.61086

200 400 600 200 0.60181

200 400 600 400 0.563348

200 400 600 600 0.635747

200 400 600 800 0.581448

200 400 600 1000 0.565611

200 400 800 200 0.561086

200 400 800 400 0.638009

200 400 800 600 0.622172

200 400 800 800 0.606335

200 400 800 1000 0.599548

200 400 1000 200 0.61086

200 400 1000 400 0.615385

200 400 1000 600 0.595023

200 400 1000 800 0.608597

200 400 1000 1000 0.597285

200 600 200 200 0.59276

200 600 200 400 0.628959

200 600 200 600 0.581448

200 600 200 800 0.617647

200 600 200 1000 0.608597

200 600 400 200 0.647059

200 600 400 400 0.61991

200 600 400 600 0.561086

200 600 400 800 0.635747

200 600 400 1000 0.585973

200 600 600 200 0.613122

200 600 600 400 0.606335

200 600 600 600 0.649321

200 600 600 800 0.58371

200 600 600 1000 0.633484

200 600 800 200 0.581448

200 600 800 400 0.61086

200 600 800 600 0.570136

200 600 800 800 0.651584

200 600 800 1000 0.60181

200 600 1000 200 0.590498

200 600 1000 400 0.617647

200 600 1000 600 0.597285

65

200 600 1000 800 0.581448

200 600 1000 1000 0.651584

200 800 200 200 0.60181

200 800 200 400 0.576923

200 800 200 600 0.574661

200 800 200 800 0.588235

200 800 200 1000 0.61086

200 800 400 200 0.631222

200 800 400 400 0.628959

200 800 400 600 0.606335

200 800 400 800 0.617647

200 800 400 1000 0.599548

200 800 600 200 0.628959

200 800 600 400 0.595023

200 800 600 600 0.606335

200 800 600 800 0.613122

200 800 600 1000 0.613122

200 800 800 200 0.585973

200 800 800 400 0.608597

200 800 800 600 0.606335

200 800 800 800 0.640271

200 800 800 1000 0.649321

200 800 1000 200 0.579186

200 800 1000 400 0.613122

200 800 1000 600 0.576923

200 800 1000 800 0.633484

200 800 1000 1000 0.61086

200 1000 200 200 0.61086

200 1000 200 400 0.595023

200 1000 200 600 0.617647

200 1000 200 800 0.61086

200 1000 200 1000 0.59276

200 1000 400 200 0.635747

200 1000 400 400 0.658371

200 1000 400 600 0.552036

200 1000 400 800 0.631222

200 1000 400 1000 0.58371

200 1000 600 200 0.585973

200 1000 600 400 0.61991

200 1000 600 600 0.626697

200 1000 600 800 0.58371

200 1000 600 1000 0.60181

200 1000 800 200 0.638009

200 1000 800 400 0.595023

200 1000 800 600 0.588235

200 1000 800 800 0.563348

200 1000 800 1000 0.642534

200 1000 1000 200 0.61991

200 1000 1000 400 0.665158

200 1000 1000 600 0.574661

200 1000 1000 800 0.622172

200 1000 1000 1000 0.581448

400 200 200 200 0.622172

400 200 200 400 0.653846

400 200 200 600 0.606335

400 200 200 800 0.570136

400 200 200 1000 0.61086

400 200 400 200 0.606335

400 200 400 400 0.613122

400 200 400 600 0.613122

400 200 400 800 0.60181

400 200 400 1000 0.604072

400 200 600 200 0.574661

400 200 600 400 0.631222

400 200 600 600 0.585973

400 200 600 800 0.608597

400 200 600 1000 0.570136

400 200 800 200 0.585973

400 200 800 400 0.61991

400 200 800 600 0.588235

400 200 800 800 0.631222

400 200 800 1000 0.626697

400 200 1000 200 0.588235

400 200 1000 400 0.58371

400 200 1000 600 0.58371

400 200 1000 800 0.662896

400 200 1000 1000 0.624434

400 400 200 200 0.563348

400 400 200 400 0.572398

400 400 200 600 0.579186

400 400 200 800 0.608597

400 400 200 1000 0.631222

66

400 400 400 200 0.570136

400 400 400 400 0.622172

400 400 400 600 0.567873

400 400 400 800 0.59276

400 400 400 1000 0.61086

400 400 600 200 0.581448

400 400 600 400 0.595023

400 400 600 600 0.61086

400 400 600 800 0.597285

400 400 600 1000 0.61086

400 400 800 200 0.597285

400 400 800 400 0.581448

400 400 800 600 0.597285

400 400 800 800 0.638009

400 400 800 1000 0.595023

400 400 1000 200 0.595023

400 400 1000 400 0.540724

400 400 1000 600 0.585973

400 400 1000 800 0.642534

400 400 1000 1000 0.635747

400 600 200 200 0.626697

400 600 200 400 0.640271

400 600 200 600 0.595023

400 600 200 800 0.599548

400 600 200 1000 0.576923

400 600 400 200 0.595023

400 600 400 400 0.61086

400 600 400 600 0.608597

400 600 400 800 0.588235

400 600 400 1000 0.59276

400 600 600 200 0.656109

400 600 600 400 0.60181

400 600 600 600 0.644796

400 600 600 800 0.617647

400 600 600 1000 0.588235

400 600 800 200 0.61086

400 600 800 400 0.647059

400 600 800 600 0.599548

400 600 800 800 0.581448

400 600 800 1000 0.628959

400 600 1000 200 0.613122

400 600 1000 400 0.595023

400 600 1000 600 0.572398

400 600 1000 800 0.615385

400 600 1000 1000 0.570136

400 800 200 200 0.595023

400 800 200 400 0.581448

400 800 200 600 0.576923

400 800 200 800 0.595023

400 800 200 1000 0.61991

400 800 400 200 0.633484

400 800 400 400 0.615385

400 800 400 600 0.617647

400 800 400 800 0.574661

400 800 400 1000 0.570136

400 800 600 200 0.608597

400 800 600 400 0.599548

400 800 600 600 0.608597

400 800 600 800 0.628959

400 800 600 1000 0.61991

400 800 800 200 0.558824

400 800 800 400 0.588235

400 800 800 600 0.597285

400 800 800 800 0.597285

400 800 800 1000 0.595023

400 800 1000 200 0.576923

400 800 1000 400 0.615385

400 800 1000 600 0.617647

400 800 1000 800 0.60181

400 800 1000 1000 0.615385

400 1000 200 200 0.59276

400 1000 200 400 0.615385

400 1000 200 600 0.565611

400 1000 200 800 0.590498

400 1000 200 1000 0.579186

400 1000 400 200 0.60181

400 1000 400 400 0.606335

400 1000 400 600 0.649321

400 1000 400 800 0.61086

400 1000 400 1000 0.574661

400 1000 600 200 0.628959

400 1000 600 400 0.597285

67

400 1000 600 600 0.576923

400 1000 600 800 0.61991

400 1000 600 1000 0.660633

400 1000 800 200 0.606335

400 1000 800 400 0.626697

400 1000 800 600 0.615385

400 1000 800 800 0.61991

400 1000 800 1000 0.61086

400 1000 1000 200 0.585973

400 1000 1000 400 0.617647

400 1000 1000 600 0.588235

400 1000 1000 800 0.638009

400 1000 1000 1000 0.635747

600 200 200 200 0.561086

600 200 200 400 0.590498

600 200 200 600 0.597285

600 200 200 800 0.599548

600 200 200 1000 0.576923

600 200 400 200 0.576923

600 200 400 400 0.576923

600 200 400 600 0.613122

600 200 400 800 0.585973

600 200 400 1000 0.581448

600 200 600 200 0.597285

600 200 600 400 0.606335

600 200 600 600 0.613122

600 200 600 800 0.585973

600 200 600 1000 0.579186

600 200 800 200 0.61086

600 200 800 400 0.588235

600 200 800 600 0.579186

600 200 800 800 0.595023

600 200 800 1000 0.597285

600 200 1000 200 0.597285

600 200 1000 400 0.613122

600 200 1000 600 0.588235

600 200 1000 800 0.633484

600 200 1000 1000 0.590498

600 400 200 200 0.570136

600 400 200 400 0.572398

600 400 200 600 0.59276

600 400 200 800 0.617647

600 400 200 1000 0.590498

600 400 400 200 0.585973

600 400 400 400 0.61991

600 400 400 600 0.581448

600 400 400 800 0.626697

600 400 400 1000 0.597285

600 400 600 200 0.563348

600 400 600 400 0.588235

600 400 600 600 0.633484

600 400 600 800 0.567873

600 400 600 1000 0.595023

600 400 800 200 0.613122

600 400 800 400 0.576923

600 400 800 600 0.58371

600 400 800 800 0.565611

600 400 800 1000 0.572398

600 400 1000 200 0.581448

600 400 1000 400 0.638009

600 400 1000 600 0.563348

600 400 1000 800 0.576923

600 400 1000 1000 0.606335

600 600 200 200 0.552036

600 600 200 400 0.635747

600 600 200 600 0.59276

600 600 200 800 0.597285

600 600 200 1000 0.615385

600 600 400 200 0.613122

600 600 400 400 0.595023

600 600 400 600 0.597285

600 600 400 800 0.585973

600 600 400 1000 0.604072

600 600 600 200 0.585973

600 600 600 400 0.595023

600 600 600 600 0.563348

600 600 600 800 0.588235

600 600 600 1000 0.579186

600 600 800 200 0.606335

600 600 800 400 0.599548

600 600 800 600 0.581448

600 600 800 800 0.60181

68

600 600 800 1000 0.633484

600 600 1000 200 0.628959

600 600 1000 400 0.626697

600 600 1000 600 0.608597

600 600 1000 800 0.581448

600 600 1000 1000 0.58371

600 800 200 200 0.615385

600 800 200 400 0.631222

600 800 200 600 0.647059

600 800 200 800 0.574661

600 800 200 1000 0.595023

600 800 400 200 0.554299

600 800 400 400 0.61991

600 800 400 600 0.549774

600 800 400 800 0.622172

600 800 400 1000 0.574661

600 800 600 200 0.581448

600 800 600 400 0.615385

600 800 600 600 0.579186

600 800 600 800 0.58371

600 800 600 1000 0.565611

600 800 800 200 0.613122

600 800 800 400 0.576923

600 800 800 600 0.658371

600 800 800 800 0.585973

600 800 800 1000 0.613122

600 800 1000 200 0.59276

600 800 1000 400 0.563348

600 800 1000 600 0.579186

600 800 1000 800 0.599548

600 800 1000 1000 0.590498

600 1000 200 200 0.604072

600 1000 200 400 0.579186

600 1000 200 600 0.565611

600 1000 200 800 0.563348

600 1000 200 1000 0.585973

600 1000 400 200 0.624434

600 1000 400 400 0.574661

600 1000 400 600 0.579186

600 1000 400 800 0.597285

600 1000 400 1000 0.588235

600 1000 600 200 0.558824

600 1000 600 400 0.604072

600 1000 600 600 0.622172

600 1000 600 800 0.558824

600 1000 600 1000 0.572398

600 1000 800 200 0.574661

600 1000 800 400 0.579186

600 1000 800 600 0.597285

600 1000 800 800 0.595023

600 1000 800 1000 0.60181

600 1000 1000 200 0.58371

600 1000 1000 400 0.576923

600 1000 1000 600 0.633484

600 1000 1000 800 0.61086

600 1000 1000 1000 0.574661

800 200 200 200 0.563348

800 200 200 400 0.547511

800 200 200 600 0.570136

800 200 200 800 0.647059

800 200 200 1000 0.572398

800 200 400 200 0.558824

800 200 400 400 0.608597

800 200 400 600 0.597285

800 200 400 800 0.536199

800 200 400 1000 0.615385

800 200 600 200 0.561086

800 200 600 400 0.608597

800 200 600 600 0.58371

800 200 600 800 0.572398

800 200 600 1000 0.565611

800 200 800 200 0.58371

800 200 800 400 0.567873

800 200 800 600 0.595023

800 200 800 800 0.595023

800 200 800 1000 0.549774

800 200 1000 200 0.563348

800 200 1000 400 0.597285

800 200 1000 600 0.61086

800 200 1000 800 0.581448

800 200 1000 1000 0.595023

800 400 200 200 0.574661

69

800 400 200 400 0.554299

800 400 200 600 0.595023

800 400 200 800 0.613122

800 400 200 1000 0.581448

800 400 400 200 0.567873

800 400 400 400 0.58371

800 400 400 600 0.558824

800 400 400 800 0.590498

800 400 400 1000 0.581448

800 400 600 200 0.567873

800 400 600 400 0.570136

800 400 600 600 0.552036

800 400 600 800 0.585973

800 400 600 1000 0.538462

800 400 800 200 0.563348

800 400 800 400 0.558824

800 400 800 600 0.563348

800 400 800 800 0.61086

800 400 800 1000 0.59276

800 400 1000 200 0.599548

800 400 1000 400 0.606335

800 400 1000 600 0.588235

800 400 1000 800 0.567873

800 400 1000 1000 0.581448

800 600 200 200 0.631222

800 600 200 400 0.599548

800 600 200 600 0.574661

800 600 200 800 0.626697

800 600 200 1000 0.554299

800 600 400 200 0.513575

800 600 400 400 0.61991

800 600 400 600 0.572398

800 600 400 800 0.59276

800 600 400 1000 0.617647

800 600 600 200 0.631222

800 600 600 400 0.558824

800 600 600 600 0.576923

800 600 600 800 0.599548

800 600 600 1000 0.606335

800 600 800 200 0.570136

800 600 800 400 0.570136

800 600 800 600 0.595023

800 600 800 800 0.626697

800 600 800 1000 0.59276

800 600 1000 200 0.61086

800 600 1000 400 0.581448

800 600 1000 600 0.608597

800 600 1000 800 0.59276

800 600 1000 1000 0.581448

800 800 200 200 0.579186

800 800 200 400 0.61086

800 800 200 600 0.558824

800 800 200 800 0.585973

800 800 200 1000 0.552036

800 800 400 200 0.585973

800 800 400 400 0.558824

800 800 400 600 0.60181

800 800 400 800 0.572398

800 800 400 1000 0.567873

800 800 600 200 0.558824

800 800 600 400 0.58371

800 800 600 600 0.576923

800 800 600 800 0.59276

800 800 600 1000 0.576923

800 800 800 200 0.59276

800 800 800 400 0.588235

800 800 800 600 0.599548

800 800 800 800 0.638009

800 800 800 1000 0.608597

800 800 1000 200 0.588235

800 800 1000 400 0.60181

800 800 1000 600 0.599548

800 800 1000 800 0.579186

800 800 1000 1000 0.574661

800 1000 200 200 0.624434

800 1000 200 400 0.547511

800 1000 200 600 0.563348

800 1000 200 800 0.60181

800 1000 200 1000 0.565611

800 1000 400 200 0.547511

800 1000 400 400 0.604072

800 1000 400 600 0.581448

70

800 1000 400 800 0.590498

800 1000 400 1000 0.599548

800 1000 600 200 0.588235

800 1000 600 400 0.59276

800 1000 600 600 0.567873

800 1000 600 800 0.570136

800 1000 600 1000 0.595023

800 1000 800 200 0.60181

800 1000 800 400 0.540724

800 1000 800 600 0.59276

800 1000 800 800 0.585973

800 1000 800 1000 0.567873

800 1000 1000 200 0.638009

800 1000 1000 400 0.574661

800 1000 1000 600 0.565611

800 1000 1000 800 0.579186

800 1000 1000 1000 0.556561

1000 200 200 200 0.585973

1000 200 200 400 0.581448

1000 200 200 600 0.552036

1000 200 200 800 0.613122

1000 200 200 1000 0.58371

1000 200 400 200 0.540724

1000 200 400 400 0.597285

1000 200 400 600 0.644796

1000 200 400 800 0.565611

1000 200 400 1000 0.58371

1000 200 600 200 0.540724

1000 200 600 400 0.552036

1000 200 600 600 0.581448

1000 200 600 800 0.576923

1000 200 600 1000 0.588235

1000 200 800 200 0.640271

1000 200 800 400 0.572398

1000 200 800 600 0.565611

1000 200 800 800 0.567873

1000 200 800 1000 0.570136

1000 200 1000 200 0.576923

1000 200 1000 400 0.552036

1000 200 1000 600 0.590498

1000 200 1000 800 0.606335

1000 200 1000 1000 0.615385

1000 400 200 200 0.549774

1000 400 200 400 0.556561

1000 400 200 600 0.60181

1000 400 200 800 0.563348

1000 400 200 1000 0.643222

1000 400 400 200 0.570824

1000 400 400 400 0.588923

1000 400 400 600 0.611548

1000 400 400 800 0.618335

1000 400 400 1000 0.582136

1000 400 600 200 0.582136

1000 400 600 400 0.607023

1000 400 600 600 0.638697

1000 400 600 800 0.60476

1000 400 600 1000 0.62286

1000 400 800 200 0.593448

1000 400 800 400 0.620597

1000 400 800 600 0.60476

1000 400 800 800 0.593448

1000 400 800 1000 0.591186

1000 400 1000 200 0.62286

1000 400 1000 400 0.570824

1000 400 1000 600 0.597973

1000 400 1000 800 0.564036

1000 400 1000 1000 0.597973

1000 600 200 200 0.570824

1000 600 200 400 0.61381

1000 600 200 600 0.584398

1000 600 200 800 0.579873

1000 600 200 1000 0.570824

1000 600 400 200 0.59571

1000 600 400 400 0.588923

1000 600 400 600 0.60476

1000 600 400 800 0.588923

1000 600 400 1000 0.60476

1000 600 600 200 0.578498

1000 600 600 400 0.587548

1000 600 600 600 0.576235

1000 600 600 800 0.58076

1000 600 600 1000 0.555873

71

1000 600 800 200 0.558136

1000 600 800 400 0.583023

1000 600 800 600 0.58981

1000 600 800 800 0.528724

1000 600 800 1000 0.58076

1000 600 1000 200 0.573973

1000 600 1000 400 0.555873

1000 600 1000 600 0.626009

1000 600 1000 800 0.562661

1000 600 1000 1000 0.553611

1000 800 200 200 0.567186

1000 800 200 400 0.544561

1000 800 200 600 0.596597

1000 800 200 800 0.576235

1000 800 200 1000 0.58981

1000 800 400 200 0.587548

1000 800 400 400 0.567186

1000 800 400 600 0.562661

1000 800 400 800 0.612434

1000 800 400 1000 0.535511

1000 800 600 200 0.551348

1000 800 600 400 0.58981

1000 800 600 600 0.553611

1000 800 600 800 0.535511

1000 800 600 1000 0.592072

1000 800 800 200 0.569448

1000 800 800 400 0.606647

1000 800 800 600 0.586285

1000 800 800 800 0.570448

1000 800 800 1000 0.640584

1000 800 1000 200 0.59081

1000 800 1000 400 0.565923

1000 800 1000 600 0.563661

1000 800 1000 800 0.577235

1000 800 1000 1000 0.59986

1000 1000 200 200 0.620222

1000 1000 200 400 0.617959

1000 1000 200 600 0.595335

1000 1000 200 800 0.606647

1000 1000 200 1000 0.588548

1000 1000 400 200 0.617959

1000 1000 400 400 0.584023

1000 1000 400 600 0.595335

1000 1000 400 800 0.602122

1000 1000 400 1000 0.602122

1000 1000 600 200 0.574973

1000 1000 600 400 0.597597

1000 1000 600 600 0.595335

1000 1000 600 800 0.629271

1000 1000 600 1000 0.638321

1000 1000 800 200 0.568186

1000 1000 800 400 0.602122

1000 1000 800 600 0.565923

1000 1000 800 800 0.622484

1000 1000 800 1000 0.59986

1000 1000 1000 200 0.59986

1000 1000 1000 400 0.584023

1000 1000 1000 600 0.606647

1000 1000 1000 800 0.59986

1000 1000 1000 1000 0.58176

72

Appendix D: Dice coefficients comparing parcellations acquired from autoencoders

trained and tested with 5 hidden layers versus the ground truth parcellation provided by

anatomists. The bolded row represents the parcellation with the maximum accuracy.

Units per Hidden Layer

200 200 200 200 200 0.631222

200 200 200 200 600 0.529412

200 200 200 200 1000 0.597285

200 200 200 600 200 0.599548

200 200 200 600 600 0.613122

200 200 200 600 1000 0.604072

200 200 200 1000 200 0.59276

200 200 200 1000 600 0.617647

200 200 200 1000 1000 0.579186

200 200 600 200 200 0.588235

200 200 600 200 600 0.615385

200 200 600 200 1000 0.572398

200 200 600 600 200 0.606335

200 200 600 600 600 0.61086

200 200 600 600 1000 0.626697

200 200 600 1000 200 0.567873

200 200 600 1000 600 0.549774

200 200 600 1000 1000 0.529412

200 200 1000 200 200 0.585973

200 200 1000 200 600 0.622172

200 200 1000 200 1000 0.628959

200 200 1000 600 200 0.538462

200 200 1000 600 600 0.633484

200 200 1000 600 1000 0.59276

200 200 1000 1000 200 0.613122

200 200 1000 1000 600 0.61991

200 200 1000 1000 1000 0.624434

200 600 200 200 200 0.61086

200 600 200 200 600 0.59276

200 600 200 200 1000 0.563348

200 600 200 600 200 0.570136

200 600 200 600 600 0.579186

200 600 200 600 1000 0.58371

200 600 200 1000 200 0.595023

200 600 200 1000 600 0.570136

200 600 200 1000 1000 0.624434

200 600 600 200 200 0.597285

200 600 600 200 600 0.615385

200 600 600 200 1000 0.633484

200 600 600 600 200 0.581448

200 600 600 600 600 0.576923

200 600 600 600 1000 0.570136

200 600 600 1000 200 0.61991

200 600 600 1000 600 0.628959

200 600 600 1000 1000 0.615385

200 600 1000 200 200 0.599548

200 600 1000 200 600 0.542986

200 600 1000 200 1000 0.60181

200 600 1000 600 200 0.604072

200 600 1000 600 600 0.590498

200 600 1000 600 1000 0.651584

200 600 1000 1000 200 0.631222

200 600 1000 1000 600 0.61991

200 600 1000 1000 1000 0.538462

200 1000 200 200 200 0.59276

200 1000 200 200 600 0.624434

200 1000 200 200 1000 0.561086

200 1000 200 600 200 0.590498

200 1000 200 600 600 0.563348

200 1000 200 600 1000 0.570136

200 1000 200 1000 200 0.558824

200 1000 200 1000 600 0.581448

200 1000 200 1000 1000 0.59276

200 1000 600 200 200 0.631222

200 1000 600 200 600 0.585973

200 1000 600 200 1000 0.624434

200 1000 600 600 200 0.527149

200 1000 600 600 600 0.613122

200 1000 600 600 1000 0.59276

200 1000 600 1000 200 0.595023

200 1000 600 1000 600 0.628959

73

200 1000 600 1000 1000 0.570136

200 1000 1000 200 200 0.651584

200 1000 1000 200 600 0.558824

200 1000 1000 200 1000 0.540724

200 1000 1000 600 200 0.561086

200 1000 1000 600 600 0.640271

200 1000 1000 600 1000 0.617647

200 1000 1000 1000 200 0.617647

200 1000 1000 1000 600 0.549774

200 1000 1000 1000 1000 0.613122

600 200 200 200 200 0.585973

600 200 200 200 600 0.565611

600 200 200 200 1000 0.604072

600 200 200 600 200 0.608597

600 200 200 600 600 0.628959

600 200 200 600 1000 0.613122

600 200 200 1000 200 0.606335

600 200 200 1000 600 0.61991

600 200 200 1000 1000 0.590498

600 200 600 200 200 0.628959

600 200 600 200 600 0.579186

600 200 600 200 1000 0.549774

600 200 600 600 200 0.599548

600 200 600 600 600 0.595023

600 200 600 600 1000 0.558824

600 200 600 1000 200 0.633484

600 200 600 1000 600 0.556561

600 200 600 1000 1000 0.590498

600 200 1000 200 200 0.579186

600 200 1000 200 600 0.622172

600 200 1000 200 1000 0.606335

600 200 1000 600 200 0.563348

600 200 1000 600 600 0.572398

600 200 1000 600 1000 0.576923

600 200 1000 1000 200 0.590498

600 200 1000 1000 600 0.579186

600 200 1000 1000 1000 0.617647

600 600 200 200 200 0.628959

600 600 200 200 600 0.5181

600 600 200 200 1000 0.570136

600 600 200 600 200 0.595023

600 600 200 600 600 0.606335

600 600 200 600 1000 0.588235

600 600 200 1000 200 0.581448

600 600 200 1000 600 0.58371

600 600 200 1000 1000 0.597285

600 600 600 200 200 0.536199

600 600 600 200 600 0.588235

600 600 600 200 1000 0.640271

600 600 600 600 200 0.624434

600 600 600 600 600 0.597285

600 600 600 600 1000 0.59276

600 600 600 1000 200 0.613122

600 600 600 1000 600 0.61086

600 600 600 1000 1000 0.554299

600 600 1000 200 200 0.61086

600 600 1000 200 600 0.558824

600 600 1000 200 1000 0.588235

600 600 1000 600 200 0.617647

600 600 1000 600 600 0.58371

600 600 1000 600 1000 0.647059

600 600 1000 1000 200 0.678733

600 600 1000 1000 600 0.61086

600 600 1000 1000 1000 0.638009

600 1000 200 200 200 0.59276

600 1000 200 200 600 0.624434

600 1000 200 200 1000 0.554299

600 1000 200 600 200 0.604072

600 1000 200 600 600 0.579186

600 1000 200 600 1000 0.567873

600 1000 200 1000 200 0.61086

600 1000 200 1000 600 0.595023

600 1000 200 1000 1000 0.59276

600 1000 600 200 200 0.531674

600 1000 600 200 600 0.635747

600 1000 600 200 1000 0.574661

600 1000 600 600 200 0.604072

600 1000 600 600 600 0.574661

600 1000 600 600 1000 0.59276

600 1000 600 1000 200 0.574661

600 1000 600 1000 600 0.581448

600 1000 600 1000 1000 0.608597

74

600 1000 1000 200 200 0.613122

600 1000 1000 200 600 0.613122

600 1000 1000 200 1000 0.606335

600 1000 1000 600 200 0.613122

600 1000 1000 600 600 0.59276

600 1000 1000 600 1000 0.588235

600 1000 1000 1000 200 0.622172

600 1000 1000 1000 600 0.624434

600 1000 1000 1000 1000 0.588235

1000 200 200 200 200 0.58371

1000 200 200 200 600 0.547511

1000 200 200 200 1000 0.633484

1000 200 200 600 200 0.561086

1000 200 200 600 600 0.552036

1000 200 200 600 1000 0.545249

1000 200 200 1000 200 0.617647

1000 200 200 1000 600 0.617647

1000 200 200 1000 1000 0.622172

1000 200 600 200 200 0.59276

1000 200 600 200 600 0.599548

1000 200 600 200 1000 0.522624

1000 200 600 600 200 0.558824

1000 200 600 600 600 0.552036

1000 200 600 600 1000 0.590498

1000 200 600 1000 200 0.558824

1000 200 600 1000 600 0.60181

1000 200 600 1000 1000 0.590498

1000 200 1000 200 200 0.549774

1000 200 1000 200 600 0.58371

1000 200 1000 200 1000 0.588235

1000 200 1000 600 200 0.574661

1000 200 1000 600 600 0.597285

1000 200 1000 600 1000 0.565611

1000 200 1000 1000 200 0.606335

1000 200 1000 1000 600 0.604072

1000 200 1000 1000 1000 0.60181

1000 600 200 200 200 0.595023

1000 600 200 200 600 0.590498

1000 600 200 200 1000 0.558824

1000 600 200 600 200 0.579186

1000 600 200 600 600 0.58371

1000 600 200 600 1000 0.576923

1000 600 200 1000 200 0.545249

1000 600 200 1000 600 0.527149

1000 600 200 1000 1000 0.597285

1000 600 600 200 200 0.554299

1000 600 600 200 600 0.574661

1000 600 600 200 1000 0.599548

1000 600 600 600 200 0.60181

1000 600 600 600 600 0.599548

1000 600 600 600 1000 0.585973

1000 600 600 1000 200 0.631222

1000 600 600 1000 600 0.628959

1000 600 600 1000 1000 0.640271

1000 600 1000 200 200 0.588235

1000 600 1000 200 600 0.59276

1000 600 1000 200 1000 0.608597

1000 600 1000 600 200 0.556561

1000 600 1000 600 600 0.558824

1000 600 1000 600 1000 0.579186

1000 600 1000 1000 200 0.608597

1000 600 1000 1000 600 0.626697

1000 600 1000 1000 1000 0.545249

1000 1000 200 200 200 0.588235

1000 1000 200 200 600 0.531674

1000 1000 200 200 1000 0.595023

1000 1000 200 600 200 0.61991

1000 1000 200 600 600 0.581448

1000 1000 200 600 1000 0.595023

1000 1000 200 1000 200 0.570136

1000 1000 200 1000 600 0.570136

1000 1000 200 1000 1000 0.613122

1000 1000 600 200 200 0.590498

1000 1000 600 200 600 0.608597

1000 1000 600 200 1000 0.597285

1000 1000 600 600 200 0.597285

1000 1000 600 600 600 0.622172

1000 1000 600 600 1000 0.61086

1000 1000 600 1000 200 0.563348

1000 1000 600 1000 600 0.613122

1000 1000 600 1000 1000 0.588235

1000 1000 1000 200 200 0.545249

75

1000 1000 1000 200 600 0.581448

1000 1000 1000 200 1000 0.617647

1000 1000 1000 600 200 0.536199

1000 1000 1000 600 600 0.626697

1000 1000 1000 600 1000 0.590498

1000 1000 1000 1000 200 0.585973

1000 1000 1000 1000 600 0.651584

1000 1000 1000 1000 1000 0.617647

76

Curriculum Vitae

Name: Céline Gravelines

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2008-2012 Honors B.Sc.

Honours and Google Anita Borg Memorial Scholarship Finalist

Awards: 2012

 Western Graduate Research Scholarship

 2012-2013

Related Work Teaching Assistant

Experience The University of Western Ontario

2012-2013

