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Abstract—
The success of machine learning algorithms generally depends on

data representation, and we hypothesize that this is because different
representations can entangle and hide more or less the different ex-
planatory factors of variation behind the data. Although specific domain
knowledge can be used to help design representations, learning with
generic priors can also be used, and the quest for AI is motivating the
design of more powerful representation-learning algorithms implement-
ing such priors. This paper reviews recent work in the area of unsu-
pervised feature learning and joint training of deep learning, covering
advances in probabilistic models, auto-encoders, manifold learning, and
deep architectures. This motivates longer-term unanswered questions
about the appropriate objectives for learning good representations, for
computing representations (i.e., inference), and the geometrical connec-
tions between representation learning, density estimation and manifold
learning.
Index Terms—Deep learning, representation learning, feature learning,
unsupervised learning, Boltzmann Machine, RBM, auto-encoder, neural
network

1 INTRODUCTION
The performance of machine learning methods is heavily
dependent on the choice of data representation (or features)
on which they are applied. For that reason, much of the actual
effort in deploying machine learning algorithms goes into the
design of preprocessing pipelines and data transformations that
result in a representation of the data that can support effective
machine learning. Such feature engineering is important but
labor-intensive and highlights the weakness of current learning
algorithms: their inability to extract and organize the discrimi-
native information from the data. Feature engineering is a way
to take advantage of human ingenuity and prior knowledge to
compensate for that weakness. In order to expand the scope
and ease of applicability of machine learning, it would be
highly desirable to make learning algorithms less dependent
on feature engineering, so that novel applications could be
constructed faster, and more importantly, to make progress
towards Artificial Intelligence (AI). An AI must fundamentally
understand the world around us, and we argue that this can
only be achieved if it can learn to identify and disentangle the
underlying explanatory factors hidden in the observed milieu
of low-level sensory data.

This paper is about feature learning, or representation learn-
ing, i.e., learning transformations of the data that make it easier
to extract useful information when building classifiers or other
predictors. In the case of probabilistic models, a good repre-
sentation is often one that captures the posterior distribution
of the underlying explanatory factors for the observed input.

Among the various ways of learning representations, this paper
focuses on deep learning methods: those that are formed by
the composition of multiple non-linear transformations of the
data, with the goal of yielding more abstract – and ultimately
more useful – representations. Here we survey this rapidly
developing area with special emphasis on recent progress. We
consider some of the fundamental questions that have been
driving research in this area. Specifically, what makes one
representation better than another? Given an example, how
should we compute its representation, i.e. perform feature
extraction? Also, what are appropriate objectives for learning
good representations? In the course of dealing with these
issues we review some of the most popular models in the
field and place them in a context of the field as a whole.

2 WHY SHOULD WE CARE ABOUT LEARNING
REPRESENTATIONS?
Representation learning has become a field in itself in the
machine learning community, with regular workshops at the
leading conferences such as NIPS and ICML, sometimes under
the header of Deep Learning or Feature Learning. Although
depth is an important part of the story, many other priors are
interesting and can be conveniently captured by a learner when
the learning problem is cast as one of learning a representation,
as discussed in the next section. The rapid increase in scientific
activity on representation learning has been accompanied and
nourished (in a virtuous circle) by a remarkable string of
empirical successes both in academia and in industry. In this
section, we briefly highlight some of these high points.
Speech Recognition and Signal Processing

Speech was one of the early applications of neural networks,
in particular convolutional (or time-delay) neural networks 1.
The recent revival of interest in neural networks, deep learning,
and representation learning has had a strong impact in the area
of speech recognition, with breakthrough results (Dahl et al.,
2010; Seide et al., 2011; Mohamed et al., 2012; Dahl et al.,
2012) obtained by several academics as well as researchers at
industrial labs taking over the task of bringing these algorithms
to a larger scale and into products. For example, Microsoft has
released in 2012 a new version of their MAVIS (Microsoft
Audio Video Indexing Service) speech system based on deep
learning (Seide et al., 2011). These authors managed to reduce

1. See Bengio (1993) for a review of early work in this area.
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the word error rate on four major benchmarks by about 30%
(e.g. from 27.4% to 18.5% on RT03S) compared to state-of-
the-art models based on Gaussian mixtures for the acoustic
modeling and trained on the same amount of data (309 hours
of speech). The relative improvement in error rate obtained
by Dahl et al. (2012) on a smaller large-vocabulary speech
recognition benchmark (Bing mobile business search dataset,
with 40 hours of speech) is between 16% and 23%.

Representation-learning algorithms (based on recurrent neu-
ral networks) have also been applied to music, substan-
tially beating the state-of-the-art in polyphonic transcrip-
tion (Boulanger-Lewandowski et al., 2012), with a relative
error improvement of between 5% and 30% on a standard
benchmark of four different datasets.

Object Recognition
The beginnings of deep learning in 2006 have focused on

the MNIST digit image classification problem (Hinton et al.,
2006a; Bengio et al., 2007), breaking the supremacy of SVMs
(1.4% error) on this dataset2. The latest records are still held
by deep networks: Ciresan et al. (2012) currently claims the
title of state-of-the-art for the unconstrained version of the task
(e.g., using a convolutional architecture), with 0.27% error,
and Rifai et al. (2011c) is state-of-the-art for the knowledge-
free version of MNIST, with 0.81% error.

In the last few years, deep learning has moved from
digits to object recognition in natural images, and the latest
breakthrough has been achieved on the ImageNet dataset3

bringing down the state-of-the-art error rate from 26.1% to
15.3% (Krizhevsky et al., 2012).

Natural Language Processing
Besides speech recognition, there are many other Natural

Language Processing applications of representation learning
algorithms. The idea of distributed representation for symbolic
data was introduced by Hinton (1986), and first developed
in the context of statistical language modeling by Bengio
et al. (2003)4. They are all based on learning a distributed
representation for each word, also called a word embedding.
Combining this idea with a convolutional architecture, Col-
lobert et al. (2011) developed the SENNA system5 that shares
representations across the tasks of language modeling, part-of-
speech tagging, chunking, named entity recognition, semantic
role labeling and syntactic parsing. SENNA approaches or
surpasses the state-of-the-art on these tasks but is much faster
than traditional predictors and requires only 3500 lines of C
code to perform its predictions.

The neural net language model was also improved by
adding recurrence to the hidden layers (Mikolov et al., 2011),
allowing it to beat the state-of-the-art (smoothed n-gram
models) not only in terms of perplexity (exponential of the
average negative log-likelihood of predicting the right next
word, going down from 140 to 102) but also in terms of

2. for the knowledge-free version of the task, where no image-specific prior
is used, such as image deformations or convolutions

3. The 1000-class ImageNet benchmark, whose results are detailed here:
http://www.image-net.org/challenges/LSVRC/2012/results.html

4. See this review of neural net language models (Bengio, 2008).
5. downloadable from http://ml.nec-labs.com/senna/

word error rate in speech recognition (since the language
model is an important component of a speech recognition
system), decreasing it from 17.2% (KN5 baseline) or 16.9%
(discriminative language model) to 14.4% on the Wall Street
Journal benchmark task. Similar models have been applied
in statistical machine translation (Schwenk et al., 2012),
improving the BLEU score by almost 2 points. Recursive auto-
encoders (which generalize recurrent networks) have also been
used to beat the state-of-the-art in full sentence paraphrase
detection (Socher et al., 2011a) almost doubling the F1 score
for paraphrase detection. Representation learning can also be
used to perform word sense disambiguation (Bordes et al.,
2012), bringing up the accuracy from 67.8% to 70.2% on
the subset of Senseval-3 where the system could be applied
(with subject-verb-object sentences). Finally, it has also been
successfully used to surpass the state-of-the-art in sentiment
analysis (Glorot et al., 2011b; Socher et al., 2011b).
Multi-Task and Transfer Learning, Domain Adaptation

Transfer learning is the ability of a learning algorithm to
exploit commonalities between different learning tasks in order
to share statistical strength, and transfer knowledge across
tasks. As discussed below, we hypothesize that representation
learning algorithms have an advantage for such tasks because
they learn representations that capture underlying factors, a
subset of which may be relevant for each particular task, as
illustrated in Figure 1. This hypothesis seems confirmed by a
number of empirical results showing the strengths of repre-
sentation learning algorithms in transfer learning scenarios.

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 Task%A% Task%B% Task%C%

%output%

%input%

%shared%
subsets%of%
factors%

Fig. 1. Illustration of a representation-learning model which
discovers explanatory factors (middle hidden layer, in red),
some of which explain the input (semi-supervised setting), and
some of which explain the target for each task. Because these
subsets overlap, sharing of statistical strength allows gains in
generalization..

Most impressive are the two transfer learning challenges
held in 2011 and won by representation learning algorithms.
First, the Transfer Learning Challenge, presented at an ICML
2011 workshop of the same name, was won using unsuper-
vised layer-wise pre-training (Bengio, 2011; Mesnil et al.,
2011). A second Transfer Learning Challenge was held the
same year and won by Goodfellow et al. (2011). Results were
presented at NIPS 2011’s Challenges in Learning Hierarchical
Models Workshop. Other examples of the successful appli-
cation of representation learning in fields related to transfer

http://www.image-net.org/challenges/LSVRC/2012/results.html
http://ml.nec-labs.com/senna/
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learning include domain adaptation, where the target remains
the same but the input distribution changes (Glorot et al.,
2011b; Chen et al., 2012). Of course, the case of jointly
predicting outputs for many tasks or classes, i.e., performing
multi-task learning also enhances the advantage of represen-
tation learning algorithms, e.g. as in Krizhevsky et al. (2012);
Collobert et al. (2011).

3 WHAT MAKES A REPRESENTATION GOOD?
3.1 Priors for Representation Learning in AI
In Bengio and LeCun (2007), one of us introduced the
notion of AI-tasks, which are challenging for current machine
learning algorithms, and involve complex but highly structured
dependencies. One reason why explicitly dealing with repre-
sentations is interesting is because they can be convenient to
express many general priors about the world around us, i.e.,
priors that are not task-specific but would be likely to be useful
for a learning machine to solve AI-tasks. Examples of such
general-purpose priors are the following:
• Smoothness: we want to learn functions f s.t. x ≈ y

generally implies f(x) ≈ f(y). This is the most basic
prior and is present in most machine learning, but is
insufficient to get around the curse of dimensionality, as
discussed in Section 3.2 below.

• Multiple explanatory factors: the data generating dis-
tribution is generated by different underlying factors,
and for the most part what one learns about one factor
generalizes in many configurations of the other factors.
The objective to recover or at least disentangle these
underlying factors of variation is discussed in Section 3.5.
This assumption is behind the idea of distributed rep-
resentations, discussed in Section 3.3 below.

• A hierarchical organization of explanatory factors: the
concepts that are useful at describing the world around us
can be defined in terms of other concepts, in a hierarchy,
with more abstract concepts higher in the hierarchy,
being defined in terms of less abstract ones. This is the
assumption exploited by having deep representations,
elaborated in Section 3.4 below.

• Semi-supervised learning: in the context where we
have input variables X and target variables Y we may
want to predict, a subset of the factors that explain X’s
distribution explain a great deal of Y , given X . Hence
representations that are useful for P (X) tend to be useful
when learning P (Y |X), allowing sharing of statistical
strength between the unsupervised and supervised learn-
ing tasks, as discussed in Section 4.

• Shared factors across tasks: in the context where we
have many Y ’s of interest or many learning tasks in
general, tasks (e.g., the corresponding P (Y |X, task)) are
explained by factors that are shared with other tasks,
allowing sharing of statistical strengths across tasks, as
discussed in the previous section (Multi-Task and Trans-
fer Learning, Domain Adaptation).

• Manifolds: probability mass concentrates near regions
that have a much smaller dimensionality than the original
space where the data lives. This is explicitly exploited in

some of the auto-encoder algorithms and other manifold-
inspired algorithms described respectively in Sections 7.2
and 8.

• Natural clustering: different values of categorical vari-
ables such as object classes6 are associated with sepa-
rate manifolds. More precisely, the local variations on
the manifold tend to preserve the value of a category,
and a linear interpolation between examples of different
classes in general involves going through a low density
region, i.e., P (X|Y = i) for different i tend to be well
separated and not overlap much. For example, this is
exploited in the Manifold Tangent Classifier discussed in
Section 8.3. This hypothesis is consistent with the idea
that humans have named categories and classes because
of such statistical structure (discovered by their brain and
propagated by their culture), and machine learning tasks
often involves predicting such categorical variables.

• Temporal and spatial coherence: this is similar to the
cluster assumption but concerns sequences of observa-
tions; consecutive or spatially nearby observations tend to
be associated with the same value of relevant categorical
concepts, or result in a small move on the surface of the
high-density manifold. More generally, different factors
change at different temporal and spatial scales, and many
categorical concepts of interest change slowly. When
attempting to capture such categorical variables, this prior
can be enforced by making the associated representations
slowly changing, i.e., penalizing changes in values over
time or space. This prior was introduced in Becker and
Hinton (1992) and is discussed in Section 11.3.

• Sparsity: for any given observation x, only a small
fraction of the possible factors are relevant. In terms of
representation, this could be represented by features that
are often zero (as initially proposed by Olshausen and
Field (1996)), or by the fact that most of the extracted
features are insensitive to small variations of x. This
can be achieved with certain forms of priors on latent
variables (peaked at 0), or by using a non-linearity whose
value is often flat at 0 (i.e., 0 and with a 0 derivative),
or simply by penalizing the magnitude of the Jacobian
matrix (of derivatives) of the function mapping input to
representation. This is discussed in Sections 6.1.3 and 7.2.

We can view many of the above priors as ways to help the
learner discover and disentangle some of the underlying (and
a priori unknown) factors of variation that the data may reveal.
This idea is pursued further in Sections 3.5 and 11.4.

3.2 Smoothness and the Curse of Dimensionality
For AI-tasks, such as computer vision and natural language
understanding, it seems hopeless to rely only on simple
parametric models (such as linear models) because they cannot
capture enough of the complexity of interest. Conversely,
machine learning researchers have sought flexibility in lo-
cal7 non-parametric learners such as kernel machines with

6. it is often the case that the Y of interest is a category
7. local in the sense that the value of the learned function at x depends

mostly on training examples x(t)’s close to x
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a fixed generic local-response kernel (such as the Gaussian
kernel). Unfortunately, as argued at length by Bengio and
Monperrus (2005); Bengio et al. (2006a); Bengio and LeCun
(2007); Bengio (2009); Bengio et al. (2010), most of these
algorithms only exploit the principle of local generalization,
i.e., the assumption that the target function (to be learned)
is smooth enough, so they rely on examples to explicitly
map out the wrinkles of the target function. Generalization
is mostly achieved by a form of local interpolation between
neighboring training examples. Although smoothness can be
a useful assumption, it is insufficient to deal with the curse
of dimensionality, because the number of such wrinkles (ups
and downs of the target function) may grow exponentially
with the number of relevant interacting factors, when the data
are represented in raw input space. We advocate learning
algorithms that are flexible and non-parametric8 but do not
rely exclusively on the smoothness assumption. Instead, we
propose to incorporate generic priors such as those enumerated
above into representation-learning algorithms. Smoothness-
based learners (such as kernel machines) and linear models
can still be useful on top of such learned representations. In
fact, the combination of learning a representation and kernel
machine is equivalent to learning the kernel, i.e., the feature
space. Kernel machines are useful, but they depend on a prior
definition of a suitable similarity metric, or a feature space
in which naive similarity metrics suffice. We would like to
use the data, along with very generic priors, to discover those
features, or equivalently, a similarity function.

3.3 Distributed representations

Good representations are expressive, meaning that a
reasonably-sized learned representation can capture a huge
number of possible input configurations. A simple counting
argument helps us to assess the expressiveness of a model
producing a representation: how many parameters does it
require compared to the number of input regions (or config-
urations) it can distinguish? A one-hot representations, such
as the result of traditional clustering algorithms, a Gaussian
mixture model, a nearest-neighbor algorithm, a decision tree,
or a Gaussian SVM all require O(N) parameters (and/or
O(N) examples) to distinguish O(N) input regions. One could
naively believe that in order to define O(N) input regions
one cannot do better. However, RBMs, sparse coding, auto-
encoders or multi-layer neural networks can all represent up to
O(2k) input regions using only O(N) parameters (with k the
number of non-zero elements in a sparse representation, and
k = N in non-sparse RBMs and other dense representations).
These are all distributed representations (where k elements can
independently be varied, e.g., they are not mutually exclusive)
or sparse (distributed representations where only a few of
the elements can be varied at a time). The generalization
of clustering to distributed representations is multi-clustering,
where either several clusterings take place in parallel or the

8. We understand non-parametric as including all learning algorithms
whose capacity can be increased appropriately as the amount of data and its
complexity demands it, e.g. including mixture models and neural networks
where the number of parameters is a data-selected hyper-parameter.

same clustering is applied on different parts of the input,
such as in the very popular hierarchical feature extraction for
object recognition based on a histogram of cluster categories
detected in different patches of an image (Lazebnik et al.,
2006; Coates and Ng, 2011a). The exponential gain from
distributed or sparse representations is discussed further in
section 3.2 (and Figure 3.2) of Bengio (2009). It comes
about because each parameter (e.g. the parameters of one of
the units in a sparse code, or one of the units in a Restricted
Boltzmann Machine) can be re-used in many examples that are
not simply near neighbors of each other, whereas with local
generalization, different regions in input space are basically
associated with their own private set of parameters, e.g., as
in decision trees, nearest-neighbors, Gaussian SVMs, etc. In
a distributed representation, an exponentially large number of
possible subsets of features or hidden units can be activated
in response to a given input. In a single-layer model, each
feature is typically associated with a preferred input direction,
corresponding to a hyperplane in input space, and the code
or representation associated with that input is precisely the
pattern of activation (which features respond to the input,
and how much). This is in contrast with a non-distributed
representation such as the one learned by most clustering
algorithms, e.g., k-means, in which the representation of a
given input vector is a one-hot code identifying which one of
a small number of cluster centroids best represents the input 9.

3.4 Depth and abstraction
Depth is a key aspect to representation learning strategies we
consider in this paper. As we will discuss, deep architectures
are often challenging to train effectively and this has been
the subject of much recent research and progress. However,
despite these challenges, they carry two significant advantages
that motivate our long-term interest in discovering successful
training strategies for deep architectures. These advantages
are: (1) deep architectures promote the re-use of features, and
(2) deep architectures can potentially lead to progressively
more abstract features at higher layers of representations
(more removed from the data).

Feature re-use. The notion of re-use, which explains the
power of distributed representations, is also at the heart of the
theoretical advantages behind deep learning, i.e., constructing
multiple levels of representation or learning a hierarchy of
features. The depth of a circuit is the length of the longest
path from an input node of the circuit to an output node of
the circuit. The crucial property of a deep circuit is that its
number of paths, i.e., ways to re-use different parts, can grow
exponentially with its depth. Formally, one can change the
depth of a given circuit by changing the definition of what

9. As discussed in (Bengio, 2009), things are only slightly better when
allowing continuous-valued membership values, e.g., in ordinary mixture
models (with separate parameters for each mixture component), but the
difference in representational power is still exponential (Montufar and Morton,
2012). The situation may also seem better with a decision tree, where each
given input is associated with a one-hot code over the tree leaves, which
deterministically selects associated ancestors (the path from root to node).
Unfortunately, the number of different regions represented (equal to the
number of leaves of the tree) still only grows linearly with the number of
parameters used to specify it (Bengio and Delalleau, 2011).
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each node can compute, but only by a constant factor. The
typical computations we allow in each node include: weighted
sum, product, artificial neuron model (such as a monotone non-
linearity on top of an affine transformation), computation of a
kernel, or logic gates. Theoretical results clearly show families
of functions where a deep representation can be exponentially
more efficient than one that is insufficiently deep (Håstad,
1986; Håstad and Goldmann, 1991; Bengio et al., 2006a;
Bengio and LeCun, 2007; Bengio and Delalleau, 2011). If
the same family of functions can be represented with fewer
parameters (or more precisely with a smaller VC-dimension,
learning theory would suggest that it can be learned with
fewer examples, yielding improvements in both computational
efficiency (less nodes to visit) and statistical efficiency (less
parameters to learn, and re-use of these parameters over many
different kinds of inputs).

Abstraction and invariance. Deep architectures can lead
to abstract representations because more abstract concepts can
often be constructed in terms of less abstract ones. In some
cases, such as in the convolutional neural network (LeCun
et al., 1998b), we build this abstraction in explicitly via a
pooling mechanism (see section 11.2). More abstract concepts
are generally invariant to most local changes of the input. That
makes the representations that capture these concepts generally
highly non-linear functions of the raw input. This is obviously
true of categorical concepts, where more abstract representa-
tions detect categories that cover more varied phenomena (e.g.
larger manifolds with more wrinkles) and thus they potentially
have greater predictive power. Abstraction can also appear in
high-level continuous-valued attributes that are only sensitive
to some very specific types of changes in the input. Learning
these sorts of invariant features has been a long-standing goal
in pattern recognition.

3.5 Disentangling Factors of Variation

Beyond being distributed and invariant, we would like our rep-
resentations to disentangle the factors of variation. Different
explanatory factors of the data tend to change independently
of each other in the input distribution, and only a few at a time
tend to change when one considers a sequence of consecutive
real-world inputs.

Complex data arise from the rich interaction of many
sources. These factors interact in a complex web that can
complicate AI-related tasks such as object classification. For
example, an image is composed of the interaction between one
or more light sources, the object shapes and the material prop-
erties of the various surfaces present in the image. Shadows
from objects in the scene can fall on each other in complex
patterns, creating the illusion of object boundaries where there
are none and dramatically effect the perceived object shape.
How can we cope with these complex interactions? How can
we disentangle the objects and their shadows? Ultimately,
we believe the approach we adopt for overcoming these
challenges must leverage the data itself, using vast quantities
of unlabeled examples, to learn representations that separate
the various explanatory sources. Doing so should give rise to
a representation significantly more robust to the complex and

richly structured variations extant in natural data sources for
AI-related tasks.

It is important to distinguish between the related but distinct
goals of learning invariant features and learning to disentangle
explanatory factors. The central difference is the preservation
of information. Invariant features, by definition, have reduced
sensitivity in the direction of invariance. This is the goal of
building features that are insensitive to variation in the data
that are uninformative to the task at hand. Unfortunately, it is
often difficult to determine a priori which set of features will
ultimately be relevant to the task at hand. Further, as is often
the case in the context of deep learning methods, the feature set
being trained may be destined to be used in multiple tasks that
may have distinct subsets of relevant features. Considerations
such as these lead us to the conclusion that the most robust
approach to feature learning is to disentangle as many factors
as possible, discarding as little information about the data
as is practical. If some form of dimensionality reduction is
desirable, then we hypothesize that the local directions of
variation least represented in the training data should be first to
be pruned out (as in PCA, for example, which does it globally
instead of around each example).

3.6 What are good criteria for learning representa-
tions?

One of the challenges of representation learning that distin-
guishes it from other machine learning tasks such as classi-
fication is the difficulty in establishing a clear objective, or
target for training. In the case of classification, the objective
is (at least conceptually) obvious, we want to minimize the
number of misclassifications on the training dataset. In the
case of representation learning, our objective is far-removed
from the ultimate objective, which is typically learning a
classifier or some other predictor. Our problem is reminiscent
of the credit assignment problem encountered in reinforcement
learning. We have proposed that a good representation is one
that disentangles the underlying factors of variation, but how
do we translate that into appropriate training criteria? Is it even
necessary to do anything but maximize likelihood under a good
model or can we introduce priors such as those enumerated
above (possibly data-dependent ones) that help the representa-
tion better do this disentangling? This question remains clearly
open but is discussed in more detail in Sections 3.5 and 11.4.

4 BUILDING DEEP REPRESENTATIONS

In 2006, a breakthrough in feature learning and deep learning
was initiated by Geoff Hinton and quickly followed up in
the same year (Hinton et al., 2006a; Bengio et al., 2007;
Ranzato et al., 2007). It has been extensively reviewed and
discussed in Bengio (2009). A central idea, referred to as
greedy layerwise unsupervised pre-training, was to learn a
hierarchy of features one level at a time, using unsupervised
feature learning to learn a new transformation at each level
to be composed with the previously learned transformations;
essentially, each iteration of unsupervised feature learning adds
one layer of weights to a deep neural network. Finally, the set



6

of layers could be combined to initialize a deep supervised pre-
dictor, such as a neural network classifier, or a deep generative
model, such as a Deep Boltzmann Machine (Salakhutdinov
and Hinton, 2009).

This paper is mostly about feature learning algorithms
that can be used to form deep architectures. In particular, it
was empirically observed that layerwise stacking of feature
extraction often yielded better representations, e.g., in terms
of classification error (Larochelle et al., 2009; Erhan et al.,
2010b), quality of the samples generated by a probabilistic
model (Salakhutdinov and Hinton, 2009) or in terms of the
invariance properties of the learned features (Goodfellow
et al., 2009). Whereas this section focuses on the idea of
stacking single-layer models, Section 10 follows up with a
discussion on joint training of all the layers.

The greedy layerwise unsupervised pre-training proce-
dure (Hinton et al., 2006a; Bengio et al., 2007; Bengio,
2009) is based on training each layer with an unsupervised
representation learning algorithm, taking the features produced
at the previous level as input for the next level. It is then
straightforward to use the resulting deep feature extraction
either as input to a standard supervised machine learning
predictor (such as an SVM) or as initialization for a deep
supervised neural network (e.g., by appending a logistic re-
gression layer or purely supervised layers of a multi-layer
neural network). The layerwise procedure can also be applied
in a purely supervised setting, called the greedy layerwise
supervised pre-training (Bengio et al., 2007). For example,
after the first one-hidden-layer MLP is trained, its output layer
is discarded and another one-hidden-layer MLP can be stacked
on top of it, etc. Although results reported in Bengio et al.
(2007) were not as good as for unsupervised pre-training,
they were nonetheless better than without pre-training at all.
Alternatively, the outputs of the previous layer can be fed as
extra inputs for the next layer, as successfully done in Yu et al.
(2010).

Whereas combining single layers into a supervised model
is straightforward, it is less clear how layers pre-trained by
unsupervised learning should be combined to form a better
unsupervised model. We cover here some of the approaches
to do so, but no clear winner emerges and much work has to
be done to validate existing proposals or improve them.

The first proposal was to stack pre-trained RBMs into a
Deep Belief Network (Hinton et al., 2006a) or DBN, where
the top layer is interpreted as an RBM and the lower layers
as a directed sigmoid belief network. However, it is not clear
how to approximate maximum likelihood training to further
optimize this generative model. One option is the wake-sleep
algorithm (Hinton et al., 2006a) but more work should be done
to assess the efficiency of this procedure in terms of improving
the generative model.

The second approach that has been put forward is to
combine the RBM parameters into a Deep Boltzmann Machine
(DBM), by basically halving the RBM weights to obtain
the DBM weights (Salakhutdinov and Hinton, 2009). The
DBM can then be trained by approximate maximum likelihood
as discussed in more details later (Section 10.2). This joint
training has brought substantial improvements, both in terms

of likelihood and in terms of classification performance of
the resulting deep feature learner (Salakhutdinov and Hinton,
2009).

Another early approach was to stack RBMs or auto-
encoders into a deep auto-encoder (Hinton and Salakhutdi-
nov, 2006). If we have a series of encoder-decoder pairs
(f (i)(·), g(i)(·)), then the overall encoder is the composition of
the encoders, f (N)(. . . f (2)(f (1)(·))), and the overall decoder
is its “transpose” (often with transposed weight matrices as
well), g(1)(g(2)(. . . f (N)(·))). The deep auto-encoder (or its
regularized version, as discussed in Section 7.2) can then be
jointly trained, with all the parameters optimized with respect
to a common training criterion. More work on this avenue
clearly needs to be done, and it was probably avoided by
fear of the challenges in training deep feedforward networks,
discussed in the Section 10 along with very encouraging recent
results.

Yet another recently proposed approach to training deep
architectures (Ngiam et al., 2011) is to consider the iter-
ative construction of a free energy function (i.e., with no
explicit latent variables, except possibly for a top-level layer
of hidden units) for a deep architecture as the composition of
transformations associated with lower layers, followed by top-
level hidden units. The question is then how to train a model
defined by an arbitrary parametrized (free) energy function.
Ngiam et al. (2011) have used Hybrid Monte Carlo (Neal,
1993), but other options include contrastive divergence (Hinton
et al., 2006b), score matching (Hyvärinen, 2005a; Hyvärinen,
2008), denoising score matching (Kingma and LeCun, 2010;
Vincent, 2011), and noise-contrastive estimation (Gutmann
and Hyvarinen, 2010).

5 SINGLE-LAYER LEARNING MODULES

Within the community of researchers interested in representa-
tion learning, there has developed two broad parallel lines of
inquiry: one rooted in probabilistic graphical models and one
rooted in neural networks. Fundamentally, the difference be-
tween these two paradigms is whether the layered architecture
of a deep learning model is to be interpreted as describing a
probabilistic graphical model or as describing a computation
graph. In short, are hidden units considered latent random
variables or as computational nodes?

To date, the dichotomy between these two paradigms has
remained in the background, perhaps because they appear to
have more characteristics in common than separating them.
We suggest that this is likely a function of the fact that much
recent progress in both of these areas has focused on single-
layer greedy learning modules and the similarities between the
types of single-layer models that have been explored: mainly,
the restricted Boltzmann machine (RBM) on the probabilistic
side, and the auto-encoder variants on the neural network
side. Indeed, as shown by one of us (Vincent, 2011) and
others (Swersky et al., 2011), in the case of the restricted
Boltzmann machine, training the model via an inductive
principle known as score matching (Hyvärinen, 2005b) (to be
discussed in sec. 6.4.3) is essentially identical to a regularized
reconstruction objective of an auto-encoder. Another strong
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link between pairs of models on both sides of this divide is
when the computational graph for computing representation in
the neural network model corresponds exactly to the computa-
tional graph that corresponds to inference in the probabilistic
model, and this happens to also correspond to the structure of
graphical model itself.

The connection between these two paradigms becomes more
tenuous when we consider deeper models where, in the case
of a probabilistic model, exact inference typically becomes
intractable. In the case of deep models, the computational
graph diverges from the structure of the model. For example,
in the case of a deep Boltzmann machine, unrolling variational
(approximate) inference into a computational graph results in
a recurrent graph structure. We have performed preliminary
exploration (Savard, 2011) of deterministic variants of deep
auto-encoders whose computational graph is similar to that of
a deep Boltzmann machine (in fact very close to the mean-
field variational approximations associated with the Boltzmann
machine), and that is one interesting intermediate point to ex-
plore (between the deterministic approaches and the graphical
model approaches).

In the next few sections we will review the major de-
velopments in single-layer training modules used to support
feature learning and particularly deep learning. We divide these
sections between (Section 6) the probabilistic models, with
inference and training schemes that directly parametrize the
generative – or decoding – pathway and (Section 7) the typ-
ically neural network-based models that directly parametrize
the encoding pathway. Interestingly, some models, like Pre-
dictive Sparse Decomposition (PSD) (Kavukcuoglu et al.,
2008) inherit both properties, and will also be discussed (Sec-
tion 7.2.4). We then present a different view of representation
learning, based on the associated geometry and the manifold
assumption, in Section 8.

Before we do this, we consider an unsupervised single-layer
representation learning algorithm that spans all three views
(probabilistic, auto-encoder, and manifold learning) discussed
here.

Principal Components Analysis
We will use probably the oldest feature extraction algo-

rithm, principal components analysis (PCA) (Pearson, 1901;
Hotelling, 1933), to illustrate the probabilistic, auto-encoder
and manifold views of representation-learning. PCA learns
a linear transformation h = f(x) = WTx + b of input
x ∈ Rdx , where the columns of dx × dh matrix W form an
orthogonal basis for the dh orthogonal directions of greatest
variance in the training data. The result is dh features (the
components of representation h) that are decorrelated. The
three interpretations of PCA are the following: a) it is related
to probabilistic models (Section 6) such as probabilistic PCA,
factor analysis and the traditional multivariate Gaussian dis-
tribution (the leading eigenvectors of the covariance matrix
are the principal components); b) the representation it learns
is essentially the same as that learned by a basic linear
auto-encoder (Section 7.2); and c) it can be viewed as a
simple linear form of linear manifold learning (Section 8), i.e.,
characterizing a lower-dimensional region in input space near
which the data density is peaked. Thus, PCA may be in the

back of the reader’s mind as a common thread relating these
various viewpoints. Unfortunately the expressive power of
linear features is very limited: they cannot be stacked to form
deeper, more abstract representations since the composition
of linear operations yields another linear operation. Here, we
focus on recent algorithms that have been developed to extract
non-linear features, which can be stacked in the construction
of deep networks, although some authors simply insert a non-
linearity between learned single-layer linear projections (Le
et al., 2011c; Chen et al., 2012).

Another rich family of feature extraction techniques that this
review does not cover in any detail due to space constraints is
Independent Component Analysis or ICA (Jutten and Herault,
1991; Comon, 1994; Bell and Sejnowski, 1997). Instead, we
refer the reader to Hyvärinen et al. (2001a); Hyvärinen et al.
(2009). Note that, while in the simplest case (complete, noise-
free) ICA yields linear features, in the more general case
it can be equated with a linear generative model with non-
Gaussian independent latent variables, similar to sparse coding
(section 6.1.3), which result in non-linear features. There-
fore, ICA and its variants like Independent and Topographic
ICA (Hyvärinen et al., 2001b) can and have been used to build
deep networks (Le et al., 2010, 2011c): see section 11.2. The
notion of obtaining independent components also appears sim-
ilar to our stated goal of disentangling underlying explanatory
factors through deep networks. However, for complex real-
world distributions, it is doubtful that the relationship between
truly independent underlying factors and the observed high-
dimensional data can be adequately characterized by a linear
transformation.

6 PROBABILISTIC MODELS
From the probabilistic modeling perspective, the question of
feature learning can be interpreted as an attempt to recover
a parsimonious set of latent random variables that describe
a distribution over the observed data. We can express any
probabilistic model over the joint space of the latent variables,
h, and observed or visible variables x, (associated with the
data) as p(x, h). Feature values are conceived as the result of
an inference process to determine the probability distribution
of the latent variables given the data, i.e. p(h | x), often
referred to as the posterior probability. Learning is conceived
in term of estimating a set of model parameters that (locally)
maximizes the likelihood of the training data with respect to
the distribution over these latent variables. The probabilistic
graphical model formalism gives us two possible modeling
paradigms in which we can consider the question of inferring
latent variables: directed and undirected graphical models. The
key distinguishing factor between these paradigms is the nature
of their parametrization of the joint distribution p(x, h). The
choice of directed versus undirected model has a major impact
on the nature and computational costs of the algorithmic
approach to both inference and learning.

6.1 Directed Graphical Models
Directed latent factor models are parametrized through a de-
composition of the joint distribution, p(x, h) = p(x | h)p(h),
involving a prior p(h), and a likelihood p(x | h) that
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describes the observed data x in terms of the latent factors
h. Unsupervised feature learning models that can be inter-
preted with this decomposition include: Principal Components
Analysis (PCA) (Roweis, 1997; Tipping and Bishop, 1999),
sparse coding (Olshausen and Field, 1996), sigmoid belief
networks (Neal, 1992) and the newly introduced spike-and-
slab sparse coding model (Goodfellow et al., 2011).

6.1.1 Explaining Away
In the context of latent factor models, the form of the di-
rected model often leads to one important property, namely
explaining away: a priori independent causes of an event can
become non-independent given the observation of the event.
Latent factor models can generally be interpreted as latent
cause models, where the h activations cause the observed x.
This renders the a priori independent h to be non-independent.
As a consequence, recovering the posterior distribution of h,
p(h | x) (which we use as a basis for feature representation),
is often computationally challenging and can be entirely
intractable, especially when h is discrete.

A classic example that illustrates the phenomenon is to
imagine you are on vacation away from home and you receive
a phone call from the company that installed the security
system at your house. They tell you that the alarm has been
activated. You begin worrying your home has been burglarized,
but then you hear on the radio that a minor earthquake has been
reported in the area of your home. If you happen to know from
prior experience that earthquakes sometimes cause your home
alarm system to activate, then suddenly you relax, confident
that your home has very likely not been burglarized.

The example illustrates how the observation, alarm acti-
vation, rendered two otherwise entirely independent causes,
burglarized and earthquake, to become dependent – in this
case, the dependency is one of mutual exclusivity. Since both
burglarized and earthquake are very rare events and both can
cause alarm activation, the observation of one explains away
the other. The example demonstrates not only how observa-
tions can render causes to be statistically dependent, but also
the utility of explaining away. It gives rise to a parsimonious
prediction of the unseen or latent events from the observations.
Returning to latent factor models, despite the computational
obstacles we face when attempting to recover the posterior
over h, explaining away promises to provide a parsimonious
p(h | x), which can be an extremely useful characteristic of
a feature encoding scheme. If one thinks of a representation
as being composed of various feature detectors and estimated
attributes of the observed input, it is useful to allow the
different features to compete and collaborate with each other
to explain the input. This is naturally achieved with directed
graphical models, but can also be achieved with undirected
models (see Section 6.2) such as Boltzmann machines if there
are lateral connections between the corresponding units or
corresponding interaction terms in the energy function that
defines the probability model.

6.1.2 Probabilistic Interpretation of PCA
While PCA was not originally cast as probabilistic model, it
possesses a natural probabilistic interpretation (Roweis, 1997;

Tipping and Bishop, 1999) that casts PCA as factor analysis:

p(h) = N (h; 0, σ2
hI)

p(x | h) = N (x;Wh+ µx, σ
2
xI), (1)

where x ∈ Rdx , h ∈ Rdh , N (v;µ,Σ) is the multivariate
normal density of v with mean µ and covariance Σ, and
columns of W span the same space as leading dh principal
components, but are not constrained to be orthonormal.

6.1.3 Sparse Coding
As in the case of PCA, sparse coding has both a probabilistic
and non-probabilistic interpretation. Sparse coding also relates
a latent representation h (either a vector of random variables
or a feature vector, depending on the interpretation) to the
data x through a linear mapping W , which we refer to as the
dictionary. The difference between sparse coding and PCA
is that sparse coding includes a penalty to ensure a sparse
activation of h is used to encode each input x.

Specifically, from a non-probabilistic perspective, sparse
coding can be seen as recovering the code or feature vector
associated with a new input x via:

h∗ = f(x) = argmin
h
‖x−Wh‖22 + λ‖h‖1, (2)

Learning the dictionary W can be accomplished by optimizing
the following training criterion with respect to W :

JSC =
∑
t

‖x(t) −Wh∗(t)‖22, (3)

where the x(t) is the input vector for example t and h∗(t) are
the corresponding sparse codes determined by Eq. 2. W is
usually constrained to have unit-norm columns (because one
can arbitrarily exchange scaling of column i with scaling of
h
(t)
i , such a constraint is necessary for the L1 penalty to have

any effect).
The probabilistic interpretation of sparse coding differs from

that of PCA, in that instead of a Gaussian prior on the latent
random variable h, we use a sparsity inducing Laplace prior
(corresponding to an L1 penalty):

p(h) =

dh∏
i

λ exp(−λ|hi|)

p(x | h) = N (x;Wh+ µx, σ
2
xI). (4)

In the case of sparse coding, because we will seek a sparse
representation (i.e., one with many features set to exactly zero),
we will be interested in recovering the MAP (maximum a
posteriori value of h: i.e. h∗ = argmaxh p(h | x) rather
than its expected value E[ [h] |x]. Under this interpretation,
dictionary learning proceeds as maximizing the likelihood of
the data given these MAP values of h∗: argmaxW

∏
t p(x

(t) |
h∗(t)) subject to the norm constraint on W . Note that this
parameter learning scheme, subject to the MAP values of the
latent h, is not standard practice in the probabilistic graphical
model literature. Typically the likelihood of the data p(x) =∑
h p(x | h)p(h) is maximized directly. In the presence of

latent variables, expectation maximization (Dempster et al.,
1977) is employed where the parameters are optimized with
respect to the marginal likelihood, i.e., summing or integrating
the joint log-likelihood over the values of the latent variables
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under their posterior P (h | x), rather than considering only
the MAP values of h. The theoretical properties of this form
of parameter learning are not yet well understood but seem
to work well in practice (e.g. k-Means vs Gaussian mixture
models and Viterbi training for HMMs). Note also that the
interpretation of sparse coding as a MAP estimation can
be questioned (Gribonval, 2011), because even though the
interpretation of the L1 penalty as a log-prior is a possible
interpretation, there can be other Bayesian interpretations
compatible with the training criterion.

Sparse coding is an excellent example of the power of
explaining away. The Laplace distribution (equivalently, the
L1 penalty) over the latent h acts to resolve a sparse and
parsimonious representation of the input. Even with a very
overcomplete dictionary with many redundant bases, the MAP
inference process used in sparse coding to find h∗ can pick
out the most appropriate bases and zero the others, despite
them having a high degree of correlation with the input. This
property arises naturally in directed graphical models such as
sparse coding and is entirely owing to the explaining away
effect. It is not seen in commonly used undirected probabilistic
models such as the RBM, nor is it seen in parametric feature
encoding methods such as auto-encoders. The trade-off is
that, compared to methods such as RBMs and auto-encoders,
inference in sparse coding involves an extra inner-loop of
optimization to find h∗ with a corresponding increase in the
computational cost of feature extraction. Compared to auto-
encoders and RBMs, the code in sparse coding is a free
variable for each example, and in that sense the implicit
encoder is non-parametric.

One might expect that the parsimony of the sparse cod-
ing representation and its explaining away effect would be
advantageous and indeed it seems to be the case. Coates
and Ng (2011a) demonstrated with the CIFAR-10 object
classification task (Krizhevsky and Hinton, 2009) with a patch-
base feature extraction pipeline, that in the regime with few
(< 1000) labeled training examples per class, the sparse
coding representation significantly outperformed other highly
competitive encoding schemes. Possibly because of these
properties, and because of the very computationally efficient
algorithms that have been proposed for it (in comparison with
the general case of inference in the presence of explaining
away), sparse coding enjoys considerable popularity as a
feature learning and encoding paradigm. There are numerous
examples of its successful application as a feature repre-
sentation scheme, including natural image modeling (Raina
et al., 2007; Kavukcuoglu et al., 2008; Coates and Ng, 2011a;
Yu et al., 2011), audio classification (Grosse et al., 2007),
natural language processing (Bagnell and Bradley, 2009), as
well as being a very successful model of the early visual
cortex (Olshausen and Field, 1997). Sparsity criteria can also
be generalized successfully to yield groups of features that
prefer to all be zero, but if one or a few of them are active then
the penalty for activating others in the group is small. Different
group sparsity patterns can incorporate different forms of prior
knowledge (Kavukcuoglu et al., 2009; Jenatton et al., 2009;
Bach et al., 2011; Gregor et al., 2011).

Spike-and-Slab Sparse Coding. Spike-and-slab sparse cod-

ing (S3C) is one example of a promising variation on sparse
coding for feature learning (Goodfellow et al., 2012). The
S3C model possesses a set of latent binary spike variables
together with a a set of latent real-valued slab variables. The
activation of the spike variables dictate the sparsity pattern.
S3C has been applied to the CIFAR-10 and CIFAR-100 object
classification tasks (Krizhevsky and Hinton, 2009), and shows
the same pattern as sparse coding of superior performance in
the regime of relatively few (< 1000) labeled examples per
class (Goodfellow et al., 2012). In fact, in both the CIFAR-
100 dataset (with 500 examples per class) and the CIFAR-
10 dataset (when the number of examples is reduced to a
similar range), the S3C representation actually outperforms
sparse coding representations. This advantage was revealed
clearly with S3C winning the NIPS’2011 Transfer Learning
Challenge (Goodfellow et al., 2011).

6.2 Undirected Graphical Models
Undirected graphical models, also called Markov random
fields (MRFs), parametrize the joint p(x, h) through a fac-
torization in terms of unnormalized non-negative clique po-
tentials:

p(x, h) =
1

Zθ

∏
i

ψi(x)
∏
j

ηj(h)
∏
k

νk(x, h) (5)

where ψi(x), ηj(h) and νk(x, h) are the clique potentials de-
scribing the interactions between the visible elements, between
the hidden variables, and those interaction between the visible
and hidden variables respectively. The partition function Zθ
ensures that the distribution is normalized. Within the context
of unsupervised feature learning, we generally see a particular
form of Markov random field called a Boltzmann distribution
with clique potentials constrained to be positive:

p(x, h) =
1

Zθ
exp (−Eθ(x, h)) , (6)

where Eθ(x, h) is the energy function and contains the inter-
actions described by the MRF clique potentials and θ are the
model parameters that characterize these interactions.

A Boltzmann machine is defined as a network of
symmetrically-coupled binary random variables or units.
These stochastic units can be divided into two groups: (1) the
visible units x ∈ {0, 1}dx that represent the data, and (2) the
hidden or latent units h ∈ {0, 1}dh that mediate dependencies
between the visible units through their mutual interactions. The
pattern of interaction is specified through the energy function:

EBM
θ (x, h) = −1

2
xTUx− 1

2
hTV h− xTWh− bTx− dTh, (7)

where θ = {U, V,W, b, d} are the model parameters
which respectively encode the visible-to-visible interac-
tions, the hidden-to-hidden interactions, the visible-to-hidden
interactions, the visible self-connections, and the hidden
self-connections (also known as biases). To avoid over-
parametrization, the diagonals of U and V are set to zero.

The Boltzmann machine energy function specifies the prob-
ability distribution over the joint space [x, h], via the Boltz-
mann distribution, Eq. 6, with the partition function Zθ given
by:

Zθ =

x1=1∑
x1=0

· · ·
xdx=1∑
xdx=0

h1=1∑
h1=0

· · ·
hdh

=1∑
hdh

=0

exp
(
−EBM

θ (x, h; θ)
)
. (8)
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This joint probability distribution gives rise to the set of
conditional distributions of the form:

P (hi | x, h\i) = sigmoid

∑
j

Wjixj +
∑
i′ 6=i

Vii′hi′ + di

 (9)

P (xj | h, x\j) = sigmoid

∑
i

Wjixj +
∑
j′ 6=j

Ujj′xj′ + bj

 .

(10)

In general, inference in the Boltzmann machine is intractable.
For example, computing the conditional probability of hi given
the visibles, P (hi | x), requires marginalizing over the rest of
the hiddens, which implies evaluating a sum with 2dh−1 terms:

P (hi | x) =
h1=1∑
h1=0

· · ·
hi−1=1∑
hi−1=0

hi+1=1∑
hi+1=0

· · ·
hdh

=1∑
hdh

=0

P (h | x) (11)

However with some judicious choices in the pattern of inter-
actions between the visible and hidden units, more tractable
subsets of the model family are possible, as we discuss next.

6.2.1 Restricted Boltzmann Machines
The restricted Boltzmann machine (RBM) is likely the most
popular subclass of Boltzmann machine (Smolensky, 1986).
It is defined by restricting the interactions in the Boltzmann
energy function, in Eq. 7, to only those between h and x, i.e.
ERBM
θ is EBM

θ with U = 0 and V = 0. As such, the RBM
can be said to form a bipartite graph with the visibles and
the hiddens forming two layers of vertices in the graph (and
no connection between units of the same layer). With this
restriction, the RBM possesses the useful property that the
conditional distribution over the hidden units factorizes given
the visibles:

P (h | x) =
∏
i

P (hi | x)

P (hi = 1 | x) = sigmoid

(∑
j

Wjixj + di

)
(12)

Likewise, the conditional distribution over the visible units
given the hiddens also factorizes:

P (x | h) =
∏
j

P (xj | h)

P (xj = 1 | h) = sigmoid

(∑
i

Wjihi + bj

)
(13)

This conditional factorization property of the RBM immedi-
ately implies that most inferences we would like to make are
readily tractable. For example, the RBM feature representation
is taken to be the set of posterior marginals P (hi | x),
which, given the conditional independence described in Eq. 12,
are immediately available. Note that this is in stark contrast
to the situation with popular directed graphical models for
unsupervised feature extraction, where computing the posterior
probability is intractable.

Importantly, the tractability of the RBM does not extend
to its partition function, which still involves summing an
exponential number of terms. It does imply however that we
can limit the number of terms to min{2dx , 2dh}. Usually this is

still an unmanageable number of terms and therefore we must
resort to approximate methods to deal with its estimation.

It is difficult to overstate the impact the RBM has had to
the fields of unsupervised feature learning and deep learning.
It has been used in a truly impressive variety of applica-
tions, including fMRI image classification (Schmah et al.,
2009), motion and spatial transformations (Taylor and Hinton,
2009; Memisevic and Hinton, 2010), collaborative filtering
(Salakhutdinov et al., 2007) and natural image modeling
(Ranzato and Hinton, 2010; Courville et al., 2011b).

6.3 Generalizations of the RBM to Real-valued data

Important progress has been made in the last few years in
defining generalizations of the RBM that better capture real-
valued data, in particular real-valued image data, by better
modeling the conditional covariance of the input pixels. The
standard RBM, as discussed above, is defined with both binary
visible variables v ∈ {0, 1} and binary latent variables h ∈
{0, 1}. The tractability of inference and learning in the RBM
has inspired many authors to extend it, via modifications of its
energy function, to model other kinds of data distributions. In
particular, there has been multiple attempts to develop RBM-
type models of real-valued data, where x ∈ Rdx . The most
straightforward approach to modeling real-valued observations
within the RBM framework is the so-called Gaussian RBM
(GRBM) where the only change in the RBM energy function
is to the visible units biases, by adding a bias term that is
quadratic in the visible units x. While it probably remains
the most popular way to model real-valued data within the
RBM framework, Ranzato and Hinton (2010) suggest that the
GRBM has proved to be a somewhat unsatisfactory model of
natural images. The trained features typically do not represent
sharp edges that occur at object boundaries and lead to latent
representations that are not particularly useful features for
classification tasks. Ranzato and Hinton (2010) argue that
the failure of the GRBM to adequately capture the statistical
structure of natural images stems from the exclusive use of the
model capacity to capture the conditional mean at the expense
of the conditional covariance. Natural images, they argue, are
chiefly characterized by the covariance of the pixel values,
not by their absolute values. This point is supported by the
common use of preprocessing methods that standardize the
global scaling of the pixel values across images in a dataset
or across the pixel values within each image.

These kinds of concerns about the ability of the GRBM
to model natural image data has lead to the development of
alternative RBM-based models that each attempt to take on this
objective of better modeling non-diagonal conditional covari-
ances. (Ranzato and Hinton, 2010) introduced the mean and
covariance RBM (mcRBM). Like the GRBM, the mcRBM is a
2-layer Boltzmann machine that explicitly models the visible
units as Gaussian distributed quantities. However unlike the
GRBM, the mcRBM uses its hidden layer to independently
parametrize both the mean and covariance of the data through
two sets of hidden units. The mcRBM is a combination of the
covariance RBM (cRBM) (Ranzato et al., 2010a), that models
the conditional covariance, with the GRBM that captures the
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conditional mean. While the GRBM has shown considerable
potential as the basis of a highly successful phoneme recogni-
tion system (Dahl et al., 2010), it seems that due to difficulties
in training the mcRBM, the model has been largely superseded
by the mPoT model. The mPoT model (mean-product of
Student’s T-distributions model) (Ranzato et al., 2010b) is
a combination of the GRBM and the product of Student’s T-
distributions model (Welling et al., 2003). It is an energy-based
model where the conditional distribution over the visible units
conditioned on the hidden variables is a multivariate Gaussian
(non-diagonal covariance) and the complementary conditional
distribution over the hidden variables given the visibles are a
set of independent Gamma distributions.

The PoT model has recently been generalized to the mPoT
model (Ranzato et al., 2010b) to include nonzero Gaussian
means by the addition of GRBM-like hidden units, similarly to
how the mcRBM generalizes the cRBM. The mPoT model has
been used to synthesize large-scale natural images (Ranzato
et al., 2010b) that show large-scale features and shadowing
structure. It has been used to model natural textures (Kivinen
and Williams, 2012) in a tiled-convolution configuration (see
section 11.2).

Another recently introduced RBM-based model with the
objective of having the hidden units encode both the mean
and covariance information is the spike-and-slab Restricted
Boltzmann Machine (ssRBM) (Courville et al., 2011a,b).
The ssRBM is defined as having both a real-valued “slab”
variable and a binary “spike” variable associated with each
unit in the hidden layer. The ssRBM has been demonstrated
as a feature learning and extraction scheme in the context
of CIFAR-10 object classification (Krizhevsky and Hinton,
2009) from natural images and has performed well in the
role (Courville et al., 2011a,b). When trained convolutionally
(see Section 11.2) on full CIFAR-10 natural images, the model
demonstrated the ability to generate natural image samples
that seem to capture the broad statistical structure of natural
images better than previous parametric generative models, as
illustrated with the samples of Figure 2.

The mcRBM, mPoT and ssRBM each set out to model
real-valued data such that the hidden units encode not only
the conditional mean of the data but also its conditional
covariance. Other than differences in the training schemes, the
most significant difference between these models is how they
encode their conditional covariance. While the mcRBM and
the mPoT use the activation of the hidden units to enforce con-
straints on the covariance of x, the ssRBM uses the hidden unit
to pinch the precision matrix along the direction specified by
the corresponding weight vector. These two ways of modeling
conditional covariance diverge when the dimensionality of the
hidden layer is significantly different from that of the input. In
the over-complete setting, sparse activation with the ssRBM
parametrization permits variance only in the select directions
of the sparsely activated hidden units. This is a property the
ssRBM shares with sparse coding models (Olshausen and
Field, 1997; Grosse et al., 2007). On the other hand, in
the case of the mPoT or mcRBM, an over-complete set of
constraints on the covariance implies that capturing arbitrary
covariance along a particular direction of the input requires

Fig. 2. (Top) Samples from a convolutionally trained µ-ssRBM,
see details in Courville et al. (2011b). (Bottom) The images in
the CIFAR-10 training set closest (L2 distance with contrast nor-
malized training images) to the corresponding model samples.
The model does not appear to be capturing the natural image
statistical structure by overfitting particular examples from the
dataset.

decreasing potentially all constraints with positive projection
in that direction. This perspective would suggest that the mPoT
and mcRBM do not appear to be well suited to provide a sparse
representation in the overcomplete setting.

6.4 RBM parameter estimation

In this section we discuss several algorithms for training
the restricted Boltzmann machine. Many of the methods we
discuss are applicable to more general undirected graphical
models, but are particularly practical in the RBM setting.
Freund and Haussler (1994) proposed a learning algorithm for
harmoniums (RBMs) based on projection pursuit (Friedman
and Stuetzle, 1981). Contrastive Divergence (Hinton, 1999;
Hinton et al., 2006a) has been used most often to train
RBMs, and many recent papers use Stochastic Maximum
Likelihood (Younes, 1999; Tieleman, 2008).

As discussed in Sec. 6.1, in training probabilistic models
parameters are typically adapted in order to maximize the like-
lihood of the training data (or equivalently the log-likelihood,
or its penalized version, which adds a regularization term).
With T training examples, the log likelihood is given by:

T∑
t=1

logP (x(t); θ) =
T∑
t=1

log
∑

h∈{0,1}dh

P (x(t), h; θ). (14)

One straightforward way we can consider maximizing this
quantity is to take small steps uphill, following the log-
likelihood gradient, to find a local maximum of the likelihood.
For any Boltzmann machine, the gradient of the log-likelihood
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of the data is given by:

∂

∂θi

T∑
t=1

log p(x(t)) = −
T∑
t=1

Ep(h|x(t))

[
∂

∂θi
EBM
θ (x(t), h)

]

+

T∑
t=1

Ep(x,h)
[
∂

∂θi
EBM
θ (x, h)

]
, (15)

where we have the expectations with respect to p(h(t) | x(t))
in the “clamped” condition (also called the positive phase),
and over the full joint p(x, h) in the “unclamped” condition
(also called the negative phase). Intuitively, the gradient acts
to locally move the model distribution (the negative phase
distribution) toward the data distribution (positive phase dis-
tribution), by pushing down the energy of (h, x(t)) pairs (for
h ∼ P (h|x(t))) while pushing up the energy of (h, x) pairs
(for (h, x) ∼ P (h, x)) until the two forces are in equilibrium,
at which point the sufficient statistics (gradient of the energy
function) have equal expectations with x sampled from the
training distribution or with x sampled from the model.

The RBM conditional independence properties imply that
the expectation in the positive phase of Eq. 15 is readily
tractable. The negative phase term – arising from the partition
function’s contribution to the log-likelihood gradient – is more
problematic because the computation of the expectation over
the joint is not tractable. The various ways of dealing with the
partition function’s contribution to the gradient have brought
about a number of different training algorithms, many trying
to approximate the log-likelihood gradient.

To approximate the expectation of the joint distribution in
the negative phase contribution to the gradient, it is natural to
again consider exploiting the conditional independence of the
RBM in order to specify a Monte Carlo approximation of the
expectation over the joint:

Ep(x,h)
[
∂

∂θi
ERBM
θ (x, h)

]
≈ 1

L

L∑
l=1

∂

∂θi
ERBM
θ (x̃(l), h̃(l)), (16)

with the samples (x̃(l), h̃(l)) drawn by a block Gibbs MCMC
(Markov chain Monte Carlo) sampling scheme from the model
distribution:

x̃(l) ∼ P (x | h̃(l−1))

h̃(l) ∼ P (h | x̃(l)).

Naively, for each gradient update step, one would start a
Gibbs sampling chain, wait until the chain converges to the
equilibrium distribution and then draw a sufficient number of
samples to approximate the expected gradient with respect
to the model (joint) distribution in Eq. 16. Then restart the
process for the next step of approximate gradient ascent on
the log-likelihood. This procedure has the obvious flaw that
waiting for the Gibbs chain to “burn-in” and reach equilibrium
anew for each gradient update cannot form the basis of a
practical training algorithm. Contrastive Divergence (Hinton,
1999; Hinton et al., 2006a), Stochastic Maximum Likeli-
hood (Younes, 1999; Tieleman, 2008) and fast-weights per-
sistent contrastive divergence or FPCD (Tieleman and Hinton,
2009) are all examples of algorithms that attempt sidestep the
need to burn-in the negative phase Markov chain.

6.4.1 Contrastive Divergence:

Contrastive divergence (CD) estimation (Hinton, 1999; Hinton
et al., 2006a) uses a biased estimate of the gradient in Eq. 15
by approximating the negative phase expectation with a very
short Gibbs chain (often just one step) initialized at the
training data used in the positive phase. This initialization
is chosen to reduce the variance of the negative expectation
based on samples from the short running Gibbs sampler. The
intuition is that, while the samples drawn from very short
Gibbs chains may be a heavily biased (and poor) represen-
tation of the model distribution, they are at least moving in
the direction of the model distribution relative to the data
distribution represented by the positive phase training data.
Consequently, they may combine to produce a good estimate
of the gradient, or direction of progress. Much has been written
about the properties and alternative interpretations of CD, e.g.
Carreira-Perpiñan and Hinton (2005); Yuille (2005); Bengio
and Delalleau (2009); Sutskever and Tieleman (2010).

6.4.2 Stochastic Maximum Likelihood:

The Stochastic Maximum Likelihood (SML) algorithm (also
known as persistent contrastive divergence or PCD) (Younes,
1999; Tieleman, 2008) is an alternative way to sidestep an
extended burn-in of the negative phase Gibbs sampler. At each
gradient update, rather than initializing the Gibbs chain at the
positive phase sample as in CD, SML initializes the chain at
the last state of the chain used for the previous update. In
other words, SML uses a continually running Gibbs chain (or
often a number of Gibbs chains run in parallel) from which
samples are drawn to estimate the negative phase expectation.
Despite the model parameters changing between updates, these
changes should be small enough that only a few steps of Gibbs
(in practice, often one step is used) are required to maintain
samples from the equilibrium distribution of the Gibbs chain,
i.e. the model distribution.

One aspect of SML that has received considerable recent
attention is that it relies on the Gibbs chain to have reasonably
good mixing properties for learning to succeed. Typically, as
learning progresses and the weights of the RBM grow, the
ergodicity of the Gibbs sample begins to break down10. If the
learning rate ε associated with gradient ascent θ ← θ + εĝ
(with E[ĝ] ≈ ∂ log pθ(x)

∂θ ) is not reduced to compensate, then
the Gibbs sampler will diverge from the model distribution
and learning will fail. There have been a number of attempts
made to address the failure of Gibbs chain mixing in the
context of SML. Desjardins et al. (2010); Cho et al. (2010);
Salakhutdinov (2010b,a) have all considered various forms of
tempered transitions to improve the mixing rate of the negative
phase Gibbs chain.

Tieleman and Hinton (2009) have proposed quite a dif-
ferent approach to addressing potential mixing problems of
SML with their fast-weights persistent contrastive divergence

10. When weights become large, the estimated distribution is more peaky,
and the chain takes very long time to mix, to move from mode to mode, so
that practically the gradient estimator can be very poor. This is a serious
chicken-and-egg problem because if sampling is not effective, nor is the
training procedure, which may seem to stall.
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(FPCD), and it has also been exploited to train Deep Boltz-
mann Machines (Salakhutdinov, 2010a) and construct a pure
sampling algorithm for RBMs (Breuleux et al., 2011). FPCD
builds on the surprising but robust tendency of Gibbs chains
to mix better during SML learning than when the model
parameters are fixed. The phenomenon is rooted in the form of
the likelihood gradient itself (Eq. 15). The samples drawn from
the SML Gibbs chain are used in the negative phase of the
gradient, which implies that the learning update will slightly
increase the energy (decrease the probability) of those samples,
making the region in the neighborhood of those samples
less likely to be resampled and therefore making it more
likely that the samples will move somewhere else (typically
going near another mode). Rather than drawing samples from
the distribution of the current model (with parameters θ),
FPCD exaggerates this effect by drawing samples from a local
perturbation of the model with parameters θ∗ and an update
specified by:

θ∗t+1 = (1− η)θt+1 + ηθ∗t + ε∗
∂

∂θi

(
T∑
t=1

log p(x(t))

)
, (17)

where ε∗ is the relatively large fast-weight learning rate
(ε∗ > ε) and 0 < η < 1 (but near 1) is a forgetting factor
that keeps the perturbed model close to the current model.
Unlike tempering, FPCD does not converge to the model
distribution as ε and ε∗ go to 0, and further work is necessary
to characterize the nature of its approximation to the model
distribution. Nevertheless, FPCD is a popular and apparently
effective means of drawing approximate samples from the
model distribution that faithfully represent its diversity, at the
price of sometimes generating spurious samples in between
two modes (because the fast weights roughly correspond to a
smoothed view of the current model’s energy function). It has
been applied in a variety of applications (Tieleman and Hinton,
2009; Ranzato et al., 2011; Kivinen and Williams, 2012) and
it has been transformed into a sampling algorithm (Breuleux
et al., 2011) that also shares this fast mixing property with
herding (Welling, 2009), for the same reason, i.e., introducing
negative correlations between consecutive samples of the
chain in order to promote faster mixing.

6.4.3 Pseudolikelihood, Ratio-matching and other In-
ductive Principles
While CD, SML and FPCD are by far the most popular meth-
ods for training RBMs and RBM-based models, all of these
methods are perhaps most naturally described as offering dif-
ferent approximations to maximum likelihood training. There
exist other inductive principles that are alternatives to maxi-
mum likelihood that can also be used to train RBMs. In partic-
ular, these include pseudo-likelihood (Besag, 1975) and ratio-
matching (Hyvärinen, 2007). Both of these inductive principles
attempt to avoid explicitly dealing with the partition function,
and their asymptotic efficiency has been analyzed (Marlin and
de Freitas, 2011). Pseudo-likelihood seeks to maximize the
product of all one-dimensional conditional distributions of the
form P (xd|x\d), while ratio-matching can be interpreted as
an extension of score matching (Hyvärinen, 2005a) to discrete
data types. Both methods amount to weighted differences of

the gradient of the RBM free energy11 evaluated at a data point
and at all neighboring points within a hamming ball of radius
1. One drawback of these methods is that the computation
of the statistics for all neighbors of each training data point
require a significant computational overhead, scaling linearly
with the dimensionality of the input, nd. CD, SML and FPCD
have no such issue. Marlin et al. (2010) provides an excellent
survey of these methods and their relation to CD and SML.
They also empirically compared all of these methods on a
range of classification, reconstruction and density modeling
tasks and found that, in general, SML provided the best com-
bination of overall performance and computational tractability.
However, in a later study, the same authors (Swersky et al.,
2011) found denoising score matching (Kingma and LeCun,
2010; Vincent, 2011) to be a competitive inductive principle
both in terms of classification performance (with respect to
SML) and in terms of computational efficiency (with respect
to analytically obtained score matching). Note that denoising
score matching is a special case of the denoising auto-encoder
training criterion (Section 7.2.2) when the reconstruction error
residual equals a gradient, i.e., the score function associated
with an energy function, as shown in (Vincent, 2011).

In the spirit of the Boltzmann machine update rule (Eq. 15)
several other principles have been proposed to train energy-
based models. One approach is noise-contrastive estima-
tion (Gutmann and Hyvarinen, 2010), in which the train-
ing criterion is transformed into a probabilistic classification
problem: distinguish between (positive) training examples and
(negative) noise samples generated by a broad distribution
(such as the Gaussian). Another family of approaches, more in
the spirit of Contrastive Divergence, relies on distinguishing
positive examples (of the training distribution) and negative
examples obtained by slight perturbations of the positive
examples (Collobert and Weston, 2008; Bordes et al., 2012;
Weston et al., 2010). This apparently simple principle has been
used successfully to train a model on huge quantities of data
to map images and queries in the same space for Google’s
image search (Weston et al., 2010).

7 DIRECT ENCODING: LEARNING A PARA-
METRIC MAP FROM INPUT TO REPRESENTA-
TION

Within the framework of probabilistic models adopted in
Section 6, the learned representation is always associated with
latent variables, specifically with their posterior distribution
given an observed input x. Unfortunately, the posterior dis-
tribution of latent variables given inputs tends to become
very complicated and intractable if the model has more than
a couple of interconnected layers, whether in the directed
or undirected graphical model frameworks. It then becomes
necessary to resort to sampling or approximate inference tech-
niques, and to pay the associated computational and approxi-
mation error price. This is in addition to the difficulties raised
by the intractable partition function in undirected graphical

11. The free energy F(x; θ) is defined in relation to the marginal likelihood
of the data: F(x; θ) = − logP (x)− logZθ and in the case of the RBM is
tractable.
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models. Moreover a posterior distribution over latent variables
is not yet a simple usable feature vector that can for example
be fed to a classifier. So actual feature values are typically
derived from that distribution, taking the latent variable’s
expectation (as is typically done with RBMs), their marginal
probability, or finding their most likely value (as in sparse
coding). If we are to extract stable deterministic numerical
feature values in the end anyway, an alternative (apparently)
non-probabilistic feature learning paradigm that focuses on
carrying out this part of the computation, very efficiently, is
that of auto-encoders and other directly parametrized feature
or representation functions. The commonality between these
methods is that they learn a direct encoding, i.e., parametric
map from inputs to their representation,

The regularized auto-encoders are described in the next
section, and are concerned with the case where the encoding
function that computes the representation is associated with
a decoding function that maps back to input space. In sec-
tions 8.1 and 11.3, we consider some direct encoding methods
that do not require a decoder and a reconstruction error, such
as semi-supervised embedding (Weston et al., 2008) and slow
feature analysis (Wiskott and Sejnowski, 2002).

7.1 Auto-Encoders
Whereas probabilistic models sometimes define intermediate
variables whose posterior can then be interpreted as a represen-
tation, in the auto-encoder framework (LeCun, 1987; Bourlard
and Kamp, 1988; Hinton and Zemel, 1994), one starts by
explicitly defining a feature-extracting function in a specific
parametrized closed form. This function, that we will denote
fθ, is called the encoder and will allow the straightforward
and efficient computation of a feature vector h = fθ(x)
from an input x. For each example x(t) from a data set
{x(1), . . . , x(T )}, we define

h(t) = fθ(x
(t)) (18)

where h(t) is the feature-vector or representation or code com-
puted from x(t). Another closed form parametrized function
gθ, called the decoder, maps from feature space back into
input space, producing a reconstruction r = gθ(h). Whereas
probabilistic models are defined from an explicit probability
function and are trained to maximize (often approximately) the
data likelihood (or a proxy), auto-encoders are parametrized
through their encoder and decoder and are trained using a
different training principle. The set of parameters θ of the
encoder and decoder are learned simultaneously on the task
of reconstructing as well as possible the original input, i.e.
attempting to incur the lowest possible reconstruction error
L(x, r) – a measure of the discrepancy between x and its
reconstruction – on average over a training set. Note how
the main objective is to make reconstruction error low on the
training examples, and by generalization, where the probability
is high under the unknown data-generating distribution. For the
minimization of reconstruction error to capture the structure
of the data-generating distribution, it is therefore important
that something in the training criterion or the parametrization
prevents the auto-encoder from learning the identity function,
which would yield zero reconstruction error everywhere. This

is achieved through various means in the different forms of
auto-encoders, as described below in more detail, and we
call these regularized auto-encoders. A particular form of
regularization consists in constraining the code to have a low
dimension, and this is what the classical auto-encoder or PCA
do.

In summary, basic auto-encoder training consists in finding
a value of parameter vector θ minimizing reconstruction error

JDAE(θ) =
∑
t

L(x(t), gθ(fθ(x
(t)))) (19)

where x(t) is a training example. This minimization is usually
carried out by stochastic gradient descent as in the training
of Multi-Layer-Perceptrons (MLPs). Since auto-encoders were
primarily developed as MLPs predicting their input, the most
commonly used forms for the encoder and decoder are affine
mappings, optionally followed by a non-linearity:

fθ(x) = sf (b+Wx) (20)
gθ(h) = sg(d+W ′h) (21)

where sf and sg are the encoder and decoder activation
functions (typically the element-wise sigmoid or hyperbolic
tangent non-linearity, or the identity function if staying linear).
The set of parameters of such a model is θ = {W, b,W ′, d}
where b and d are called encoder and decoder bias vectors,
and W and W ′ are the encoder and decoder weight matrices.

The choice of sg and L depends largely on the input domain
range. and nature, and are usually chosen so that L returns a
negative log-likelihood for the observed value of x. A natural
choice for an unbounded domain is a linear decoder with a
squared reconstruction error, i.e. sg(a) = a and L(x, r) =
‖x − r‖2. If inputs are bounded between 0 and 1 however,
ensuring a similarly-bounded reconstruction can be achieved
by using sg = sigmoid. In addition if the inputs are of a binary
nature, a binary cross-entropy loss12 is sometimes used.

In the case of a linear auto-encoder (linear encoder and
decoder) with squared reconstruction error, the basic auto-
encoder objective in Equation 19 is known to learn the same
subspace13 as PCA. This is also true when using a sigmoid
nonlinearity in the encoder (Bourlard and Kamp, 1988), but
not if the weights W and W ′ are tied (W ′ = WT ).

Similarly, Le et al. (2011b) recently showed that adding a
regularization term of the form

∑
i

∑
j s3(Wjxi) to a linear

auto-encoder with tied weights, where s3 is a nonlinear convex
function, yields an efficient algorithm for learning linear ICA.

If both encoder and decoder use a sigmoid non-linearity,
then fθ(x) and gθ(h) have the exact same form as the condi-
tionals P (h | v) and P (v | h) of binary RBMs (see Section
6.2.1). This similarity motivated an initial study (Bengio et al.,
2007) of the possibility of replacing RBMs with auto-encoders
as the basic pre-training strategy for building deep networks,
as well as the comparative analysis of auto-encoder reconstruc-
tion error gradient and contrastive divergence updates (Bengio
and Delalleau, 2009).

12. L(x, r) = −
∑dx
i=1 xi log(ri) + (1− ri) log(1− ri)

13. Contrary to traditional PCA loading factors, but similarly to the
parameters learned by probabilistic PCA, the weight vectors learned by such
an auto-encoder are not constrained to form an orthonormal basis, nor to have
a meaningful ordering. They will however span the same subspace.
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One notable difference in the parametrization is that RBMs
use a single weight matrix, which follows naturally from their
energy function, whereas the auto-encoder framework allows
for a different matrix in the encoder and decoder. In practice
however, weight-tying in which one defines W ′ = WT

may be (and is most often) used, rendering the parametriza-
tions identical. The usual training procedures however differ
greatly between the two approaches. A practical advantage of
training auto-encoder variants is that they define a simple
tractable optimization objective that can be used to mon-
itor progress.

7.2 Regularized Auto-Encoders
Traditionally, auto-encoders, like PCA, were primarily seen
as a dimensionality reduction technique and thus used a
bottleneck, i.e. dh < dx. But successful uses of sparse coding
and RBM approaches tend to favour learning over-complete
representations, i.e. dh > dx. This can render the auto-
encoding problem too simple (e.g. simply duplicating the input
in the features may allow perfect reconstruction without having
extracted more meaningful features). Thus alternative ways
to “constrain” the representation, other than constraining its
dimensionality, have been investigated. We broadly refer to
these alternatives as “regularized” auto-encoders. The effect
of a bottleneck or of these regularization terms is that the
auto-encoder cannot reconstruct well everything, it is trained
to reconstruct well the training examples and generalization
means that reconstruction error is also small on test examples.
An interesting justification (Ranzato et al., 2008) for the
sparsity penalty (or any penalty that restricts in a soft way
the volume of hidden configurations easily accessible by the
learner) is that it acts in spirit like the partition function of
RBMs, by making sure that only few input configurations can
have a low reconstruction error.

Alternatively, one can view the objective of the regulariza-
tion applied to an auto-encoder is to make the representation
as “constant” (insensitive) as possible with respect to changes
in input. This view immediately justifies two variants of
regularized auto-encoders described below: contractive auto-
encoders reduce the number of effective degrees of freedom of
the representation (around each point) by making the encoder
contractive, i.e., making the derivative of the encoder small
(thus making the hidden units saturate), while the denoising
auto-encoder makes the whole mapping “robust”, i.e., insen-
sitive to small random perturbations, or contractive, making
sure that the reconstruction cannot be good when moving in
most directions around a training example.

7.2.1 Sparse Auto-Encoders
The earliest use of single-layer auto-encoders for building
deep architectures by stacking them (Bengio et al., 2007)
considered the idea of tying the encoder weights and decoder
weights to restrict capacity as well as the idea of introducing
a form of sparsity regularization (Ranzato et al., 2007).
Several ways of introducing sparsity in the representation
learned by auto-encoders have then been proposed, some by
penalizing the hidden unit biases (making these additive offset
parameters more negative) (Ranzato et al., 2007; Lee et al.,

2008; Goodfellow et al., 2009; Larochelle and Bengio, 2008)
and some by directly penalizing the output of the hidden unit
activations (making them closer to their saturating value at
0) (Ranzato et al., 2008; Le et al., 2011a; Zou et al., 2011).
Note that penalizing the bias runs the danger that the weights
could compensate for the bias, which could hurt the numerical
optimization of parameters. When directly penalizing the
hidden unit outputs, several variants can be found in the
literature, but no clear comparative analysis has been published
to evaluate which one works better. Although the L1 penalty
(i.e., simply the sum of output elements hj in the case of
sigmoid non-linearity) would seem the most natural (because
of its use in sparse coding), it is used in few papers involving
sparse auto-encoders. A close cousin of the L1 penalty is the
Student-t penalty (log(1+h2j )), originally proposed for sparse
coding (Olshausen and Field, 1997). Several papers penalize
the average output h̄j (e.g. over a minibatch), and instead
of pushing it to 0, encourage it to approach a fixed target,
either through a mean-square error penalty, or maybe more
sensibly (because hj behaves like a probability), a Kullback-
Liebler divergence with respect to the binomial distribution
with probability ρ: −ρ log h̄j − (1− ρ) log(1− h̄j)+constant,
e.g., with ρ = 0.05.

7.2.2 Denoising Auto-Encoders

Vincent et al. (2008, 2010) proposed altering the training
objective in Equation 19 from mere reconstruction to that
of denoising an artificially corrupted input, i.e. learning to
reconstruct the clean input from a corrupted version. Learning
the identity is no longer enough: the learner must capture the
structure of the input distribution in order to optimally undo
the effect of the corruption process, with the reconstruction
essentially being a nearby but higher density point than the
corrupted input. Figure 3 illustrates that the denoising auto-
encoder is learning a reconstruction function that corresponds
to a vector field pointing towards high-density regions (the
manifold where examples concentrate).

Corrupted input 

Corrupted input 

prior:&examples&concentrate&
near&a&lower&dimensional&
“manifold”&&

original  
input 

Fig. 3. When the data concentrate near a lower-dimensional
manifold, the corruption vector is most of the time almost or-
thogonal to the manifold, and the reconstruction function learns
to denoise, map from low-probability configurations (corrupted
inputs) to high-probability ones (original inputs), creating a kind
of vector field aligned with the score (derivative of the estimated
density)..

Formally, the objective optimized by such a Denoising



16

Auto-Encoder (DAE) is:

JDAE =
∑
t

Eq(x̃|x(t))
[
L(x(t), gθ(fθ(x̃)))

]
(22)

where Eq(x̃|x(t)) [·] denotes the expectation over corrupted ex-
amples x̃ drawn from corruption process q(x̃|x(t)). In practice
this is optimized by stochastic gradient descent, where the
stochastic gradient is estimated by drawing one or a few
corrupted versions of x(t) each time x(t) is considered. Cor-
ruptions considered in Vincent et al. (2010) include additive
isotropic Gaussian noise, salt and pepper noise for gray-scale
images, and masking noise (salt or pepper only). Qualitatively
better features are reported, resulting in improved classification
performance, compared to basic auto-encoders, and similar or
better than that obtained with RBMs. Chen et al. (2012) show
that a simpler alternative with a closed form solution can be
obtained when restricting to a linear auto-encoder and have
successfully applied it to domain adaptation.

The analysis in Vincent (2011) relates the denoising auto-
encoder criterion to energy-based probabilistic models: de-
noising auto-encoders basically learn in r(x̃) − x̃ a vector
pointing in the direction of the estimated score i.e., ∂ log p(x̃)

∂x̃ ,
as illustrated in Figure 3. In the special case of linear re-
construction and squared error, Vincent (2011) shows that
DAE training amounts to learning an energy-based model,
whose energy function is very close to that of a GRBM,
using a regularized variant of the score matching parameter
estimation technique (Hyvärinen, 2005a; Hyvärinen, 2008;
Kingma and LeCun, 2010) termed denoising score match-
ing (Vincent, 2011). Previously, Swersky (2010) had shown
that training GRBMs with score matching was equivalent
to training a regular (non-denoising) auto-encoder with an
additional regularization term, while, following up on the
theoretical results in Vincent (2011), Swersky et al. (2011)
showed the practical advantage of the denoising criterion to
implement score matching efficiently.

7.2.3 Contractive Auto-Encoders
Contractive Auto-Encoders (CAE) proposed by Rifai et al.
(2011a) follow up on Denoising Auto-Encoders (DAE) and
share a similar motivation of learning robust representations.
CAEs achieve this by adding an analytic contractive penalty
term to the basic auto-encoder of Equation 19. This term is
the Frobenius norm of the encoder’s Jacobian, and results in
penalizing the sensitivity of learned features to infinitesimal
changes of the input.

Let J(x) = ∂fθ
∂x (x) the Jacobian matrix of the encoder

evaluated at x. The CAE’s training objective is the following:

JCAE =
∑
t

L(x(t), gθ(fθ(x
(t)))) + λ

∥∥∥J(x(t))∥∥∥2
F

(23)

where λ is a hyper-parameter controlling the strength of the
regularization.

For an affine sigmoid encoder, the contractive penalty term
is easy to compute:

Jj(x) = fθ(x)j(1− fθ(x)j)Wj∥∥∥J(x(t))∥∥∥2 =
∑
j

(fθ(x)j(1− fθ(x)j))2‖Wj‖2 (24)

There are at least three notable differences with DAEs, which
may be partly responsible for the better performance that
CAE features seem to empirically demonstrate: a) the sen-
sitivity of the features is penalized14 directly rather than the
sensitivity of the reconstruction; b) penalty is analytic rather
than stochastic: an efficiently computable expression replaces
what might otherwise require dx corrupted samples to size up
(i.e. the sensitivity in dx directions); c) a hyper-parameter λ
allows a fine control of the trade-off between reconstruction
and robustness (while the two are mingled in a DAE). Note
however that there is a tight connection between the DAE and
the CAE: as shown in (Bengio et al., 2012b) a DAE with small
corruption noise can be seen (through a Taylor expansion) as a
type of contractive auto-encoder where the contractive penalty
is on the whole reconstruction function rather than just on the
encoder15.

A potential disadvantage of the CAE’s analytic penalty is
that it amounts to only encouraging robustness to infinitesimal
changes of the input. This is remedied by a further extension
proposed in Rifai et al. (2011b) and termed CAE+H, that
penalizes all higher order derivatives, in an efficient stochastic
manner, by adding a third term that encourages J(x) and
J(x+ ε) to be close:

JCAE+H =
∑
t

L(x(t), gθ(x
(t))) + λ

∥∥∥J(x(t))∥∥∥2
F

+γEε
[
‖J(x)− J(x+ ε)‖2F

]
(25)

where ε ∼ N (0, σ2I), and γ is the associated regularization
strength hyper-parameter. As for the DAE, the training cri-
terion is optimized by stochastic gradient descent, whereby
the expectation is approximated by drawing several corrupted
versions of x(t).

Note that the DAE and CAE have been successfully used
to win the final phase of the Unsupervised and Transfer
Learning Challenge (Mesnil et al., 2011). Note also that the
representation learned by the CAE tends to be saturated
rather than sparse, i.e., most of the hidden units are near
the extremes of their range (e.g. 0 or 1), and their derivative
∂hi(x)
∂x is tiny. The non-saturated units are few and sensitive

to the inputs, with their associated filters (hidden unit weight
vector) together forming a basis explaining the local changes
around x, as discussed in Section 8.2. Another way to get
saturated (i.e. nearly binary) units (for the purpose of hashing)
is semantic hashing (Salakhutdinov and Hinton, 2007).

7.2.4 Predictive Sparse Decomposition
Sparse coding (Olshausen and Field, 1997) may be viewed
as a kind of auto-encoder that uses a linear decoder with a
squared reconstruction error, but whose non-parametric en-
coder fθ performs the comparatively non-trivial and relatively
costly minimization of Equation. 2, which entails an iterative
optimization.

A practically successful variant of sparse coding and
auto-encoders, named Predictive Sparse Decomposition or

14. i.e., the robustness of the representation is encouraged.
15. but note that in the CAE, the decoder weights are tied to the encoder

weights, to avoid degenerate solutions, and this should also make the decoder
contractive.
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PSD (Kavukcuoglu et al., 2008) replaces that costly and
highly non-linear encoding step by a fast non-iterative approx-
imation during recognition (computing the learned features).
PSD has been applied to object recognition in images and
video (Kavukcuoglu et al., 2009, 2010; Jarrett et al., 2009;
Farabet et al., 2011), but also to audio (Henaff et al., 2011),
mostly within the framework of multi-stage convolutional and
hierarchical architectures (see Section 11.2). The main idea
can be summarized by the following equation for the training
criterion, which is simultaneously optimized with respect to
the hidden codes (representation) h(t) and with respect to the
parameters (W,α):

JPSD =
∑
t

λ‖h(t)‖1+‖x(t)−Wh(t)‖22+‖h(t)− fα(x(t))‖22 (26)

where x(t) is the input vector for example t, h(t) is the
optimized hidden code for that example, and fα(·) is the
encoding function, the simplest variant being

fα(x
(t)) = tanh(b+WTx(t)) (27)

where the encoding weights are the transpose of the decod-
ing weights, but many other variants have been proposed,
including the use of a shrinkage operation instead of the
hyperbolic tangent (Kavukcuoglu et al., 2010). Note how the
L1 penalty on h tends to make them sparse, and notice that it
is the same criterion as sparse coding with dictionary learning
(Eq. 3) except for the additional constraint that one should be
able to approximate the sparse codes h with a parametrized
encoder fα(x). One can thus view PSD as an approximation to
sparse coding, where we obtain a fast approximate encoding
process as a side effect of training. In practice, once PSD
is trained, object representations used to feed a classifier are
computed from fα(x), which is very fast, and can then be
further optimized (since the encoder can be viewed as one
stage or one layer of a trainable multi-stage system such as a
feedforward neural network).

PSD can also be seen as a kind of auto-encoder (there is an
encoder fα(·) and a decoder W ) where, instead of being tied to
the output of the encoder, the codes h are given some freedom
that can help to further improve reconstruction. One can also
view the encoding penalty added on top of sparse coding as
a kind of regularizer that forces the sparse codes to be nearly
computable by a smooth and efficient encoder. This is in con-
trast with the codes obtained by complete optimization of the
sparse coding criterion, which are highly non-smooth or even
non-differentiable, a problem that motivated other approaches
to smooth the inferred codes of sparse coding (Bagnell and
Bradley, 2009), so a sparse coding stage could be jointly
optimized along with following stages of a deep architecture.

8 REPRESENTATION LEARNING AS MANI-
FOLD LEARNING
Another important perspective on representation learning is
based on the geometric notion of manifold. Its premise is
the manifold hypothesis (Cayton, 2005; Narayanan and Mitter,
2010), according to which real-world data presented in high di-
mensional spaces are expected to concentrate in the vicinity of
a manifold M of much lower dimensionality dM, embedded
in high dimensional input space Rdx . This can be a potentially

powerful prior for representation learning for AI tasks. As soon
as there is a notion of ”representation” then one can think of a
manifold by considering the variations in input space, which
are captured by or reflected (by corresponding changes) in the
learned representation. To first approximation, some directions
are well preserved (they are the tangent directions of the mani-
fold) while others aren’t (they are directions orthogonal to the
manifolds). With this perspective, the primary unsupervised
learning task is then seen as modeling the structure of the data-
supporting manifold16. The associated representation being
learned corresponds to an intrinsic coordinate system on the
embedded manifold. The archetypal manifold modeling algo-
rithm is, not surprisingly, also the archetypal low dimensional
representation learning algorithm: Principal Component Anal-
ysis. PCA models a linear manifold. It was initially devised by
Pearson (1901) precisely with the objective of finding the clos-
est linear manifold (specifically a line or a plane) to a cloud of
data points. The principal components, i.e. the representation
fθ(x) that PCA yields for an input point x, uniquely locates
its projection on that manifold: it corresponds to intrinsic
coordinates on the manifold. Data manifold for complex real
world domains are however expected to be strongly non-
linear. Their modeling is sometimes approached as patchworks
of locally linear tangent spaces (Vincent and Bengio, 2003;
Brand, 2003). The large majority of algorithms built on
this geometric perspective adopt a non-parametric approach,
based on a training set nearest neighbor graph (Schölkopf
et al., 1998; Roweis and Saul, 2000; Tenenbaum et al., 2000;
Brand, 2003; Belkin and Niyogi, 2003; Donoho and Grimes,
2003; Weinberger and Saul, 2004; Hinton and Roweis, 2003;
van der Maaten and Hinton, 2008). In these non-parametric
approaches, each high-dimensional training point has its own
set of free low-dimensional embedding coordinates, which are
optimized so that certain properties of the neighborhood graph
computed in original high dimensional input space are best
preserved. These methods however do not directly learn a
parametrized feature extraction function fθ(x) applicable to
new test points17, which seriously limits their use as feature
extractors, except in a transductive setting. Comparatively few
non-linear manifold learning methods have been proposed,
that learn a parametric map that can directly compute a
representation for new points; we will focus on these.

8.1 Learning a parametric mapping based on a
neighborhood graph
The non-parametric manifold learning algorithms we just
mentioned are all based on a training set neighborhood graph,
typically derived from pairwise Euclidean distances between
training points. Some of them are not too difficult to modify
from non-parametric to instead learn a parametric mapping fθ,

16. What is meant by data manifold is actually a loosely defined notion:
data points need not strictly lie on it, but the probability density is expected to
fall off sharply as one moves away from the “manifold” (which may actually
be constituted of several possibly disconnected manifolds with different
intrinsic dimensionality).

17. For several of these techniques, representations for new points can
be computed using the Nyström approximation as has been proposed as
an extension in (Bengio et al., 2004), but this remains cumbersome and
computationally expensive.
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that will be applicable to new points. The principle is simple:
instead of having free low-dimensional embedding coordinate
“parameters” for each training point, these coordinates are now
obtained through an explicitly parametrized function on input-
space coordinates, whose parameters are to be learned. The
same optimization objective as in the non-parametric version
can be minimized, through gradient descent: now instead
of gradient descent updates on the embedding coordinates,
gradients are backpropagated further to the parameters of
that mapping function. Thus a parametric version of the very
successful non-parametric manifold embedding algorithm t-
SNE (van der Maaten and Hinton, 2008) has been proposed
in (van der Maaten, 2009), and could be directly applied to
learning a direct parametric encoding.

Another interesting approach, that learns a direct encoding
while taking into account the manifold hypothesis through a
neighborhood graph is Semi-Supervised Embedding (Weston
et al., 2008). Here a deep parametrized neural network ar-
chitecture simultaneously learns a manifold embedding and
a classifier. While optimizing the supervised classification
cost, the training criterion also uses training set neighbors
of each training example to encourage intermediate layers
of representation to be invariant when changing the training
example for a neighbor.

The more reduced and tightly controlled number of free
parameters in such methods, compared to their pure non-
parametric counterparts, forces the models to generalize the
manifold shape non-locally (Bengio et al., 2006b), which,
provided that generalization is valid, can translate into better
features and final performance (van der Maaten and Hinton,
2008).

Yet basing the modeling of manifolds on training set
neighborhood relationships might be risky statistically in high
dimensional spaces (sparsely populated due to the curse of
dimensionality) as e.g. most Euclidean nearest neighbors risk
having too little in common semantically. The neareset neigh-
bor graph is simply not enough densely populated to map out
satisfyingly the wrinkles of the target manifold. It can also
become problematic computationally to consider all pairs of
data points18, which scales quadratically with training set size.

8.2 Learning a non-linear manifold through a coding
scheme
We now turn to manifold interpretations of learning techniques
that are not based on training set neighbor searches. Let us
begin with PCA, seen as an encoding scheme. In PCA, the
same basis vectors are used to project any input point x. The
sensitivity of the extracted components (the code) to input
changes in the direction of these vectors is the same regardless
of position x. The tangent space is the same everywhere along
the linear manifold. By contrast, for a non-linear manifold, the
tangent space is expected to change directions as we move,
as illustrated by the tangent plane in Figure 6. In non-linear
representation-learning algorithms it is convenient to think
about the local variations in the representation as the input

18. Even if pairs are picked stochastically, many must be considered before
obtaining one that weighs significantly on the optimization objective.

x is varied on the manifold, i.e., as we move from a high-
probability example to a very close one in input space. As we
will discuss below, the first derivative of the mapping from
input to representation (the encoder) therefore specifies the
shape of the manifold (its tangent plane) around an example
x lying on it. If the density was really concentrated on the
manifold, and the encoder had captured that, we would find
the derivatives to be non-zero only in the directions spanned
by the tangent plane.

Let us consider sparse-coding in this light: parameter matrix
W may be interpreted as a dictionary of input directions from
which a different subset will be picked to model the local
tangent space at an x on the manifold. That subset corresponds
to the active, i.e. non-zero, features for input x. Note that non-
zero component hi will be sensitive to small changes of the
input in the direction of the associated weight vector W:,i,
whereas inactive features are more likely to be stuck at 0 until
a significant displacement has taken place in input space.

The Local Coordinate Coding (LCC) algorithm (Yu et al.,
2009) is very similar to sparse coding, but is explicitly derived
from a manifold perspective. Using the same notation as that
of sparse-coding in Equation 2, LCC replaces regularization
term ‖h(t)‖1 =

∑
j |h

(t)
j | yielding objective

JLCC =
∑
t

(
‖x(t) −Wh(t)‖22 + λ

∑
j

|h(t)
j |‖W:,j − x(t)‖1+p

)
(28)

This is identical to sparse-coding when p = −1, but with
larger p it encourages the active anchor points for x(t) (i.e.
the codebook vectors W:,j with non-negligible |h(t)j | that
are combined to reconstruct x(t)) to be not too far from
x(t), hence the local aspect of the algorithm. An important
theoretical contribution of Yu et al. (2009) is to show that
that any Lipschitz-smooth function φ :M→ R defined on a
smooth nonlinear manifold M embedded in Rdx , can be well
approximated by a globally linear function with respect to the
resulting coding scheme (i.e. linear in h), where the accuracy
of the approximation and required number dh of anchor points
depend on dM rather than dx. This result has been further
extended with the use of local tangent directions (Yu and
Zhang, 2010), as well as to multiple layers (Lin et al., 2010).

Let us now consider the efficient non-iterative “feed-
forward” encoders fθ, used by PSD and the auto-encoders
reviewed in Section 7.2, that are in the form of Equation
20 or 27.The computed representation for x will be only
significantly sensitive to input space directions associated with
non-saturated hidden units (see e.g. Eq. 24 for the Jacobian of
a sigmoid layer). These directions to which the representation
is significantly sensitive, like in the case of PCA or sparse
coding, may be viewed as spanning the tangent space of the
manifold at training point x.

Rifai et al. (2011a) empirically analyze in this light the
singular value spectrum of the Jacobian (derivatives of rep-
resentation vector with respect to input vector) of a trained
CAE. Here the SVD provides an ordered orthonormal basis of
most sensitive directions. The spectrum is sharply decreasing,
indicating a relatively small number of significantly sensi-
tive directions. This is taken as empirical evidence that the
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Fig. 4. The tangent vectors to the high-density manifold as
estimated by a Contractive Auto-Encoder (Rifai et al., 2011a).
The original input is shown on the top left. Each tangent vector
(images on right side of first row) corresponds to a plausible
additive deformation of the original input, as illustrated on the
second row, where a bit of the 3rd singular vector is added to
the original, to form a translated and deformed image. Unlike
in PCA, the tangent vectors are different for different inputs,
because the estimated manifold is highly non-linear..

CAE indeed modeled the tangent space of a low-dimensional
manifold. The leading singular vectors form a basis for the
tangent plane of the estimated manifold, as illustrated in
Figure 4. The CAE criterion is believed to achieve this thanks
to its two opposing terms: the isotropic contractive penalty,
that encourages the representation to be equally insensitive to
changes in any input directions, and the reconstruction term,
that pushes different training points (in particular neighbors) to
have a different representation (so they may be reconstructed
accurately), thus counteracting the isotropic contractive pres-
sure only in directions tangent to the manifold.

Note that analyzing learned representations through the lens
of the spectrum of the Jacobian and relating it to the notion
of tangent space of a manifold is feasible, whenever the
mapping is differentiable, and regardless of how it was learned,
whether as direct encoding (as in auto-encoder variants), or
derived from latent variable inference (as in sparse coding or
RBMs). Exact low dimensional manifold models (like PCA)
would yield non-zero singular values associated to directions
along the manifold, and exact zeros for directions orthogonal
to the manifold. But in smooth models like the contractive
auto-encoder or the RBM we will instead have large versus
relatively small singular values (as opposed to non-zero versus
exactly zero).

8.3 Leveraging the modeled tangent spaces
The local tangent space, at a point along the manifold, can
be thought of capturing locally valid transformations that
were prominent in the training data. For example Rifai et al.
(2011c) examine the tangent directions extracted with an SVD
of the Jacobian of CAEs trained on digits, images, or text-
document data: they appear to correspond to small transla-
tions or rotations for images or digits, and to substitutions
of words within a same theme for documents. Such very
local transformations along a data manifold are not expected
to change class identity. To build their Manifold Tangent
Classifier (MTC), Rifai et al. (2011c) then apply techniques
such as tangent distance (Simard et al., 1993) and tangent
propagation (Simard et al., 1992), that were initially developed

to build classifiers that are insensitive to input deformations
provided as prior domain knowledge. Now these techniques
are applied using the local leading tangent directions extracted
by a CAE, i.e. not using any prior domain knowledge (except
the broad prior about the existence of a manifold). This
approach set a new record for MNIST digit classification
among prior-knowledge free approaches19.

9 CONNECTIONS BETWEEN PROBABILISTIC
AND DIRECT ENCODING MODELS

The standard likelihood framework for probabilistic mod-
els decomposes the training criterion for models with pa-
rameters θ in two parts: the log-likelihood logP (x|θ) (or
logP (x|h, θ) with latent variables h), and the prior logP (θ)
(or logP (h|θ) + logP (θ) with latent variables).

9.1 PSD: a probabilistic interpretation
In the case of the PSD algorithm, a connection can be made
between the above standard probabilistic view and the direct
encoding computation graph. In this view, the probabilistic
model of PSD is the same directed generative model P (x|h)
of sparse coding (Section 6.1.3), which only accounts for the
decoder. The encoder is viewed as an approximate inference
mechanism used to guess P (h|x) and initialize a MAP it-
erative inference (where the sparse prior P (h) is taken into
account). However, note that in PSD, the encoder is trained
jointly with the decoder, rather than simply taking the end
result of iterative inference as a target to approximate. An
interesting view20 to integrate this fact is that the encoder
is a parametric approximation for the MAP solution of a
variational lower bound on the joint log-likelihood. When
MAP learning is viewed as a special case of variational
learning (where the approximation of the joint log-likelihood
is with a dirac distribution located at the MAP solution),
the variational recipe tells us to simultaneously improve the
likelihood (reduce reconstruction error) and improve the vari-
ational approximation (reduce the discrepancy between the
encoder output and the latent variable value). Hence PSD is an
interesting case of representation learning algorithm that sits at
the intersection of probabilistic models (with latent variables)
and direct encoding methods (which directly parametrize the
mapping from input to representation). RBMs also sit at the
intersection because their particular parametrization includes
an explicit mapping from input to representation, thanks to
the restricted connectivity between hidden units. However,
this nice property does not extend to their natural deep
generalizations, i.e., Deep Boltzmann Machines, discussed in
Section 10.2.

9.2 Regularized Auto-Encoders Capture Local
Statistics of the Density
Can we also say something about the probabilistic in-
terpretation of regularized auto-encoders, including sparse

19. It yielded 0.81% error rate using the full MNIST training set, with no
prior deformations, and no convolution.

20. suggested by Ian Goodfellow, personal communication
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auto-encoders, denoising auto-encoders, and contractive auto-
encoders? Their training criterion does not fit the standard like-
lihood framework because this would require a kind of prior
(e.g. we want a sparse or contractive or robust representation)
that is data-dependent.

An interesting hypothesis emerges to answer that question,
out of recent theoretical results (Vincent, 2011; Bengio et al.,
2012b): their training criterion, instead of being a form of
maximum likelihood, corresponds to a different inductive
principle, such as score matching. The score matching con-
nection is discussed in Section 7.2.2 and has been shown
for a particular parametrization of Denoising Auto-Encoder
and equivalent Gaussian RBM (Vincent, 2011). The work
in Bengio et al. (2012b) generalizes this idea to a broader
class of parametrizations (arbitrary encoders and decoders),
and shows that by regularizing the auto-encoder so that it be
contractive (which is the case not only of contractive auto-
encoders but also of denoising and sparse ones), one obtains
that the reconstruction function and its derivative estimate
local statistics of the underlying data-generative distribution,
such as the local mean (the mean in a small ball around each
point), the local covariance, and the first and second derivatives
of the estimated density. This view can actually be exploited
to successfully sample from auto-encoders, as shown in Rifai
et al. (2012); Bengio et al. (2012b). The proposed sampling
algorithms are MCMCs similar to Langevin MCMC, using not
just the estimated first derivative of the density but also the
estimated second derivative, so as to stay close to manifolds
near which the density concentrates.

x"

r(x)"

x1" x2" x3"

Fig. 5. The reconstruction function r(x) (in green) learned by
an autoencoder on a 1-dimensional input with high capacity,
minimizing reconstruction error at the training examples xi (with
in r(xi) in red) while trying to be as constant as possible
otherwise. The dotted line is the identity reconstruction (which
might be obtained without the regularizer). The blue arrows
shows the vector field of r(x) − x pointing towards high density
peaks as estimated by the model, and estimating the score (log-
density derivative)..

This interpretation connects well with the geometric per-
spective introduced in Section 8. The regularization effects
(e.g., due to a sparsity regularizer, a contractive regularizer,
or the denoising criterion) asks the learned representation to
be as insensitive as possible to the input, while minimizing
reconstruction error on the training examples forces the rep-

resentation to contain just enough information to distinguish
them. The solution is that variations along the high-density
manifolds are preserved while other variations are compressed.
It means that the reconstruction function should be as con-
stant as possible while reproducing training examples, i.e.,
that points near a training example should be mapped to
that training example, as illustrated in Figure 5. This also
means that the reconstruction function should map an input
towards the nearest point manifold, i.e., the difference between
reconstruction and input is a vector aligned with the estimated
score (the derivative of the log-density with respect to the
input). When the score is zero (on the manifold), we have to
look towards the second derivative of the log-density or of the
energy (and the first derivative of the reconstruction function).
The directions of smallest second derivatives of the log-density
are those where the density remains high (where the first
derivative remains close to 0) and correspond to moving on
the manifold.

Fig. 6. Illustration of the sampling procedure for regularized
auto-encoders (Rifai et al., 2012; Bengio et al., 2012b): Each
MCMC step consists in adding noise δ mostly in the directions
of the estimated manifold tangent plane and projecting back
towards the manifold (high-density regions) by performing a
reconstruction step..

As illustrated in Figure 6, the basic idea of the auto-
encoder sampling algorithms in Rifai et al. (2012); Bengio
et al. (2012b) is to make MCMC moves where one (a)
moves toward the manifold by following the density gradient
(i.e., applying a reconstruction) and (b) adds noise in the
directions of the leading singular vectors of the reconstruction
(or encoder) Jacobian, corresponding to those associated with
smallest second derivative of the log-density.

9.3 Learning Approximate Inference

Let us now consider from closer how a representation is
computed in probabilistic models with latent variables, when
iterative inference is required. There is a computation graph
(possibly with random number generation in some of the
nodes, in the case of MCMC) that maps inputs to repre-
sentation, and in the case of deterministic inference (e.g.,
MAP inference or variational inference), that function could
be optimized directly. This is a way to generalize PSD that has
been explored in recent work on probabilistic models at the
intersection of inference and learning (Bagnell and Bradley,
2009; Gregor and LeCun, 2010b; Grubb and Bagnell, 2010;
Salakhutdinov and Larochelle, 2010; Stoyanov et al., 2011;
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Eisner, 2012), where a central idea is that instead of using a
generic inference mechanism, one can use one that is learned
and is more efficient, taking advantage of the specifics of the
type of data on which it is applied.

9.4 Sampling Challenges

A troubling challenge with many probabilistic models with
latent variables like most Boltzmann machine variants is that
good MCMC sampling is required as part of the learning
procedure, but that sampling becomes extremely inefficient (or
unreliable) as training progresses because the modes of the
learned distribution become sharper, making mixing between
modes very slow. Whereas initially during training a learner as-
signs mass almost uniformly, as training progresses, its entropy
decreases, approaching the entropy of the target distribution as
more examples and more computation are provided. According
to our Manifold and Natural Clustering priors of Section 3.1,
the target distribution has sharp modes (manifolds) separated
by extremely low density areas. Mixing then becomes more
difficult because MCMC methods, by their very nature, tend
to make small steps to nearby high-probability configurations.
This is illustrated in Figure 7.

1"Fig. 7. Top: early during training, MCMC mixes easily because
the estimated distribution has high entropy and puts enough
mass everywhere for small-steps movements (MCMC) to go
from mode to mode. Bottom: later on, training relying on good
mixing can stall because estimated modes are separated by
long low-density deserts..

Bengio et al. (2012a) suggest that deep representations
could help mixing between such well separated modes, based
on both theoretical arguments and on empirical evidence. The
idea is that if higher-level representations disentangle better
the underlying abstract factors, then small steps in this abstract
space (e.g., swapping from one category to another) can easily
be done by MCMC. The high-level representations can then
be mapped back to the input space in order to obtain input-
level samples, as in the Deep Belief Networks (DBN) sampling
algorithm (Hinton et al., 2006a). This has been demonstrated
both with DBNs and with the newly proposed algorithm for
sampling from contracting and denoising auto-encoders (Rifai
et al., 2012; Bengio et al., 2012b). This observation alone
does not suffice to solve the problem of training a DBN or a
DBM, but it may provide a crucial ingredient, and it makes it
possible to consider successfully sampling from deep models
trained by procedures that do not require an MCMC, like the
stacked regularized auto-encoders used in Rifai et al. (2012).

9.5 Evaluating and Monitoring Performance
It is always possible to evaluate a feature learning algorithm
in terms of its usefulness with respect to a particular task (e.g.
object classification), with a predictor that is fed or initialized
with the learned features. In practice, we do this by saving
the features learned (e.g. at regular intervals during training,
to perform early stopping) and training a cheap classifier on
top (such as a linear classifier). However, training the final
classifier can be a substantial computational overhead (e.g.,
supervised fine-tuning a deep neural network takes usually
more training iterations than the feature learning itself), so
we may want to avoid having to train a classifier for ev-
ery training iteration of the unsupervised learner and every
hyper-parameter setting. More importantly this may give an
incomplete evaluation of the features (what would happen for
other tasks?). All these issues motivate the use of methods to
monitor and evaluate purely unsupervised performance. This
is rather easy with all the auto-encoder variants (with some
caution outlined below) and rather difficult with the undirected
graphical models such as the RBM and Boltzmann machines.

For auto-encoder and sparse coding variants, test set re-
construction error can readily be computed, but by itself may
be misleading because larger capacity (e.g., more features,
more training time) tends to systematically lead to lower
reconstruction error, even on the test set. Hence it cannot
be used reliably for selecting most hyper-parameters. On the
other hand, denoising reconstruction error is clearly immune
to this problem, so that solves the problem for denoising
auto-encoders. It is not clear and remains to be demonstrated
empirically or theoretically if this may also be true of the
training criteria for sparse auto-encoders and contractive auto-
encoders.

For RBMs and some (not too deep) Boltzmann machines,
one option is the use of Annealed Importance Sampling (Mur-
ray and Salakhutdinov, 2009) in order to estimate the partition
function (and thus the test log-likelihood). Note that this esti-
mator can have high variance and that it becomes less reliable
(variance becomes too large) as the model becomes more
interesting, with larger weights, more non-linearity, sharper
modes and a sharper probability density function (see our
previous discussion in Section 9.4). Another interesting and
recently proposed option for RBMs is to track the partition
function during training (Desjardins et al., 2011), which could
be useful for early stopping and reducing the cost of ordinary
AIS. For toy RBMs (e.g., 25 hidden units or less, or 25
inputs or less), the exact log-likelihood can also be computed
analytically, and this can be a good way to debug and verify
some properties of interest.

10 GLOBAL TRAINING OF DEEP MODELS
One of the most interesting challenges raised by deep ar-
chitectures is: how should we jointly train all the levels? In
the previous section we have only discussed how single-layer
models could be combined to form a deep model with a joint
training criterion. Here we consider joint training of all the
levels and the difficulties that may arise. This follows up on
Section 4, where we focused on how to combine single-layer
learners into deep architectures.
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10.1 On the Challenge of Training Deep Architec-
tures
Higher-level abstraction means more non-linearity. It means
that two nearby configurations of the input may have to
be interpreted very differently because a few surface details
change the underlying semantics, whereas most other changes
in the surface details would not change the underlying se-
mantics. The representations associated with input manifolds
may be complex because these functions may have to unfold
and distort input manifolds that generally have complicated
shapes into spaces where distributions are much simpler,
where relations between factors are simpler, maybe even
linear or involving many (conditional) independencies. Our
expectation is that modeling the joint distribution between
high-level abstractions and concepts should be much easier in
the sense of requiring much less data to learn. The hard part
is learning the representation. The price to pay may be that
these more abstract representation functions (mapping input
to representation) involve a more challenging training task,
because of the added non-linearity.

It is only since 2006 that researchers have seriously in-
vestigated ways to train deep architectures, to the exception
of the convolutional networks (LeCun et al., 1998b). The
first realization was that unsupervised or supervised layer-wise
training was easier, and that this could be taken advantage of
by stacking single-layer models into deeper ones, as discussed
at length in Section 4.

It is interesting to ask why does the layerwise unsuper-
vised pre-training procedure sometimes help a supervised
learner (Erhan et al., 2010b). There seems to be a more
general principle at play 21 of guiding the training of inter-
mediate representations, which may be easier than trying to
learn it all in one go. This is nicely related with the curriculum
learning idea (Bengio et al., 2009) that it may be much easier
to learn simpler concepts first and then build higher-level
ones on top of simpler ones. This is also coherent with the
success of several deep learning algorithms that provide some
such guidance for intermediate representations, like Semi-
Supervised Embedding (Weston et al., 2008).

The question of why unsupervised pre-training could be
helpful was extensively studied (Erhan et al., 2010b), trying
to dissect the answer into a regularization effect and an
optimization effect. The regularization effect is clear from
the experiments where the stacked RBMs or denoising auto-
encoders are used to initialize a supervised classification neural
network (Erhan et al., 2010b). It may simply come from the
use of unsupervised learning to bias the learning dynamics
and initialize it in the basin of attraction of a “good” local
minimum (of the training criterion), where “good” is in terms
of generalization error. The underlying hypothesis exploited
by this procedure is that some of the features or latent factors
that are good at capturing the leading variations in the input
distribution are also good at capturing the variations in the
target output random variables of interest (e.g., classes). The
optimization effect is more difficult to tease out because the
top two layers of a deep neural net can just overfit the training

21. First communicated to us by Leon Bottou

set whether the lower layers compute useful features or not, but
there are several indications that optimizing the lower levels
with respect to a supervised training criterion is challenging.

One such indication is that changing the numerical con-
ditions of the optimization procedure can have a profound
impact on the joint training of a deep architecture, for example
changing the initialization range and changing the type of
non-linearity used (Glorot and Bengio, 2010), much more so
than with shallow architectures. One hypothesis to explain
some of the difficulty in the optimization of deep architectures
is centered on the singular values of the Jacobian matrix
associated with the transformation from the features at one
level into the features at the next level (Glorot and Bengio,
2010). If these singular values are all small (less than 1), then
the mapping is contractive in every direction and gradients
would vanish when propagated backwards through many lay-
ers. This is a problem already discussed for recurrent neural
networks (Bengio et al., 1994), which can be seen as very
deep networks with shared parameters at each layer, when
unfolded in time. This optimization difficulty has motivated
the exploration of second-order methods for deep architectures
and recurrent networks, in particular Hessian-free second-
order methods (Martens, 2010; Martens and Sutskever, 2011).
Unsupervised pre-training has also been proposed to help
training recurrent networks and temporal RBMs (Sutskever
et al., 2009), i.e., at each time step there is a local signal
to guide the discovery of good features to capture in the
state variables: model with the current state (as hidden units)
the joint distribution of the previous state and the current
input. Natural gradient (Amari, 1998) methods that can be
applied to networks with millions of parameters (i.e. with
good scaling properties) have also been proposed (Le Roux
et al., 2008b). Cho et al. (2011) proposes to use adaptive
learning rates for RBM training, along with a novel and
interesting idea for a gradient estimator that takes into account
the invariance of the model to flipping hidden unit bits and
inverting signs of corresponding weight vectors. At least one
study indicates that the choice of initialization (to make the
Jacobian of each layer closer to 1 across all its singular
values) could substantially reduce the training difficulty of
deep networks (Glorot and Bengio, 2010) and this is coherent
with the success of the initialization procedure of Echo State
Networks (Jaeger, 2007), as recently studied by Sutskever
(2012). There are also several experimental results (Glorot and
Bengio, 2010; Glorot et al., 2011a; Nair and Hinton, 2010)
showing that the choice of hidden units non-linearity could
influence both training and generalization performance, with
particularly interesting results obtained with sparse rectifying
units (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot
et al., 2011a; Krizhevsky et al., 2012). Another promising
idea to improve the conditioning of neural network training
is to nullify the average value and slope of each hidden unit
output (Raiko et al., 2012), and possibly locally normalize
magnitude as well (Jarrett et al., 2009). The debate still rages
between using online methods such as stochastic gradient
descent and using second-order methods on large minibatches
(of several thousand examples) (Martens, 2010; Le et al.,
2011a), with a variant of stochastic gradient descent recently
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winning an optimization challenge 22.
Finally, several recent results exploiting large quantities

of labeled data suggest that with proper initialization
and choice of non-linearity, very deep purely supervised
networks can be trained successfully without any layerwise
pre-training (Ciresan et al., 2010; Glorot et al., 2011a;
Krizhevsky et al., 2012). Researchers report than in such
conditions, layerwise unsupervised pre-training brought little
or no improvement over pure supervised learning from
scratch when training for long enough. This reinforces
the hypothesis that unsupervised pre-training acts as a
prior, which may be less necessary when very large
quantities of labeled data are available, but begs the
question of why this had not been discovered earlier. The
latest results reported in this respect (Krizhevsky et al.,
2012) are particularly interesting because they allowed to
drastically reduce the error rate of object recognition on a
benchmark (the 1000-class ImageNet task) where many more
traditional computer vision approaches had been evaluated
(http://www.image-net.org/challenges/LSVRC/2012/results.html).
The main techniques that allowed this success include the
following: efficient GPU training allowing one to train
longer (more than 100 million visits of examples), an aspect
first reported by Lee et al. (2009a); Ciresan et al. (2010),
large number of labeled examples, artificially transformed
examples (see Section 11.1), a large number of tasks (1000
or 10000 classes for ImageNet), convolutional architecture
with max-pooling (see section 11 for these latter two
techniques), rectifying non-linearities (discussed above),
careful initialization (discussed above), careful parameter
update and adaptive learning rate heuristics, layerwise
feature normalization (across features), and a new dropout
trick based on injecting strong binary multiplicative noise on
hidden units. This trick is similar to the binary noise injection
used at each layer of a stack of denoising auto-encoder.
Future work is hopefully going to help identify which of
these elements matter most, how to generalize them across
a large variety of tasks and architectures, and in particular
contexts where most examples are unlabeled, i.e., including
with an unsupervised component in the training criterion.

10.2 Joint Training of Deep Boltzmann Machines
We now consider the problem of joint training of all layers of
a specific unsupervised model, the Deep Boltzmann Machine
(DBM). Whereas much progress (albeit with many unan-
swered questions) has been made on jointly training all the
layers of deep architectures using back-propagated gradients
(i.e., mostly in the supervised setting), much less work has
been done on their purely unsupervised counterpart, e.g. with
DBMs23. Note however that one could hope that the successful
techniques described in the previous section could be applied
to unsupervised learning algorithms.

Like the RBM, the DBM is another particular subset of
the Boltzmann machine family of models where the units

22. https://sites.google.com/site/nips2011workshop/optimization-challenges

23. Joint training of all the layers of a Deep Belief Net is much more
challenging because of the much harder inference problem involved.

are again arranged in layers. However unlike the RBM, the
DBM possesses multiple layers of hidden units, with units in
odd-numbered layers being conditionally independent given
even-numbered layers, and vice-versa. With respect to the
Boltzmann energy function of Eq. 7, the DBM corresponds
to setting U = 0 and a sparse connectivity structure in both V
and W . We can make the structure of the DBM more explicit
by specifying its energy function. For the model with two
hidden layers it is given as:

EDBM
θ (v, h(1), h(2); θ) =− vTWh(1) − h(1) T V h(2)−

d(1)
T
h(1) − d(2)

T
h(2) − bT v, (29)

with θ = {W,V, d(1), d(2), b}. The DBM can also be char-
acterized as a bipartite graph between two sets of vertices,
formed by the units in odd and even-numbered layers (with
v := h(0)).

10.2.1 Mean-field approximate inference

A key point of departure from the RBM is that the pos-
terior distribution over the hidden units (given the visibles)
is no longer tractable, due to the interactions between the
hidden units. Salakhutdinov and Hinton (2009) resort to a
mean-field approximation to the posterior. Specifically, in
the case of a model with two hidden layers, we wish to
approximate P

(
h(1), h(2) | v

)
with the factored distribution

Qv(h
(1), h(2)) =

∏N1

j=1Qv

(
h
(1)
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(
h
(2)
i

)
, such

that the KL divergence KL
(
P
(
h(1), h(2) | v

)
‖Qv(h1, h2)

)
is minimized or equivalently, that a lower bound to the log
likelihood is maximized:

logP (v) > L(Qv) ≡
∑
h(1)

∑
h(2)

Qv(h
(1), h(2)) log

(
P (v, h(1), h(2))

Qv(h(1), h(2))

)
(30)

Maximizing this lower-bound with respect to the mean-field
distribution Qv(h1, h2) (by setting derivatives to zero) yields
the following mean field update equations:

ĥ
(1)
i ← sigmoid

(∑
j

Wjivj +
∑
k

Vikĥ
(2)
k + d

(1)
i

)
(31)

ĥ
(2)
k ← sigmoid

(∑
i

Vikĥ
(1)
i + d

(2)
k

)
(32)

Note how the above equations ostensibly look like a fixed
point recurrent neural network, i.e., with constant input. In
the same way that an RBM can be associated with a simple
auto-encoder, the above mean-field update equations for the
DBM can be associated with a recurrent auto-encoder. In that
case the training criterion involves the reconstruction error at
the last or at consecutive time steps. This type of model has
been explored by Savard (2011) and Seung (1998) and shown
to do a better job at denoising than ordinary auto-encoders.

Iterating Eq. (31-32) until convergence yields the Q pa-
rameters used to estimate the “variational positive phase” of

http://www.image-net.org/challenges/LSVRC/2012/results.html
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Eq. 33:

L(Qv) =EQv
[
logP (v, h(1), h(2))− logQv(h

(1), h(2))
]

=EQv
[
−EDBM

θ (v, h(1), h(2))− logQv(h
(1), h(2))

]
− logZθ

∂L(Qv)
∂θ

= −EQv
[
∂EDBM

θ (v, h(1), h(2))

∂θ

]
+ EP

[
∂EDBM

θ (v, h(1), h(2))

∂θ

]
(33)

Note that this variational learning procedure leaves the “nega-
tive phase” untouched. It can thus be estimated through SML
or Contrastive Divergence (Hinton, 2000) as in the RBM case.

10.2.2 Training Deep Boltzmann Machines
Despite the intractability of inference in the DBM, its training
should not, in theory, be much more complicated than that
of the RBM. The major difference being that instead of maxi-
mizing the likelihood directly, we instead choose parameters to
maximize the lower-bound on the likelihood given in Eq. 30.
The SML-based algorithm for maximizing this lower-bound is
as follows:

1) Clamp the visible units to a training example.
2) Iterate over Eq. (31-32) until convergence.
3) Generate negative phase samples v−, h(1)− and h(2)−

through SML.
4) Compute ∂L(Qv) /∂θ using the values obtained in steps

2-3.
5) Finally, update the model parameters with a step of

approximate stochastic gradient ascent.
While the above procedure appears to be a simple extension

of the highly effective SML scheme for training RBMs, as we
demonstrate in Desjardins et al. (2012), this procedure seems
vulnerable to falling in poor local minima which leave many
hidden units effectively dead (not significantly different from
its random initialization with small norm).

The failure of the SML joint training strategy was noted
by Salakhutdinov and Hinton (2009). As an alternative, they
proposed a greedy layer-wise training strategy. This procedure
consists in pre-training the layers of the DBM, in much the
same way as the Deep Belief Network: i.e. by stacking RBMs
and training each layer to independently model the output of
the previous layer. A final joint “fine-tuning” is done following
the above SML-based procedure.

11 BUILDING-IN INVARIANCE
It is well understood that incorporating prior domain knowl-
edge is an almost sure way to boost performance of any
machine-learning-based prediction system. Exploring good
strategies for doing so is a very important research avenue.
However, if we are to advance our understanding of core
machine learning principles, it is important that we keep
comparisons between predictors fair and maintain a clear
awareness of the prior domain knowledge used by different
learning algorithms, especially when comparing their per-
formance on benchmark problems. We have so far tried to
present feature learning and deep learning approaches without
enlisting specific domain knowledge, only generic inductive

biases for high dimensional problems. The approaches as we
presented them should thus be potentially applicable to any
high dimensional problem. In this section, we briefly review
how basic domain knowledge can be leveraged to learn yet
better features.

The most prevalent approach to incorporating prior knowl-
edge is to hand-design better features to feed a generic
classifier, and has been used extensively in computer vision
(e.g. (Lowe, 1999)). Here, we rather focus on how basic
domain knowledge of the input, in particular its topological
structure (e.g. bitmap images having a 2D structure), may be
used to learn better features.

11.1 Augmenting the dataset with known input de-
formations
Since machine learning approaches learn from data, it is
usually possible to improve results by feeding them a larger
quantity of representative data. Thus, a straightforward and
generic way to leverage prior domain knowledge of input
deformations that are known not to change its class (e.g. small
affine transformations of images such as translations, rotations,
scaling, shearing), is to use them to generate more training
data. While being an old approach (Baird, 1990; Poggio and
Vetter, 1992), it has been recently applied with great success in
the work of Ciresan et al. (2010) who used an efficient GPU
implementation (40× speedup) to train a standard but large
deep multilayer Perceptron on deformed MNIST digits. Using
both affine and elastic deformations (Simard et al., 2003),
with plain old stochastic gradient descent, they reach a record
0.32% classification error rate.

11.2 Convolution and pooling
Another powerful approach is based on even more basic
knowledge of merely the topological structure of the input
dimensions. By this we mean e.g., the 2D layout of pixels
in images or audio spectrograms, the 3D structure of videos,
the 1D sequential structure of text or of temporal sequences
in general. Based on such structure, one can define local
receptive fields (Hubel and Wiesel, 1959), so that each low-
level feature will be computed from only a subset of the input:
a neighborhood in the topology (e.g. a sub-image at a given
position). This topological locality constraint corresponds to a
layer having a very sparse weight matrix with non-zeros only
allowed for topologically local connections. Computing the
associated matrix products can of course be made much more
efficient than having to handle a dense matrix, in addition
to the statistical gain from a much smaller number of free
parameters. In domains with such topological structure, similar
input patterns are likely to appear at different positions, and
nearby values (e.g. consecutive frames or nearby pixels) are
likely to have stronger dependencies that are also important to
model the data. In fact these dependencies can be exploited
to discover the topology (Le Roux et al., 2008a), i.e. recover
a regular grid of pixels out of a set of vectors without any
order information, e.g. after the elements have been arbitrarily
shuffled in the same way for all examples. Thus a same local
feature computation is likely to be relevant at all translated po-
sitions of the receptive field. Hence the idea of sweeping such
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a local feature extractor over the topology: this corresponds to
a convolution, and transforms an input into a similarly shaped
feature map. Equivalently to sweeping, this may be seen as
static but differently positioned replicated feature extractors
that all share the same parameters. This is at the heart of
convolutional networks (LeCun et al., 1989, 1998b) which
have been applied both to object recognition and to image
segmentation (Turaga et al., 2010). Another hallmark of the
convolutional architecture is that values computed by the same
feature detector applied at several neighboring input locations
are then summarized through a pooling operation, typically
taking their max or their sum. This confers the resulting pooled
feature layer some degree of invariance to input translations,
and this style of architecture (alternating selective feature
extraction and invariance-creating pooling) has been the basis
of convolutional networks, the Neocognitron (Fukushima and
Miyake, 1982) and HMAX (Riesenhuber and Poggio, 1999)
models, and argued to be the architecture used by mammalian
brains for object recognition (Riesenhuber and Poggio, 1999;
Serre et al., 2007; DiCarlo et al., 2012). The output of a
pooling unit will be the same irrespective of where a specific
feature is located inside its pooling region. Empirically the
use of pooling seems to contribute significantly to improved
classification accuracy in object classification tasks (LeCun
et al., 1998b; Boureau et al., 2010, 2011). A successful
variant of pooling connected to sparse coding is L2 pool-
ing (Hyvärinen et al., 2009; Kavukcuoglu et al., 2009; Le
et al., 2010), for which the pool output is the square root of
the possibly weighted sum of squares of filter outputs. Ideally,
we would like to generalize feature-pooling so as to learn what
features should be pooled together, e.g. as successfully done
in several papers (Hyvärinen and Hoyer, 2000; Kavukcuoglu
et al., 2009; Le et al., 2010; Ranzato and Hinton, 2010;
Courville et al., 2011b; Coates and Ng, 2011b; Gregor et al.,
2011). In this way, the features learned are becoming invariant
to the variations captured by the span of the features pooled.

Patch-based training
The simplest approach for learning a convolutional layer in an
unsupervised fashion is patch-based training: simply feeding
a generic unsupervised feature learning algorithm with local
patches extracted at random positions of the inputs. The
resulting feature extractor can then be swiped over the input to
produce the convolutional feature maps. That map may be used
as a new input for the next layer, and the operation repeated
to thus learn and stack several layers. Such an approach
was recently used with Independent Subspace Analysis (Le
et al., 2011c) on 3D video blocks, reaching the state-of-the-art
on Hollywood2, UCF, KTH and YouTube action recognition
datasets. Similarly (Coates and Ng, 2011a) compared several
feature learners with patch-based training and reached state-
of-the-art results on several classification benchmarks. Inter-
estingly, in this work performance was almost as good with
very simple k-means clustering as with more sophisticated
feature learners. We however conjecture that this is the case
only because patches are rather low dimensional (compared
to the dimension of a whole image). A large dataset might
provide sufficient coverage of the space of e.g. edges prevalent

in 6 × 6 patches, so that a distributed representation is not
absolutely necessary. Another plausible explanation for this
success is that the clusters identified in each image patch are
then pooled into a histogram of cluster counts associated with
a larger sub-image. Whereas the output of a regular clustering
is a one-hot non-distributed code, this histogram is itself a
distributed representation, and the “soft” k-means (Coates and
Ng, 2011a) representation allows not only the nearest filter but
also its neighbors to be active.

Convolutional and tiled-convolutional training
It is also possible to directly train large convolutional layers
using an unsupervised criterion. An early approach is that
of Jain and Seung (2008) who trained a standard but deep
convolutional MLP on the task of denoising images, i.e. as
a deep, convolutional, denoising auto-encoder. Convolutional
versions of the RBM or its extensions have also been de-
veloped (Desjardins and Bengio, 2008; Lee et al., 2009a;
Taylor et al., 2010) as well as a probabilistic max-pooling
operation built into Convolutional Deep Networks (Lee et al.,
2009a,b; Krizhevsky, 2010). Other unsupervised feature learn-
ing approaches that were adapted to the convolutional set-
ting include PSD (Kavukcuoglu et al., 2009, 2010; Jarrett
et al., 2009; Farabet et al., 2011; Henaff et al., 2011), a
convolutional version of sparse coding called deconvolutional
networks (Zeiler et al., 2010), Topographic ICA (Le et al.,
2010), and mPoT that Kivinen and Williams (2012) applied
to modeling natural textures. Gregor and LeCun (2010a);
Le et al. (2010) also demonstrated the technique of tiled-
convolution, where parameters are shared only between feature
extractors whose receptive fields are k steps away (so the
ones looking at immediate neighbor locations are not shared).
This allows pooling units to be invariant to more than just
translations, and is a kind of hybrid between convolutional
networks and earlier neural networks with local connections
but no weight sharing (LeCun, 1986, 1989).

Alternatives to pooling
Alternatively, one can also use explicit knowledge of the
expected invariants expressed mathematically to define trans-
formations that are robust to a known family of input defor-
mations, using so-called scattering operators (Mallat, 2011;
Bruna and Mallat, 2011), which can be computed in a way
interestingly analogous to deep convolutional networks and
wavelets. Like convolutional networks, the scattering oper-
ators alternate two types of operations: convolving with a
filter followed by pooling (as a norm). Unlike convolutional
networks, the proposed approach keeps at each level all of the
information about the input (in a way that can be inverted),
and automatically yields a very sparse (but also very high-
dimensional) representation. Another difference is that the
filters are not learned but instead set so as to guarantee that a
priori specified invariances are robustly achieved. Just a few
levels were sufficient to achieve impressive results on several
benchmark datasets.

11.3 Temporal coherence and slow features
The principle of identifying slowly moving/changing factors in
temporal/spatial data has been investigated by many (Becker
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and Hinton, 1993; Wiskott and Sejnowski, 2002; Hurri and
Hyvärinen, 2003; Körding et al., 2004; Cadieu and Olshausen,
2009) as a principle for finding useful representations. In
particular this idea has been applied to image sequences and as
an explanation for why V1 simple and complex cells behave
the way they do. A good overview can be found in Hurri and
Hyvärinen (2003); Berkes and Wiskott (2005).

More recently, temporal coherence has been successfully
exploited in deep architectures to model video (Mobahi et al.,
2009). It was also found that temporal coherence discov-
ered visual features similar to those obtained by ordinary
unsupervised feature learning (Bergstra and Bengio, 2009),
and a temporal coherence penalty has been combined with a
training criterion for unsupervised feature learning (Zou et al.,
2011), sparse auto-encoders with L1 regularization, in this
case, yielding improved classification performance.

The temporal coherence prior can be expressed in several
ways. The simplest and most commonly used is just the
squared difference between feature values at times t and
t + 1. Other plausible temporal coherence priors include the
following. First, instead of penalizing the squared change,
penalizing the absolute value (or a similar sparsity penalty)
would state that most of the time the change should be exactly
0, which would intuitively make sense for the real-life factors
that surround us. Second, one would expect that instead of just
being slowly changing, different factors could be associated
with their own different time scale. The specificity of their
time scale could thus become a hint to disentangle explanatory
factors. Third, one would expect that some factors should
really be represented by a group of numbers (such as x, y, and
z position of some object in space and the pose parameters
of Hinton et al. (2011)) rather than by a single scalar, and
that these groups tend to move together. Structured sparsity
penalties (Kavukcuoglu et al., 2009; Jenatton et al., 2009;
Bach et al., 2011; Gregor et al., 2011) could be used for this
purpose.

11.4 Algorithms to Disentangle Factors of Variation
The goal of building invariant features is to remove sensitivity
of the representation to directions of variance in the data that
are uninformative to the task at hand. However it is often the
case that the goal of feature extraction is the disentangling or
separation of many distinct but informative factors in the data,
e.g., in a video of people: subject identity, action performed,
subject pose relative to the camera, etc. In this situation,
the methods of generating invariant features, such as feature-
pooling, may be inadequate.

Roughly speaking, the process of building invariant features
can be seen as consisting of two steps (often performed
together). First, a set of low-level features are recovered that
account for the data. Second, subsets of these low level
features are pooled together to form higher-level invariant
features, exemplified by the pooling and subsampling layers
of convolutional neural networks (Fukushima, 1980; LeCun
et al., 1989, 1998c). With this arrangement, the invariant rep-
resentation formed by the pooling features offers a somewhat
incomplete window on the data as the detailed representation
of the lower-level features is abstracted away in the pooling

procedure. While we would like higher-level features to be
more abstract and exhibit greater invariance, we have little
control over what information is lost through feature pooling.
For example, consider a higher-level feature made invariant
to the color of its target stimulus by forming a subspace of
low-level features that represent the target stimulus in various
colors (forming a basis for the subspace). If this is the only
higher-level feature that is associated with these low-level col-
ored features then the color information of the stimulus is lost
to the higher-level pooling feature and every layer above. This
loss of information becomes a problem when the information
that is lost is necessary to successfully complete the task at
hand such as object classification. In the above example, color
is often a very discriminative feature in object classification
tasks. Losing color information through feature-pooling would
result in significantly poorer classification performance.

Obviously, what we really would like is for a particular
feature set to be invariant to the irrelevant features and disen-
tangle the relevant features. Unfortunately, it is often difficult
to determine a priori which set of features will ultimately be
relevant to the task at hand.

An interesting approach to taking advantage of some of
the factors of variation known to exist in the data is the
transforming auto-encoder (Hinton et al., 2011): instead of a
scalar pattern detector (e.g,. corresponding to the probability
of presence of a particular form in the input) one can think
of the features as organized in groups that include both a
pattern detector and pose parameters that specify attributes
of the detected pattern. In (Hinton et al., 2011), what is
assumed a priori is that pairs of inputs (or consecutive inputs)
are observed with an associated value for the corresponding
change in the pose parameters. For example, an animal that
controls its eyes knows what changes to its ocular motor
system were applied when going from one image on its retina
to the next image associated with the following saccade and
controlled head motion. In that work, it is also assumed that the
pose changes are the same for all the pattern detectors, and this
makes sense for global changes such as image translation and
camera geometry changes. Instead, we would like to discover
the pose parameters and attributes that should be associated
with each feature detector, without having to specify ahead of
time what they should be, force them to be the same for all
features, and having to necessarily observe the changes in all
of the pose parameters or attributes.

The approach taken recently in the Manifold Tangent Clas-
sifier, discussed in section 8.3, is interesting in this respect.
Without using any supervision or prior knowledge, it finds
prominent local factors of variation (the tangent vectors to the
manifold, extracted from a CAE, interpreted as locally valid
input ”deformations”). Higher-level features are subsequently
encouraged to be invariant to these factors of variation, so
that they must depend on other characteristics. In a sense this
approach is disentangling valid local deformations along the
data manifold from other, more drastic changes, associated
to other factors of variation such as those that affect class
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identity.24

One solution to the problem of information loss that would
fit within the feature-pooling paradigm, is to consider many
overlapping pools of features based on the same low-level
feature set. Such a structure would have the potential to
learn a redundant set of invariant features that may not cause
significant loss of information. However it is not obvious
what learning principle could be applied that can ensure
that the features are invariant while maintaining as much
information as possible. While a Deep Belief Network or a
Deep Boltzmann Machine (as discussed in sections 4 and 10.2
respectively) with two hidden layers would, in principle, be
able to preserve information into the “pooling” second hidden
layer, there is no guarantee that the second layer features
are more invariant than the “low-level” first layer features.
However, there is some empirical evidence that the second
layer of the DBN tends to display more invariance than the
first layer (Erhan et al., 2010a). A second issue with this
approach is that it could nullify one of the major motivations
for pooling features: to reduce the size of the representation. A
pooling arrangement with a large number of overlapping pools
could lead to as many pooling features as low-level features
– a situation that is both computationally and statistically
undesirable.

A more principled approach, from the perspective of en-
suring a more robust compact feature representation, can
be conceived by reconsidering the disentangling of features
through the lens of its generative equivalent – feature com-
position. Since many unsupervised learning algorithms have a
generative interpretation (or a way to reconstruct inputs from
their high-level representation), the generative perspective can
provide insight into how to think about disentangling fac-
tors. The majority of the models currently used to construct
invariant features have the interpretation that their low-level
features linearly combine to construct the data.25 This is a
fairly rudimentary form of feature composition with significant
limitations. For example, it is not possible to linearly combine
a feature with a generic transformation (such as translation) to
generate a transformed version of the feature. Nor can we even
consider a generic color feature being linearly combined with
a gray-scale stimulus pattern to generate a colored pattern. It
would seem that if we are to take the notion of disentangling
seriously we require a richer interaction of features than that
offered by simple linear combinations.

12 CONCLUSION

This review of representation learning and deep learning has
covered three major and apparently disconnected approaches:
the probabilistic models (both the directed kind such as
sparse coding and the undirected kind such as Boltzmann

24. The changes that affect class identity might, in input space, actually be
of similar magnitude to local deformations, but not follow along the manifold,
i.e. cross zones of low density.

25. As an aside, if we are given only the values of the higher-level pooling
features, we cannot accurately recover the data because we do not know how to
apportion credit for the pooling feature values to the lower-level features. This
is simply the generative version of the consequences of the loss of information
caused by pooling.

machines), the reconstruction-based algorithms related to auto-
encoders, and the geometrically motivated manifold-learning
approaches. Drawing connections between these approaches
is currently a very active area of research and is likely to
continue to produce models and methods that take advantage
of the relative strengths of each paradigm.

Practical Concerns and Guidelines. One of the criticisms
addressed to artificial neural networks and deep learning algo-
rithms is that they have many hyper-parameters and variants
and that exploring their configurations and architectures is an
art. This has motivated an earlier book on the “Tricks of the
Trade” (Orr and Muller, 1998) of which LeCun et al. (1998a)
is still relevant for training deep architectures, in particular
what concerns initialization, ill-conditioning and stochastic
gradient descent. A good and more modern compendium of
good training practice, particularly adapted to training RBMs,
is provided in Hinton (2010), while a similar guide oriented
more towards deep neural networks can be found in Bengio
(2013), both of which are part of a novel version of the
above book, entitled “Neural Networks: Tricks of the Trade,
Reloaded”.

Incorporating Generic AI-level Priors. We have covered
many high-level generic priors that we believe could be very
useful to bring machine learning closer to AI, and that can be
incorporated into representation-learning algorithms. Many of
these relate to the assumed existence of multiple underlying
factors of variation, whose variations are in some sense orthog-
onal to each other in input space. They are expected to be orga-
nized at multiple levels of abstraction, hence the need for deep
architectures, which also have statistical advantages because
they allow to re-use parameters in a combinatorially efficient
way. Only a few of these factors are relevant for any particular
example, justifying the sparsity of representation prior. Subsets
of these factors explain different random variables of interest
(inputs, tasks) and they vary in structured ways in time and
space (temporal and spatial coherence). We expect future
successful applications of representation learning to refine and
increase that list of priors, and to incorporate most of them
instead of focusing on only one. Research in training criteria
that better take these priors into account are likely to move
us closer to the long-term objective of discovering learning
algorithms that can disentangle the underlying explanatory
factors for AI tasks.

Inference. We anticipate that methods based on directly
parametrizing a representation function will incorporate more
and more of the iterative type of computation one finds in the
inference procedures of probabilistic latent-variable models.
There is already movement in the other direction, with prob-
abilistic latent-variable models exploiting approximate infer-
ence mechanisms that are themselves learned (i.e., producing a
parametric description of the representation function). A major
appeal of probabilistic models is that the semantics of the
latent variables are clear and this allows a clean separation
of the problems of modeling (choose the energy function),
inference (estimating P (h|x)), and learning (optimizing the
parameters), using generic tools in each case. On the other
hand, doing approximate inference and not taking that approxi-
mation into account explicitly in the approximate optimization
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for learning could have detrimental effects, hence the appeal
of learning approximate inference. More fundamentally, there
is the question of the multimodality of the posterior P (h|x). If
there are exponentially many probable configurations of values
of the factors hi that can explain x, then we seem to be stuck
with very poor inference, either focusing on a single mode
(MAP inference), assuming some kind of strong factorization
(as in variational inference) or using an MCMC that cannot
visit enough modes of P (h|x) to possibly do a good job
of inference. What we propose as food for thought is the
idea of dropping the requirement of an explicit representation
of the posterior and settle for an implicit representation that
exploits potential structure in P (h|x) in order to represent
it compactly: even though P (h|x) may have an exponential
number of modes, it may be possible to represent it with
a small set of numbers. For example, consider computing
a deterministic feature representation f(x) that implicitly
captures the information about a highly multi-modal P (h|x),
in the sense that all the questions (e.g. making some prediction
about some target concept) that can be asked from P (h|x) can
also be answered from f(x).

Optimization. Much remains to be done to better under-
stand the successes and failures of training deep architectures,
both in the supervised case (with many recent successes) and
the unsupervised case (where much more work needs to be
done). Although regularization effects can be important on
small datasets, the effects that persist on very large datasets
suggest some optimization issues are involved. Are they more
due to local minima (we now know there are huge numbers
of them) and the dynamics of the training procedure? Or
are they due mostly to ill-conditioning and may be handled
by approximate second-order methods? These basic questions
remain unanswered and deserve much more study.
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