
Package ‘svSocket’
April 22, 2013

Type Package

Version 0.9-55

Date 2013-01-28

Title SciViews GUI API - R Socket Server

Author Philippe Grosjean, with contributions from Matthew Dowle

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>= 2.6.0)

Imports tcltk, svMisc (>= 0.9-68)

Description Implements a simple socket server allowing to connect GUI clients to R

License GPL-2

URL http://www.sciviews.org/SciViews-R

BugReports https://r-forge.r-project.org/tracker/?group_id=194

NeedsCompilation no

Repository CRAN

Date/Publication 2013-04-22 12:33:24

R topics documented:
svSocket-package . 2
closeSocketClients . 3
evalServer . 3
getSocketClients . 5
getSocketServerName . 6
getSocketServers . 7
parSocket . 7
processSocket . 10
sendSocketClients . 11
socketClientConnection . 13
startSocketServer . 14

1

http://www.sciviews.org/SciViews-R

2 svSocket-package

Index 16

svSocket-package SciViews GUI API - R Socket Server

Description

The SciViews svSocket package provides a stateful, multi-client and preemtive socket server. Socket
transaction are operational even when R is buzy in its main event loop (calculation done at the
prompt). This R socket server uses the excellent asynchronous socket ports management by Tcl,
and thus, it needs a working version of Tcl/Tk (>= 8.4) and of the tcltk R package.

A particular effort has been made to handle requests the same way as if they where introduced at
the command prompt, including presentation of the output. However, the server sends results back
to the client only at the end of the computations. It means that any interaction during computation
(for instance, using scan(), browser(), or par(ask = TRUE) is not echoed in the client on due time.
If you parameterize the socket server to echo commands in the R console, such interaction would
be possible from there. Another option is to run R in non-interactive mode (switching to non-
interactive mode during the R session is possible by using the interactivity R package available on
CRAN).

Although intially designed to server GUI clients, the R socket server can also be used to exchange
data between separate R processes. The evalServer() function is particularly useful for this. Note,
however, that R objects are serialized into a text (i.e., using dump()) format, currently. It means that
the transfer of large object is not as efficient as, say Rserver (Rserver exchanges R objects in binary
format, but Rserver is not stateful, clients do not share the same global workspace and it does not
allow concurrent use of the command prompt).

See startSocketServer and processSocket for further implementation details.

Details

Package: svSocket
Type: Package
Version: 0.9-55
Date: 2013-01-28
License: GPL 2 or above, at your convenience

Author(s)

Philippe Grosjean & Matthew Doyle.

Maintainer: Ph. Grosjean <phgrosjean@sciviews.org>

closeSocketClients 3

closeSocketClients Close one or more clients currently connected

Description

The socket servers asks to clients to nicely disconnect (possibly doing further process on their
side). This function is used by stopSocketServer, but it can also be invoked manually to ask
for disconnection of a particular client. Note that, in this case, the client still can decide not to
disconnect! The code send to ask for client disconnection is: \f.

Usage

closeSocketClients(sockets = "all", serverport = 8888)

Arguments

sockets the list of socket client names (sockXXX) to close, or "all" (by default) to dis-
connect all currently connected clients.

serverport the corresponding R socket server port.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

sendSocketClients

evalServer Evaluate R code in a server process

Description

This function is designed to connect two R processes together using the socket server. It allows for
piloting the server R process from a client R process, to evaluate R code in the server and return its
results to the client.

Usage

evalServer(con, expr, send = NULL)

Arguments

con a socket connection with the server (see examples).

expr an R expression to evaluate in the server.

send optional data to send to the server.

4 evalServer

Details

The function serializes R objects using dump() on the server, and it source()s the data on the
client side. It has, thus, the same limitations as dump, (see ?dump), and in particular, environments,
external pointers, weak references and objects of type S4 are not serializable with dump() and will
raise an error, or will produce unusable objects on the client side. Note also that lists or attributes of
accepted objects may contain external pointers or environments, and thus, the whole object becomes
unserializable. In that case, try to coerce your object, or extract a part of it on the server side to
make sure you send just the part that is transferable between the two R processes.

Value

The object returned by the last evaluation in the server.

Author(s)

Matthew Dowle (<mdowle@mdowle.plus.com>)

See Also

sendSocketClients

Examples

Not run:
Start an R process and make it a server
require(svSocket)
startSocketServer()

Start a second R process and run this code in it (the R client):
require(svSocket)

Connect with the R socket server
con <- socketConnection(host = "localhost", port = 8888, blocking = FALSE)

L <- 10:20
L
evalServer(con, L) # L is not an the server, hence the error
evalServer(con, L, L) # Send it to the server
evalServer(con, L) # Now it is there
evalServer(con, L, L + 2)
L
evalServer(con, L)

More examples
evalServer(con, "x <- 42") # Set x
evalServer(con, "y <- 10") # Set y
evalServer(con, x + y) # Don’t need quotes
evalServer(con, "x + y") # but you can put quotes if you like
evalServer(con, x) # Same as get x
evalServer(con, "x + Y") # Return server side-error to the client
evalServer(con, x) # Keep working after an error

getSocketClients 5

evalServer(con, "x <- ’a’") # Embedded quotes are OK

Examples of sending data
evalServer(con, X, -42) # Alternative way to assign to X
evalServer(con, Y, 1:10)
evalServer(con, X + Y)
X # Generates an error, X is not here in the client, only on the server
evalServer(con, X)
evalServer(con, "Z <- X + 3") # Send an assignment to execute remotely
evalServer(con, X + Z)
evalServer(con, "Z <- X + 1:1000; NULL") # Same but prevents Y being returned
evalServer(con, length(Z))
Z <- evalServer(con, Z) # Bring it back to client
Z

Close connection with the R socket server
close(con)

Now, switch back to the R server process and check
that the created variables are there
L
x
y
X
Y
Z

Stop the socket server
stopSocketServer()

End(Not run)

getSocketClients Get infos about socket clients

Description

List all clients currently connected to a given R socket server, or their names (sockXXX).

Usage

getSocketClients(port = 8888)
getSocketClientsNames(port = 8888)

Arguments

port the port of the R socket server.

6 getSocketServerName

Value

getSocketClients() returns a vector of character string with the address of clients in the form
XXX.XXX.XXX.XXX:YYY where XXX.XXX.XXX.XXX is their ip address and YYY is their
port. For security reasons, only localhost clients (on the same machine) can connect to the socket
server. Thus, XXX.XXX.XXX.XXX is ALWAYS 127.0.0.1. However, the function returns the
full IP address, just in case of further extensions in the future. The name of these items equals the
corresponding Tcl socket name.

getSocketClientsNames() returns only a list of the socket client names.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

getSocketServers

getSocketServerName Get the name of a R socket server

Description

Get the internal name given to a particular R socket server.

Usage

getSocketServerName(port = 8888)

Arguments

port the port of the R socket server.

Value

A string with the server name, or NULL if it does not exist.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

getSocketServers

getSocketServers 7

getSocketServers Get the ports of current R socket servers

Description

Returns a list with all the ports of currently running R socket servers.

Usage

getSocketServers()

Value

A character string vector, or NULL if no R socket server is currently running.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

getSocketClients, getSocketServerName, startSocketServer

parSocket Get or set parameters specific to Sciviews socket clients

Description

This function manage to persistently store sensible parameters for configuring communication be-
tween the server and the client, as well as, any other persitent data you may need. Parameters remain
set even if the client disconnects and then reconnects to R, as long R was not restarted.

Usage

parSocket(client, serverport = 8888, clientsocket = client, ...)

Arguments

client the client identification. By default, it is the socket identifier as it appears in
getSocketClients(). Since no attempt is made to check if the client really
exists and is connected, you can create fake ones, outside of the socket server,
to test your code for instance.

serverport the port on which the server is running, 8888 by default. Not important for fake
socket client configurations.

8 parSocket

clientsocket the Tcl name of the socket where the client is connected. By default, it is
the same as client name, but in case it was modified, do provide a correct
clientsocket string if you want to be able to activate a redirection to it (see
socketClientConnection()).

... the parameters you want to change as named arguments. Non named arguments
are ignored with a warning. If you specify arg = NULL, the corresponding vari-
able is deleted from the environment.

Value

Returns the environment where parameters and data for the client are stored. To access those data,
see examples below.

Note

You can assign the environment to a variable, and then, access its content like if it was a list (e$var
or e$var <- "new value"). To get a list of the content, use ls(parSocket(client, port)), or
ls(parSocket(client, port), all.names = TRUE), but not names(parSocket(client, port)).
As long as you keep a variable pointing on that environment alive, you have access to last values
(i.e., changes done elsewhere are taken into account). If you want a frozen snapshot of the parame-
ters, you should use myvar <- as.list(parSocket(client, port)

There is a convenient placeholder for code send by the client to insert automatically the right socket
and serverport in parSocket(): «<s»>. Hence, code that the client send to access or change its
environment is just parSocket(<<<s>>>, bare = FALSE) or parSocket(<<<s>>>)$bare to set
or get one parameter. Note that you can set or change many parameters at once.

Currently, parameters are: bare = TRUE|FALSE for "bare" mode (no prompt, no echo, no mul-
tiline; be default, bare = TRUE), multiline = TRUE|FALSE: does the server accept code spread
on multiple lines and send in several steps (by default, yes, but works only if bare = FALSE.
echo = TRUE|FALSE is the command echoed to the regular R console (by default echo = FALSE).
last = "" string to append to each output (for instance to indicate that processing is done), prompt = "> ",
the prompt to use (if not in bare mode) and continue = "+ " the continuation prompt to use, when
multiline mode is active. You can only cancel a multiline mode by completting the R code you are
sending to the server, but you can break it too by sending «<esc»> before the next instruction. You
can indicate «<q»> or «<Q»> at the very beginning of an instruction to tell R to disconnect the
connection after the command is processed and result is returned (with «<q»>), or when the in-
structions are received but before they are processed (with «<Q»>). This is useful for "one shot"
clients (clients that connect, send code and want to disconnect immediatelly after that). The code
send by the server to the client to tell him to disconnect gracefully (and do some housekeeping)
is ’\f’ send at the beginning of one line. So, clients should detect this and perform the necessary
actions to gracefully disconnect from the server as soon as possible, and he cannot send further
instructions from this moment on.

For clients that repeatedly connect and disconnect, but want persistent data, the default client iden-
tifier (the socket name) cannot be used, because that socket name would change from connection to
connection. The client must then provide its own identifier. This is done by sending <<<id=myID>>>
at the very beginning of a command. This must be done for all commands! myID must use only
characters or digits. This code could be followed by <<<e>>>, <<<h>>> or <<<H>>>. These com-
mands are intended for R editors/IDE. The first code <<<e>>> sets the server into a mode that is
suitable to evaluated R code (including in a multi-line way). The other code temporarily configure

parSocket 9

the server to run the command (in single line mode only) in a hidden way. They can be used to ex-
ecute R code without displaying it in the console (for instance, to start context help, to get a calltip,
or a completion list, etc.). The differences between <<<h>>> and <<<H>>> is that the former waits
for command completion and returns results of the command to the client before disconnecting,
while the latter disconnects from the client before executing the command.

There is a simple client (written in Tcl) available in the /etc subdirectory of this package installation.
Please, read the ’ReadMe.txt’ file in the same directory to learn how to use it. You can use this
simple client to experiment with the communication using these sockets, but it does not provide
advanced command line edition, no command history, and avoid pasting more than one line of code
into it.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

startSocketServer, sendSocketClients, getSocketClients, socketClientConnection.

Examples

We use a fake socket client configuration environment
e <- parSocket("fake")
Look at what it contains
ls(e)
Get one data
e$bare
... or
parSocket("fake")$bare

Change it
parSocket("fake", bare = FALSE)$bare
Note it is changed too for e
e$bare

You can change it too with
e$bare <- TRUE
e$bare
parSocket("fake")$bare

Create a new entry
e$foo <- "test"
ls(e)
parSocket("fake")$foo
Now delete it
parSocket("fake", foo = NULL)
ls(e)

Our fake socket config is in SciViews:TempEnv environment
s <- search()
l <- length(s)

10 processSocket

pos <- (1:l)[s == "SciViews:TempEnv"]
ls(pos = pos) # It is named ’SocketClient_fake’
Delete it
rm(SocketClient_fake, pos = pos)
Do some house keeping
rm(list = c("s", "l", "pos"))

processSocket The function that processes a command coming from the socket

Description

This is the default R function called each time data is send by a client through a socket. It is possible
to customize this function and to use customized versions for particular R socket servers.

Usage

processSocket(msg, socket, serverport, ...)

Arguments

msg the message send by the client, to be processed.

socket the client socket identifier, as in getSocketClients(). This is passed by the
calling function and can be used internally.

serverport the port on which the server is running, this is passed by the calling function and
can be used internally.

... anything you want to pass to processSocket(), but it needs to rework startServerSocket()
to use it).

Value

The results of processing msg in a character string vector.

Note

There are special code that one can send to R to easily turn the server (possibly temporarily) into a
given configuration. First, if you want to persistently store parameters for your client in the R server
and make sure you retrieve the same parameters the next time you reconnect, you should specify
your own identifier. This is done by sending <<<id=myID>>> at the very beginning of each of your
commands. Always remember that, if you do not specify an identifier, the name of your socket will
be used. Since socket names can be reused, you should always reinitialize the configuration of your
server the first time you connect to it.

Then, sending <<<esc>>> breaks current multiline code submission and flushes the multiline buffer.

The sequence <<<q>>> at the beginning of a command indicates that the server wants to discon-
nect once the command is fully treated by R. Similarly, the sequence <<<Q>>> tels the server to
disconnect the client before processing the command (no error message is returned to the client!).

sendSocketClients 11

It is easy to turn the server to evaluate R code (including multiline code) and return the result and
disconnect by using the <<<e>>> sequence at the beginning of a command. Using the <<<h>>> or
<<<H>>> configure that server to process a (single-line code only) command silently and disconnect
before (uppercase H) or after (lowercase h) processing that command. It is the less intrusive mode
that is very useful for all commands that should be executed behind the sceene between R and a R
editor or IDE, like contextual help, calltips, completion lists, etc.). Note that using these modes in a
server that is, otherwise, configured as a multi-line server does not break current multi-line buffer.

The other sequences that can be used are: <<<s>>> for a placeholder to configurate the current
server (with configuration parameters after it), and <<<n>>> to indicate a newline in your code
(submitting two lines of code as a single one; also works with servers configured as single-line
evaluators).

To debug the R socket server and inspect how commands send by a client are interpreted by this
function, use options(debug.Socket = TRUE). This function uses Parse() and captureAll()
in order to evaluate R code in character string almost exactly the same way as if it was introduced
at the command line of a R console.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

startSocketServer, sendSocketClients, parSocket, Parse, captureAll

Examples

Not run:
A simple REPL (R eval/process loop) using basic features of processSocket()
repl <- function ()
{
pars <- parSocket("repl", "", bare = FALSE) # Parameterize the loop
cat("Enter R code, hit <CTRL-C> or <ESC> to exit\n> ") # First prompt
repeat {
entry <- readLines(n = 1) # Read a line of entry
if (entry == "") entry <- "<<<esc>>>" # Exit from multiline mode
cat(processSocket(entry, "repl", "")) # Process the entry
}
}
repl()

End(Not run)

sendSocketClients Send data to one or more clients through a socket

Description

The text is send to one or more clients of the R socket server currently connected.

12 sendSocketClients

Usage

sendSocketClients(text, sockets = "all", serverport = 8888)

Arguments

text the text to send to the client(s).

sockets the Tcl name of the client(s) socket(s) currently connected (sockXXX), or "all"
(by default) to send the same text to all connected clients.

serverport the port of the server considered.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

closeSocketClients, processSocket

Examples

Not run:
Start an R process (R#1) and make it a server
require(svSocket)
serverport <- 8888 # Port 8888 by default, but you can change it
startSocketServer(port = serverport)

Start a second R process (R#2) and run this code in it (the R client):
require(svSocket)
Connect with the R socket server
con <- socketConnection(host = "localhost", port = 8888, blocking = FALSE)

Now, go back to the server R#1
getSocketClients() # You should have one client registered
Send something to all clients from R#1
sendSocketClients("Hi there!")

Switch back to client R#2
Since the connection is not blocking, you have to read lines actively
readLines(con)
Note the final empty string indicating there is no more data
close(con) # Once done...

Switch to the R#1 server and close the server
stopSocketServer(port = serverport)

End(Not run)

socketClientConnection 13

socketClientConnection

Open a connection to a SciViews socket client for write access

Description

A ’sockclientconn’ object is created that opens a connection from R to a SciViews socket client
(that must be currently connected).

Usage

socketClientConnection(client, serverport = 8888, socket, blocking = FALSE,
open = "a", encoding = getOption("encoding"))

S3 method for class ’sockclientconn’
summary(object, ...)

Arguments

client the client identification. By default, it is the socket identifier as it appears in
getSocketClients(). The client must be currently connecte.

serverport the port on which the server is running, 8888 by default. This server must be
currently running.

socket the Tcl socket name where the targetted client is connected. If not provided, it
will be guessed from client, otherwise, client is ignored.

blocking logical. Should the connection wait that the data is written before exiting?
open character. How the connection is opened. Currently, only "a" for append (de-

fault) or "w" for write access are usable.
encoding the name of the encoding to use.
object A ’sockclientconn’ object as returned by socketClientConnection().
... further arguments passed to the method (not used for the moment).

Value

socketClientConnection() creates a ’sockclientconn’ object redirects text send to it to the SciViews
socket server client. It is inherits from a ’sockconn’ object (see socketConnection()), and the only
difference is that output is redirected to a Tcl socket corresponding to a given SciViews socket client
currently connected.

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

socketConnection, sendSocketClients

14 startSocketServer

startSocketServer Start and stop a R socket server

Description

A R socket server is listening for command send by clients to a TCP port. This server is imple-
mented in Tcl/Tk, using the powerful ’socket’ command. Since it runs in the separate tcltk event
loop, it is not blocking R, and it runs in the background; the user can still enter commands at the
R prompt while one or several R socket servers are running and even, possibly, processing socket
clients requests.

Usage

startSocketServer(port = 8888, server.name = "Rserver", procfun = processSocket,
secure = FALSE, local = !secure)

stopSocketServer(port = 8888)

Arguments

port the TCP port of the R socket server.

server.name the internal name of this server.

procfun the function to use to process client’s commands. By default, it is processSocket().

secure do we start a secure (TLS) server? (not implemented yet)

local if TRUE, accept only connections from local clients, i.e., from clients with IP
address 127.0.0.1. Set by default if the server is not secure.

Details

One can write a different procfun function than the default one for special servers. That function
must accept one argument (a string with the command send by the client) and it must return a
character string containing the result of the computation.

Note

This server is currently synchronous in the processing of the command. However, neither R, nor
the client are blocked during exchange of data (communication is asynchronous).

Note also that socket numbers are reused, and corresponding configurations are not deleted from
one connection to the other. So, it is possible for a client to connect/disconnect several times
and continue to work with the same configuration (in particular, the multiline code submitted line
by line) if every command starts with <<<id=myID>>> where myID is an alphanumeric (unique)
identifier. This property is call a stateful server. Take care! The R server never checks uniqueness
of this identifier. You are responsible to use one that would not intefere with other, concurrent,
clients connected to the same server.

For trials and basic testings of the R socket server, you can use the Tcl script SimpleClient.Tcl. See
the ReadMe.txt file in the /etc/ subdirectory of the svSocket package folder. Also, in the source of
the svSocket package you will find testCLI.R, a script to torture test CLI for R (console).

startSocketServer 15

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

See Also

processSocket, startHttpServer

Index

∗Topic IO
closeSocketClients, 3
evalServer, 3
getSocketClients, 5
getSocketServerName, 6
getSocketServers, 7
parSocket, 7
processSocket, 10
sendSocketClients, 11
socketClientConnection, 13
startSocketServer, 14

∗Topic package
svSocket-package, 2

∗Topic utilities
evalServer, 3
getSocketClients, 5
getSocketServerName, 6
getSocketServers, 7
svSocket-package, 2

captureAll, 11
closeSocketClients, 3, 12

evalServer, 3

getSocketClients, 5, 7, 9
getSocketClientsNames

(getSocketClients), 5
getSocketServerName, 6, 7
getSocketServers, 6, 7

Parse, 11
parSocket, 7, 11
processSocket, 2, 10, 12, 15

sendSocketClients, 3, 4, 9, 11, 11, 13
socketClientConnection, 9, 13
socketConnection, 13
startHttpServer, 15
startSocketServer, 2, 7, 9, 11, 14
stopSocketServer, 3

stopSocketServer (startSocketServer), 14
summary.sockclientconn

(socketClientConnection), 13
svSocket (svSocket-package), 2
svSocket-package, 2

16

	svSocket-package
	closeSocketClients
	evalServer
	getSocketClients
	getSocketServerName
	getSocketServers
	parSocket
	processSocket
	sendSocketClients
	socketClientConnection
	startSocketServer
	Index

