Artigos de Programação MQL4 e MQL5

icon

Aprenda a linguagem de programação MQL5 para estratégias de negociação em inúmeros artigos escritos e publicados por você e por membros da comunidade MQL5.community. Todos os artigos são divididos em categorias para uma busca rápida dependendo da faceta da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe da discussão no fórum da MQL5.community!

Novo artigo
preview
Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

As matrizes servem como base para os algoritmos de aprendizado de máquina e computação em geral devido à sua capacidade de lidar efetivamente com grandes operações matemáticas. A biblioteca padrão tem tudo o que é necessário, mas vamos ver como podemos estendê-la introduzindo várias funções no arquivo utils, ainda não disponível na biblioteca
preview
Indicadores não-lineares

Indicadores não-lineares

Neste artigo, vamos considerar algumas formas de construir indicadores não-lineares e seu uso na negociação. Existem alguns indicadores disponíveis na plataforma de negociação MetaTrader que utilizam abordagens não-lineares.
preview
Teoria das Categorias em MQL5 (Parte 1)

Teoria das Categorias em MQL5 (Parte 1)

A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
preview
Guia Prático MQL5 — Serviços

Guia Prático MQL5 — Serviços

O artigo descreve os recursos versáteis dos serviços — programas em MQL5 que não necessitam de gráficos para serem anexados. Eu ambém destacarei as diferenças dos serviços de outros programas em MQL5 e enfatizarei as nuances do trabalho do desenvolvedor com os serviços. Como exemplos, são oferecidas ao leitor várias tarefas que abrangem uma ampla gama de funcionalidades que podem ser implementadas como um serviço.
preview
Integrando modelos de ML ao Testador de estratégias  (Parte 3): Gerenciamento de Arquivos CSV(II)

Integrando modelos de ML ao Testador de estratégias (Parte 3): Gerenciamento de Arquivos CSV(II)

Este artigo fornece uma visão detalhada sobre como construir uma classe em MQL5 para gerenciamento eficiente de arquivos CSV. Ele explica como os métodos de abertura, escrita, leitura e conversão de dados são implementados e como eles podem ser utilizados para armazenar e carregar dados. Além disso, o artigo também discute as limitações e considerações importantes ao usar essa classe. É uma leitura valiosa para aqueles interessados em aprender a trabalhar com arquivos CSV em MQL5.
preview
MQL5 — Você também pode se tornar um mestre nesta linguagem

MQL5 — Você também pode se tornar um mestre nesta linguagem

Neste artigo, será algo como uma entrevista comigo, de como comecei no MQL5. Irei lhe mostrar, como você pode se tornar um grande programador de MQL5. Mostrarei as bases necessárias para você conseguir alcançar tal feito. O único requisito é ter vontade de aprender.
preview
Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Vamos falar sobre um dos algoritmos de otimização mais recentes e modernos: o "Packs of grey wolves" (manada de lobos-cinzentos). Devido ao seu comportamento distinto em funções de teste, este algoritmo se torna um dos mais interessantes em comparação com outros considerados anteriormente. Ele é um dos principais candidatos para treinamento de redes neurais e para otimizar funções suaves com muitas variáveis.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
preview
DoEasy. Controles (Parte 25): Objeto WinForms Tooltip

DoEasy. Controles (Parte 25): Objeto WinForms Tooltip

Neste artigo, começaremos a desenvolver o controle Tooltip (dica de ferramenta) e começaremos a criar novas primitivas gráficas para a biblioteca. Naturalmente, nem todo elemento tem uma dica de ferramenta, mas todo objeto gráfico pode ter uma.
preview
Como desenvolver um sistema de negociação baseado no indicador Fractais

Como desenvolver um sistema de negociação baseado no indicador Fractais

Aqui está um novo artigo da nossa série sobre como projetar um sistema de negociação com base nos indicadores técnicos mais populares. Nós aprenderemos um novo indicador que é o indicador Fractais e aprenderemos como desenvolver um sistema de negociação baseado nele para ser executado na plataforma MetaTrader 5.
preview
Como trabalhar com linhas usando MQL5

Como trabalhar com linhas usando MQL5

Neste artigo, falaremos sobre como trabalhar com os gráficos de linhas mais importantes, como linhas de tendência, suporte e resistência, usando as ferramentas da linguagem MQL5.
preview
Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)

O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.
preview
DoEasy. Controles (Parte 24): Objeto WinForms dica

DoEasy. Controles (Parte 24): Objeto WinForms dica

Neste artigo, vamos reformular a lógica de especificação dos objetos base e principal para todos os objetos WinForms da biblioteca. Vamos desenvolver também um novo objeto dica que será base e algumas classes herdeiras para indicar a possível direção do movimento da linha divisória.
preview
Gestão de risco e capital utilizando Expert Advisors

Gestão de risco e capital utilizando Expert Advisors

Este artigo é sobre o que você não pode ver em um relatório de backtest, o que você deve esperar usando um software de negociação automatizado, como gerenciar seu dinheiro se estiver usando expert advisors e como cobrir uma perda significativa para permanecer na atividade de negociação quando você está usando procedimentos automatizados.
preview
Explorando a magia dos períodos de negociação com o auxílio do Frames Analyzer

Explorando a magia dos períodos de negociação com o auxílio do Frames Analyzer

Bem, o Frames Analyzer é uma ferramenta para analisar quadros de otimização durante o processo de otimização de parâmetros quer seja no testador de estratégia ou fora do mesmo. Ele permite ler arquivos MQD ou bancos de dados criados após a otimização de parâmetros e compartilhar esses resultados com outros usuários da ferramenta. Ele é projetado para auxiliar a melhorar estratégias de negociação conjuntamente. Adicionalmente, é bom mencionar que quadro de otimização é um conjunto de dados que contém informações sobre as condições de mercado em um determinado momento, como preços, volumes, indicadores técnicos, entre outros, que são usados para avaliar e comparar a eficácia de diferentes estratégias de negociação.
preview
Indicadores adaptativos

Indicadores adaptativos

Neste artigo, exploraremos diferentes enfoques para desenvolver indicadores adaptativos. Esses indicadores se destacam pelo uso de feedback entre as entradas e saídas, o que permite que eles se adaptem de forma autônoma para processar séries temporais financeiras de forma eficiente.
preview
Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Neste artigo vamos analisar o popular algoritmo de otimização por enxame de partículas (PSO). Anteriormente, discutimos características importantes de algoritmos de otimização, como convergência, velocidade de convergência, estabilidade, escalabilidade e desenvolvemos uma bancada de testes. Também analisamos um algoritmo simples baseado em geradores de números aleatórios (GNA).