Artigos de Programação MQL4 e MQL5

Aprenda a linguagem de programação MQL5 para estratégias de negociação em inúmeros artigos escritos e publicados por você e por membros da comunidade MQL5.community. Todos os artigos são divididos em categorias para uma busca rápida dependendo da faceta da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe da discussão no fórum da MQL5.community!

Novo artigo

Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com

Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma

Técnicas úteis e exóticas para a negociação automatizada

Neste artigo, eu demonstrarei algumas técnicas muito interessantes e úteis para a negociação automatizada. Algumas delas podem ser familiares para você. Eu tentarei cobrir os métodos mais

Redes Neurais de Maneira Fácil (Parte 11): Uma visão sobre a GPT

Talvez um dos modelos mais avançados entre as redes neurais de linguagem atualmente existentes seja a GPT-3, cuja variante máxima contém 175 bilhões de parâmetros. Claro, nós não vamos criar tal

Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas

Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de

Algoritmo auto-adaptável (Parte IV): funcionalidade e testes adicionais

Continuo a complementar o algoritmo com a funcionalidade mínima necessária, vou fazer testes do que obtivemos como resultado. A lucratividade acabou sendo baixa, mas os artigos mostram um modelo que

Trabalhando preços na biblioteca DoEasy (Parte 63): livro de ofertas, classe de ordem abstrata do livro de ofertas

Neste artigo, começaremos a desenvolver funcionalidades para trabalhar com o livro de ofertas. Criaremos uma classe de objeto para uma ordem abstrata do livro de ofertas e dos seus herdeiros

Aplicação prática de redes neurais no trading (Parte 2). Visão computacional

O uso da visão computacional permite treinar redes neurais, usando uma representação visual do gráfico de preços e indicadores. Este método nos permite operar mais livremente com todo o conjunto de

Trabalhando com preços na biblioteca DoEasy (Parte 62): atualização em tempo real da série de ticks, preparação para trabalhar com o livro de ofertas

Neste artigo, atualizaremos em tempo real da coleção de dados de ticks e prepararemos a classe do objeto-símbolo para trabalhar com o livro de ofertas, cujo funcionamento abordaremos no próximo

Força bruta para encontrar padrões (Parte III): novos horizontes

Este artigo dá continuidade ao tópico sobre força bruta, trazendo novos recursos de análise de mercado para o algoritmo do meu programa e acelerando, assim, a velocidade da análise e a qualidade dos

Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça

Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para

Trabalhando com preços na biblioteca DoEasy (Parte 61): coleção de séries de ticks para símbolos

Visto que diferentes símbolos podem ser usados durante a operação do programa, é necessário criar uma lista própria para cada um deles. Hoje vamos combinar essas listas numa coleção de dados de ticks

Algoritmo auto-adaptável (Parte III): evitando a otimização

É impossível obter um algoritmo verdadeiramente estável se para a seleção de parâmetros com base em dados históricos for usada uma otimização. Um algoritmo estável em si deve saber que parâmetros são

Busca de padrões sazonais no mercado de Forex usando o algoritmo CatBoost

O artigo considera a criação de modelos de aprendizado de máquina com filtros de tempo e discute a eficácia dessa abordagem. O fator humano pode ser eliminado agora simplesmente instruindo o modelo a

Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo

Neste artigo, criaremos uma lista para armazenar dados de tick de um símbolo e verificaremos tal criação e respectiva recepção de dados a partir dela no EA. Essas listas de dados de tick -

O mercado e a física de seus padrões globais

Neste artigo, eu tentarei testar a suposição de que qualquer sistema, mesmo com uma pequena compreensão do mercado, pode operar em escala global. Eu não inventarei nenhuma teoria ou padrão, mas apenas

Desenvolvendo um algoritmo auto-adaptável (Parte II): melhorando a eficiência

Neste artigo, continuarei meu tópico, mas começarei tornando o algoritmo desenvolvido anteriormente mais flexível. Ele se tornou mais estável com o aumento no número de candles na janela de análise ou

Trabalhando com séries temporais na biblioteca DoEasy (Parte 59): objeto para armazenar dados de um tick

Com este artigo, vamos começar a criar a funcionalidade de biblioteca para trabalhar com dados de preços. Hoje vamos criar uma classe de objeto que armazenará todos os dados de preços recebidos no

Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho

Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma

Usando planilhas para construir estratégias de negociação

O artigo descreve os princípios básicos e abordagens que permitem analisar qualquer estratégia usando planilhas - Excel, Calc, Google. Os resultados também são comparados com os do testador do

Desenvolvendo um algoritmo auto-adaptável (Parte I): encontrando um padrão básico

Numa série de artigos, mostrarei um exemplo de como desenvolver algoritmos auto-adaptativos que levam em consideração a maioria de fatores que surgem nos mercados, apresentarei como sistematizar essas

Gradient boosting no aprendizado de máquina transdutivo e ativo

Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em

Redes Neurais de Maneira Fácil (Parte 8): Mecanismos de Atenção

Nos artigos anteriores, nós já testamos várias opções para organizar as redes neurais. Nós também estudamos as redes convolucionais emprestadas dos algoritmos de processamento de imagem. Neste artigo

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar

WebSocket para MetaTrader 5

Antes do aparecimento das funções de rede na API MQL5 atualizada, os aplicativos MetaTrader eram limitados em sua capacidade de se conectar e interagir com serviços baseados no protocolo WebSocket

Reamostragem avançada e seleção de modelos CatBoost pelo método de força bruta

Este artigo descreve uma das possíveis abordagens para a transformação de dados com o objetivo de melhorar a generalização do modelo, ele também discute a amostragem e seleção dos modelos CatBoost

Algoritmo de aprendizado de máquina CatBoost da Yandex sem conhecimento prévio de Python ou R

O artigo fornece o código e a descrição das principais etapas do processo de aprendizado de máquina usando um exemplo específico. Para obter o modelo, você não precisa de conhecimento prévio em Python

Força bruta para encontrar padrões (Parte II): Imersão

Neste artigo, continuarei o tópico sobre força bruta. Tentarei apresentar melhor os padrões com ajuda de uma nova versão melhorada do meu programa e me esforçarei para encontrar a diferença a nível de

Trabalhando com séries temporais na biblioteca DoEasy (Parte 57): objeto de dados do buffer do indicador

Neste artigo, veremos um objeto que conterá todos os dados de um buffer de um indicador. Tais objetos serão necessários para armazenar dados seriais de buffers de indicadores, e com a ajuda dos quais

Trabalhando com séries temporais na biblioteca DoEasy (Parte 56): objeto de indicador personalizado, obtenção de dados a partir de objetos-indicadores numa coleção

Neste artigo, veremos a criação de um objeto de indicador personalizado para ser usado em Expert Advisors. Vamos modificar ligeiramente as classes da biblioteca e escrever métodos para receber dados

Exemplos de análise de gráficos usando o TD Sequential e os níveis de Murray-Gann

O TD Sequential mostra perfeitamente as mudanças no equilíbrio durante o movimento do preço. Isso é especialmente evidente se usarmos seus sinais juntamente com um indicador de nível, como com os

Aplicação prática de redes neurais no trading. Python (Parte I)

Neste artigo, analisaremos passo a passo a implementação de um sistema de negociação baseado na programação de redes neurais profundas em Python. Para isso, usaremos a biblioteca de aprendizado de

Abordagem ideal para desenvolver e analisar sistemas de negociação

Neste artigo, além de tentar apresentar que critérios usar ao escolher um sistema ou sinal para investir seu dinheiro, aventurar-me-ei a mostrar qual é a melhor abordagem para desenvolver sistemas de

Perceptron Multicamadas e o Algoritmo Backpropagation

Recentemente, ao aumentar a popularidade desses métodos, tantas bibliotecas foram desenvolvidas em Matlab, R, Python, C++, e etc, que recebem o conjunto de treinamento como entrada e constroem

Redes Neurais de Maneira Fácil(Parte 7): Métodos de otimização adaptativos

Nos artigos anteriores, nós usamos o gradiente descendente estocástico para treinar uma rede neural usando a mesma taxa de aprendizado para todos os neurônios da rede. Neste artigo, eu proponho olhar

Gradient Boosting (CatBoost) no desenvolvimento de sistemas de negociação. Uma abordagem ingênua

Treinamento do classificador CatBoost em Python e exportação do modelo para a mql5, bem como a análise dos parâmetros do modelo e um testador de estratégia customizado. A linguagem Python e a

Redes neurais de Maneira Fácil (Parte 6): Experimentos com a taxa de aprendizado da rede neural

Anteriormente, nós consideramos vários tipos de redes neurais junto com suas implementações. Em todos os casos, as redes neurais foram treinadas usando o método gradiente descendente, para o qual nós

Conjunto de ferramentas para marcação manual de gráficos e negociação (Parte II). Fazendo a marcação

Este artigo é uma continuação do ciclo em que mostro como criar uma biblioteca conveniente para mim, a fim de desenhar o layout de gráficos manualmente com ajuda de atalhos de teclado. A marcação é

Redes Neurais de Maneira Fácil (Parte 5): Cálculos em Paralelo com o OpenCL

Discutimos anteriormente alguns tipos de implementações da rede neural. Nas redes consideradas, as mesmas operações são repetidas para cada neurônio. Uma etapa lógica adicional é utilizar os recursos

Como ganhar US$ 1 000 000 por meio do trading algorítmico? Nos serviços MQL5.com!

Cada trader chega ao mercado com o objetivo de ganhar seu primeiro milhão de dólares. Como ele pode fazer isso sem muito risco e sem capital inicial? Os serviços MQL5 facilitam isso para

Redes Neurais de Maneira Fácil(Parte 4): Redes Recorrentes

Nós continuamos estudando o mundo das redes neurais. Neste artigo, nós analisaremos outro tipo de rede neural, as redes recorrentes. Este tipo de rede foi proposto para uso com as séries temporais