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Neural Networks for Algorithmic Trading with MQL5

In the era of digital technology and artificial intelligence, algorithmic trading is transforming financial

markets, offering innovative strategies. The book "Neural Networks for Algorithmic Trading with MQL5"

serves as a unique guide that combines advanced technological knowledge with practical guidance on

creating trading algorithms. This book is tailored for traders, developers, and financial analysts who

wish to understand the principles of neural networks and their application in algorithmic trading on the

MetaTrader 5 platform.

The book has 7 chapters that cover everything you need to know to get started with neural networks

and integrate them into your trading robots in MQL5. Beginning with basic principles of neural networks

and advancing to more complex architectural solutions and attention mechanisms, this book provides

all the necessary information for the successful implementation of machine learning in your algorithmic

trading solutions.

You will discover how to use different types of neural networks, including convolutional and recurrent

models, and how to integrate them into the MQL5 environment. Additionally, the book explores

architectural solutions to improve model convergence, such as Batch Normalization and Dropout.

Furthermore, the author provides practical guidance on how to train neural networks and embed them

into your trading strategies. You will learn how to create trading Expert Advisors to test the

performance of trained models on new data, enabling you to evaluate their potential in real-world

financial markets.

· Chapter 1 introduces you to the world of artificial intelligence, laying the foundation with essential

neural network building blocks, such as activation functions and weight initialization methods.

· Chapter 2 explores MetaTrader 5 capabilities in detail, describing how to utilize the platform tools

to create powerful algorithmic trading strategies.

· Chapter 3 guides you through the step-by-step development of your first neural network model in

MQL5, covering everything from data preparation to model implementation and testing.

· Chapter 4 delves deep into understanding fundamental neural layer types, including convolutional

and recurrent neural networks, their practical implementation, and comprehensive testing.

· Chapter 5 introduces attention mechanisms like Self-Attention and Multi-Head Self-Attention,

presenting advanced data analysis methodologies.

· Chapter 6 explains architectural solutions to improve model convergence, such as Batch

Normalization and Dropout.

· Chapter 7 concludes the book and offers methods for testing trading strategies using the developed

neural network models under real trading conditions through MetaTrader 5.

With "Neural Networks for Algorithmic Trading with MQL5", you will gain comprehensive knowledge and

practical skills for creating your own trading robots capable of analyzing markets and making decisions

using advanced machine learning technologies. This book will be an invaluable resource for anyone who

wants to use artificial intelligence in algorithmic trading and explore new horizons in financial analytics

and trading.

Examples from the book "Neural networks for algorithmic trading with MQL5" 

Examples from the book are also available in the public project \MQL5\Shared Projects\NeuroBook

https://www.mql5.com/en/code/48097
https://www.metatrader5.com/en/metaeditor/help/mql5storage/projects#public
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Introduction

The whole history of mankind is the creation and improvement of tools. From the moment the ancient

man took the first stick in his hands, the tools of physical labor have been constantly improved.

Alongside constant improvements in tools for physical labor, humans also develop tools for intellectual

work.

From the first digital mechanical calculating machine, built by Wilhelm Schickard in 1623, the world of

computing machines has evolved to modern computers, which, thanks to developed algorithms, allow us

to move from simple calculations to solving other more intellectual tasks. Next, artificial intelligence

algorithms emerged and started covering various aspects of our everyday lives. More and more often,

news feeds are filled with messages like “The neural network has been taught...”.

The term "artificial intelligence" was first coined by John McCarthy, who gave the following definition:

"Artificial intelligence is the science and engineering of making intelligent machines, especially

intelligent computer programs. It is related to the similar task of using computers to understand

human intelligence, but AI does not have to confine itself to methods that are biologically

observable."

At the same time, the world saw the extensive development of the art of stock trading. In an attempt

to predict the future movement of exchange-traded instruments, traders meticulously started charts

looking for price movement patterns, developed trading rules, and created trading strategies.

The advent of computing machines has also influenced this area of human activity. The use of

computers has allowed more information to be processed in less time. As a result, the analysis of price

movements of exchange-traded instruments has become more detailed and in-depth.

Further development has resulted in programs capable of operating according to predefined trading

strategies and executing trades 24 hours a day without human intervention.

In this book, we will attempt to combine the above two areas of activity. In this context, another

definition of artificial intelligence, as formulated by Andreas Kaplan and Michael Heinlein, would be most

appropriate:

"Artificial intelligence is a system's ability to correctly interpret external data, to learn from such

data, and to use those learnings to achieve specific goals and tasks through flexible adaptation."

That's the property we're going to exploit. We will look at the basic principles and foundations of

artificial intelligence, and then use the widely used MetaTrader 5 terminal and demonstrate its

capabilities in building different algorithms for intelligent programs.

On real data, we will test the ability of implemented algorithms to identify patterns, because

understanding patterns allows us to determine the most likely vector of development of upcoming

events.

We do not consider this book to be a teaching tool on artificial intelligence algorithms. The book gives

only basic concepts and principles without delving deeply into the mathematical features of

computation and the construction of algorithms.

This work will be more interesting for practitioners. The book provides examples of using different

algorithms to solve real-life cases and presents the results of training neural networks built on different

architectures using different algorithms. 
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I would like to draw the attention of all readers to the fact that stock trading is associated with high

risks. The responsibility for any trading operation lies with the reader. The book looks at tools, not

ready-made trading solutions. To use the provided tools in real trade, additional work is required to

build a trading robot and/or indicators for decision-making by the trader, as well as thorough testing.

1. Basic principles of artificial intelligence construction

Knowledge of the world and oneself in it is an integral part of human existence. Reflections on the

nature of consciousness have long been raised by philosophers. Neurophysiologists and psychologists

have developed theories about the principles and mechanisms of the human brain operation. As in

several other sciences, processes observed in nature laid the foundation for the creation of intelligent

machines.

The main structural unit in the human brain is the neuron. The exact number of neurons in the human

nervous system is not definitively known, while estimates suggest approximately 100 billion. Neurons,

each consisting of a cell body, dendrites and axon, connect with each other forming a complex

network. The points at which the connect are called synapses.

The described processes and structures served as the basis for the creation of artificial neural

networks. In 1943, Warren McCulloch and Walter Pitts published the article A logical calculus of the

ideas immanent in nervous activity, in which they proposed and described two theories of neural

networks: with loops and without them. These theories represented a significant step in understanding

the interaction of neurons and later formed the basis for the principles of constructing neuron

interactions in artificial neural networks. Donald Hebb's book The organization of behavior: A

neuropsychological theoryreleased in 1949 laid the foundation for neural learning.

The works mentioned above explored the processes in the human brain and were further developed in

the works of Frank Rosenblatt. His mathematical model of the perceptron developed in 1957 formed

the basis of the world's first neurocomputer "Mark-1", which he created in 1960. It should be noted

that various versions of the perceptron are successfully used today to solve various tasks.

But let's proceed systematically. In this chapter, we will examine the mathematical models of the

neuron and the perceptron:

· Neuron and principles of neural network construction. This section elaborates on the structure of

the neuron and the fundamental concepts underlying artificial neural networks, as well as their

importance in understanding intelligent systems.

· Activation functions are an integral part of neural networks, determining how a neuron should

respond to incoming signals. This section focuses on the different types of activation functions and

their role in the neural network learning process.

· Weight initialization methods in neural networks. Weight initialization is a critical step in preparing

the network for training, influencing its ability to learn and converge.

· Neural network training is considered through the key components: loss functions, gradient

backpropagation, and optimization methods which together form the basis for efficient network

training.

· Techniques for improving the convergence of neural networks, such as Dropout and normalization,

detail strategies for improving neural network performance and stability during training.

· Artificial intelligence in trading covers the practical application of the technologies discussed,

exploring how artificial intelligence and machine learning can be used to analyze financial markets

and make trading decisions.

https://raai.org/library/books/mcculloch/mcculloch.pdf
https://raai.org/library/books/mcculloch/mcculloch.pdf
https://www.researchgate.net/publication/340474253_Donald_O_Hebb_and_the_Organization_of_Behavior_17_years_in_the_writing
https://www.researchgate.net/publication/340474253_Donald_O_Hebb_and_the_Organization_of_Behavior_17_years_in_the_writing
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Thus, the chapter provides a comprehensive overview of artificial intelligence and neural networks,

covering their structure, mechanisms, and real-world applications, particularly in algorithmic trading.

1.1 Neuron and principles of building neural networks

In their paper entitled "A logical calculus of the ideas immanent in nervous activity", Warren McCulloch

and Walter Pitts proposed a mathematical model of a neuron and described the basic principles of

neural network organization. The mathematical model of an artificial neuron involves two computation

stages. Similar to a human neuron, in the mathematical model of an artificial neuron, the dendrites are

represented by a vector of numerical values X, which is input into the artificial neuron. The dependence

of the neuron value on each specific input is determined by the vector of weights, denoted as W. The

first computation stage of the artificial neuron model is implemented as the product of the vector of

initial signals by the vector of weights, which gives a weighted sum of initial data from the mathematical

point of view.

where:

· n = number of elements in the input sequence

· w
i
 = weight of the ith element of the sequence

· x
i
 = the ith element of the input sequence

The weights determine the sensitivity of the neuron to changes in a particular input value and can be

either positive or negative. This way, the operation of excitatory and inhibitory signals is simulated. The

values of weights satisfying the solution of a particular problem are selected in the process of training

the neural network.

As mentioned before, a signal appears on the axon of a neuron only after a critical value has

accumulated in the cell body. In the mathematical model of an artificial neuron, this step is

implemented by introducing an activation function.

 

Variations are possible here. The first models used a simple function to compare the weighted sum of

input values with a certain threshold value. Such an approach simulated the nature of a biological

neuron, which can be excited or at rest. The graph of such a neuron activation function will have a

sharp drop in value at the threshold point.

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
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Graph of the threshold function of neuron activation.

In 1960, Bernard Widrow and Marcian Hoff published their work "Adaptive switching circuits", in which

they presented the Adaline adaptive linear classification machine. This work has shown that using

continuous neuron activation functions allows solving a wider range of problems with less error. Since

then and up to our time, various sigmoid functions have been widely used as neuron activation

functions. In this version, a smoother graph of the mathematical model of the neuron is obtained.

Graph of the logistic function (Sigmoid)

We will discuss different versions of activation functions and their advantages and disadvantages in the

next chapter of the book. In a general form, the mathematical model of an artificial neuron can be

schematically represented as follows.

https://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
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Scheme of the mathematical model of a neuron

This mathematical model of a neuron allows generating a logical True or False answer based on the

analysis of input data. Let's consider the model's operation using the example of searching for the

candlestick pattern "Pin Bar".

According to the classic Pin Bar model, the size of the candlestick "Nose" should be at least 2.5 times

the size of the body and the second tail. Mathematically, it can be visualized as follows:

or

Pin Bar

According to the mathematical model of the neuron, we will input three values into the neuron: the size

of the candlestick nose, body, and tail. The weights will be 1, -2.5, and -2.5, respectively. It should be

noted that we will not consider weights when constructing the neural network. They will be selected

during the training process.

The activation function will be a logical comparison of the weighted sum with zero. If the weighted sum

of input values is greater than zero, the candlestick pattern is found and the neuron is activated. The

output of the neuron is 1. If the weighted sum is less than zero, then the pattern is not found. The

neuron remains deactivated and the output of the neuron is 0.
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Now we have a neuron that will respond to the Pin Bar candlestick pattern. However, note that in a

bullish pattern, the nose will be the lower tail, and in a bearish one, it will be the upper tail. That is, if

we input a vector of values containing the upper tail, body, and lower tail of a candlestick, we need two

neurons to define the pattern: one will define a bullish pattern and the other a bearish pattern.

Does this mean we will need to create a program for each pattern separately? No. We will combine

them into a single neural network model.

In a neural network, all neurons are grouped into sequential layers. According to their location and

purpose, neural layers are categorized into input, hidden, and output layers. There is always one input

and one output layer, but the number of hidden layers can vary, depending on the complexity of the

task at hand.

The number of neurons in the input layer corresponds to the number of inputs, which is three in our

example: upper tail, body, and lower tail.

The hidden layer in our case consists of two neurons that define a bullish and a bearish pattern. The

number of hidden layers and neurons in them is set during the design of the neural network and is

determined by its architect depending on the complexity of the problem to be solved.

The number of hidden layers determines how the input data space is divided into subclasses. A neural

network with a single hidden layer divides the input data space by a hyperplane. The presence of two

hidden layers allows the formation of a convex region in the input data space. The third hidden layer

allows the formation of almost any region in space.

The number of neurons in the hidden layer is determined by the number of sought-after features at

each level.

The number of neurons in the output layer is determined by the neural network architect depending on

the possible solution variants for the given task. For binary and regression problems, a single neuron

may be sufficient. For classification tasks, the number of neurons will correspond to a finite number of

classes.

An exception is a binary classification, where all objects are divided into two classes. In this case, one

neuron is sufficient, since the probability of assigning an object to the second class P
2
 is equal to the

difference between one and the probability of assigning an object to the first class P
1
.

In our example, the output layer will contain only one neuron, which will give the result: whether to

open a trade or not, and in which direction. For this, we will assign a weight of 1 to the bullish pattern,

and a weight of -1 to the bearish pattern. As a result, the buy signal will be 1, while the sell signal will

be -1. Zero will mean there is no trading signal. 
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Perceptron model

Such a neural network model was proposed by Frank Rosenblatt in 1957 and was named Perceptron.

This model is one of the first artificial neural network models. It is capable of establishing associative

connections between input data and the resulting action. In real life, it can be compared to a person's

reaction to a traffic light signal.

Of course, the perceptron is not without flaws; there are a number of limitations in its use. However,

over the years of research, good results have been achieved in using the perceptron for classification

and approximation tasks. Moreover, mechanisms for training the perceptron have been developed,

which we will discuss shortly.

1.2 Activation functions

Perhaps one of the most challenging tasks faced by a neural network architect is the choice of the

neuron activation function. After all, it is the activation function that creates the nonlinearity in the

neural network. To a large extent, the neural network training process and the final result as a whole

depend on the choice of the activation function.

There is a whole range of activation functions, and each of them has its advantages and disadvantages.

I suggest that we review and discuss some of them in order to learn how to properly utilize their merits

and address or accept their shortcomings.

Threshold (Step) activation function

The step activation function was probably one of the first to be applied. This is not surprising, as it

mimics the action of a biological neuron:

· Only two states are possible (activated or not).
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· The neuron is activated when the threshold value θ is reached.

Mathematically, this activation function can be expressed by with the following formula:

If θ=0, the function has the following graph.

Threshold (step) activation function

This activation function is easy to understand, but its main drawback is the complexity or even the

impossibility of training the neural network. The fact is that neural network training algorithms use the

first-order derivative. However, the derivative of the function under consideration is always zero, except

for x=θ (it is not defined at this point).

It is quite easy to implement this function in the form of MQL5 program code. The theta constant

defines the level at which the neuron will be activated. When calling the activation function, we pass the

pre-calculated weighted sum of the initial data in the parameters. Inside the function, we compare the

value obtained in the parameters with theta activation level and return the activation value of the

neuron.

const double theta = 0;

//———

double ActStep(double x)

  {

   return (x >= theta ? 1 : 0);

  }

The Python implementation is also quite straightforward.

theta = 0

def ActStep (x):

  return 1 if x >= theta else 0

Linear activation function

The linear activation function is defined by a linear function:
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Where:

· a defines the angle of inclination of the line.

· b is the vertical displacement of the line.

As a special case of the linear activation function, if a=1 and b=0, the function has the form .

The function can generate values in the range from  to  and is differentiable. The derivative of

the function is constant and equal to a, which facilitates the process of training the neural network. The

mentioned properties allow for the widespread use of this activation function when solving regression

problems.

It should be noted that computing the weighted sum of neuron inputs is a linear function. The

application of a linear activation function gives a linear function of the entire neuron and neural

network. This property prevents the use of the linear activation function for solving nonlinear problems.

At the same time, by creating nonlinearity in the hidden layers of the neural network by using other

activation functions, we can use the linear activation function in the output layer neurons of our model.

Such a technique can be used to solve nonlinear regression problems.

Graph of a linear function

The implementation of the linear activation function in the MQL5 program code requires the creation of

two constants: a and b. Similarly to the implementation of the previous activation function, when

calling the function, we will pass the pre-calculated weighted sum of inputs in the parameters. Inside

the function, the implementation of the calculation part fits into one line.

const double a = 1.0;

const double b = 0.0;

//———

double ActLinear(double x)

  {

   return (a * x + b);

  }

In Python, the implementation is similar.
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a = 1.0

b = 0.0

def ActLinear (x):

  return a * x + b

Logistic activation function (Sigmoid)

The logistic activation function is probably the most common S-shaped function. The values of the

function range from 0 to 1, and they are asymmetrical relative to the point [0, 0.5]. The graph of the

function resembles a threshold function, but with a smooth transition between states.

The mathematical formula of the function is as follows:

This function allows the normalization of the output values of the function in the range [0, 1]. Due to

this property, the use of the logistic function introduces the concept of probability into the practice of

neural networks. This property is widely used in the output layer neurons when solving classification

problems, where the number of output layer neurons equals the number of classes, and an object is

assigned to a particular class based on the highest probability (maximum value of the output neuron).

The function is differentiable over the entire interval of permitted values. The value of the derivative can

be easily calculated through the function value using the formula:

Graph of the logistic function (Sigmoid)

Sometimes a slightly modified logistic function can be used in neural networks:

Where:
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· a stretches the range of function values from 0 to a.

· b, similarly to a linear function, shifts the resulting value.

The derivative of such a function is also calculated through the value of the function using the formula:

 

In practice, the most common applications are , so that the graph of the function is asymmetric

with respect to the origin. 

All of the above properties add to the popularity to using the logistic function as a neuron activation

function.

However, this function also has its flaws. For input values less than −6 and greater than 6, the function

value is pressed to the limits of the range of function values, and the derivative tends to zero. As a

consequence, the error gradient also tends to zero. This leads to a decrease in the training rate of the

neural network, and sometimes even makes the network nearly untrainable.

Below I propose to consider the implementation of the most general version of the logistic function with

two constants a and b. Let's calculate the exponent using exp().

const double a = 1.0;

const double b = 0.0;

//———

double ActSigmoid(double x)

  {

   return (a / (1 + exp(-x)) - b);

  }

When implementing in Python, before using the exponent function, you must import the math library,

which contains the basic math functions. The rest of the algorithm and the function implementation are

similar to the implementation in MQL5.

import math

a = 1.0

b = 0.0

def ActSigmoid (x):

  return a / (1 + math.exp(-x)) - b

Hyperbolic tangent (tanh)

An alternative to the logistic activation function is the hyperbolic tangent (Tanh). Just like the logistic

function, it has an S-shaped graph, and the function values are normalized. But they belong to the

range from −1 to 1, and the the neuron state is changed out 2 times faster. The graph of the function

is also asymmetric, but unlike the logistic function, the center of asymmetry is at the center of

coordinates.

The function is differentiable on the entire interval of permitted values. The derivative value can be

easily calculated through the function value using the formula:
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The hyperbolic tangent function is an alternative to the logistic function, which quite often converges

faster.

Graph of the hyperbolic tangent function (TANH)  

But it also has the main drawback of the logistic function: during saturation of the function, when the

function values approach the boundaries of the value range, the derivative of the function approaches

zero. As a result, the gradient of the error tends to zero.

The hyperbolic tangent function is already implemented in the programming languages we use, and it

can be called by simply calling the tanh() function.

double ActTanh(double x)

  {

   return tanh(x);

  }

The implementation in Python is similar.

import math

def ActTanh (x):

  return math.tanh(x)

Rectified line unit (ReLU)

Another widely used activation function for neurons is ReLU (rectified linear unit). When the input values

are greater than zero, the function returns the same value, similar to a linear activation function. For

values less than or equal to zero, the function always returns 0. Mathematically, this function is

expressed by the following formula:

The graph of the function is something between a threshold function and a linear function.
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Graph of the ReLU function  

ReLU, probably, is one of the most common activation functions at the moment. It has become so

popular due to its properties:

· Like the threshold function, it operates based on the principle of a biological neuron, activating only

after reaching a threshold value (0). Unlike the threshold function, when activated, the neuron

returns a variable value rather than a constant.

· The range of values is from 0 to , which allows us to use the function in solving regression

problems.

· When the function value is greater than zero, its derivative is equal to one.

· The function calculation does not require complex computations, which accelerates the training

process.

The literature provides examples where neural networks with ReLU are trained up to 6 times faster than

networks using TANH.

However, the use of ReLU also has its drawbacks. When the weighted sum of the inputs is less than

zero, the derivative of the function is zero. In such a case, the neuron is not trained and does not

transmit the error gradient to the preceding layers of the neural network. In the process of training

there is a probability to get such a set of weights that the neuron will be deactivated during the whole

training cycle. This effect has been called "dead neurons".

Subjectively, the presence of dead neurons can be detected by observing the increase in the learning

rate: the more the learning rate accelerates with each iteration, the more dead neurons the network

contains.

Several variations of this function have been proposed to minimize the effect of dead neurons when

using ReLU, but they all boil down to one thing: applying a certain coefficient a for a weighted sum less

than zero.

LReLU Leaky ReLU a = 0.01
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PReLU Parametric ReLU

The parameter a is selected in

the process of training the

neural network

RReLU Randomized ReLU

The parameter a is set

randomly when the neural

network is created

The classical version of ReLU is conveniently realized using the max() function. Implementing its

variations will require the creation of a constant or variable a. The initialization approach will depend on

the chosen function (LReLU / PReLU / RReLU). Inside our activation function, we will create logical

branching, depending on the value of the received parameter.

const double a = 0.01;

//———

double ActPReLU(double x)

  {

   return (x >= 0 ? x : a * x);

  }

In Python, the implementation is similar.

a = 0.01

def ActPReLU (x):

  return x if x >= 0 else a * x

Softmax

While the previously mentioned functions were calculated solely for individual neurons, the Softmax

function is applied to all neurons of a specific layer in a network, typically the last layer. Similar to

sigmoid, this function uses the concept of probability in neural networks. The range of values of the

function lies between 0 and 1, and the sum of all output values of neurons of the taken layer is equal to

1.

The mathematical formula of the function is as follows:

The function is differentiable over the entire interval of values, and its derivative can be easily

calculated through the value of the function:

The function is widely used in the last layer of the neural network in classification tasks. The output

value of the neuron normalized by the Softmax function is said to indicate the probability of assigning

the object to the corresponding class of the classifier.

It is worth noting that Softmax is computationally intensive, which is why its application is justified in

the last layer of neural networks used for multi-class classification.
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The implementation of the Softmax function in MQL5 will be slightly more complicated than the

examples discussed above. This is due to the processing of the neurons of the entire layer.

Consequently, the function will receive a whole array of data in its parameters rather than a single

value.

It should be noted that arrays in MQL5, unlike variables, are passed to function parameters by pointers

to memory elements rather than by values.

Our function will take pointers to two data arrays X and Y as parameters and return a logical result at

the end of the operations. The actual results of the operations will be in the array Y. 

In the function body, we first check the size of the source data array X. The resulting array must be of

non-zero length. We then resize the array to record the Y results. If any of the operations fails, we exit

the function with the result false.

bool SoftMax(double& X[], double& Y[])

  {

   uint total = X.Size();

   if(total == 0)

      return false;

   if(ArrayResize(Y, total) <= 0)

      return false;

Next, we organize two loops. In the first one, we calculate exponents for each element of the obtained

data set and summarize the obtained values.

//--- Calculation of exponent for each element of the array

   double sum = 0;

   for(uint i = 0; i < total; i++)

      sum += Y[i] = exp(X[i]);

In the second loop, we normalize the values of the array created in the first loop. Before exiting the

function, we return the obtained values.

//--- Normalization of data in an array

   for(uint i = 0; i < total; i++)

      Y[i] /= sum;

//---

   return true;

  }

In Python, the implementation looks much simpler since the Softmax function is already implemented in

the Scipy library.

from scipy.special import softmax

def ActSoftMax (X):

  return softmax(X)

Swish

In October 2017, a team of researchers from Google Brain worked on the automatic search for

activation features. They presented the results in the article "Searching for Activation Functions". The

article summarizes the results of testing a range of features against ReLU. The best performance was

achieved in neural networks with the Swish activation feature. The replacing of ReLU with Swish

(without retraining) improved the performance of the neural networks.

https://arxiv.org/abs/1710.05941
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Graph of the Swish function

The mathematical formula of the function is as follows:

The parameter β affects the nonlinearity of the function and can be taken as a constant during network

design, or can be selected during training. When β=0, the function reduces to a linearly scaled function.

When β=1, the graph of the Swish function approaches ReLU. But unlike the latter, the function is

differentiable over the entire range of values. 

A function is differentiable and its derivative is calculated through the value of the function. But unlike

the sigmoid, it also requires an input value to calculate the derivative. The mathematical formula for

the derivative is of the form:

The implementation of the function in the MQL5 program code is similar to the Sigmoid presented

above. The parameter a is replaced by the obtained value of the weighted sum and the nonlinearity

parameter β is added.  

const double b=1.0;

//———

double ActSwish(double x)

  {

   return (x / (1 + exp(-b * x)));

  }

The implementation in Python is similar.
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import math

b=1.0

def ActSwish (x):

  return x / (1 + math.exp(-b * x))

It is worth noting that this is by no means a complete list of possible activation functions. There are

different variations to the functions mentioned above, as well as different functions can be utilized

altogether. Activation functions and threshold values should be selected by the architect of the neural

network. It is not always the case that all neurons in a network have the same activation function.

Neural networks in which the activation function varies from layer to layer are widely used in practice.

Such networks are called heterogeneous networks.

Later we will see that, for implementing neural networks, it is much more convenient to utilize vector

and matrix operations, which are provided in MQL5. This in particular concerns activation functions,

because matrix and vector operations provide the Activation function which calculate activation

functions for the whole data array with one line of code. In our case, the function would be calculated

for the entire neural layer. The implementation of the function is as follows.

bool vector::Activation(

  vector&                   vect_out,      // vector to get values

  ENUM_ACTIVATION_FUNCTION  activation     // function type

   );

 

 

bool matrix::Activation(

  matrix&                   matrix_out,    // matrix to get values

  ENUM_ACTIVATION_FUNCTION  activation     // function type

   );

In its parameters, the function receives a pointer to a vector or matrix (depending on the data source)

for storing results, along with the type of activation function used. It should be noted that the range of

activation functions in MQL5 vector/matrix operations is much wider than described above. Their

complete list is given in the table.

Identifier Description

AF_ELU Exponential linear unit

AF_EXP Exponential

AF_GELU Linear unit of Gauss error

AF_HARD_SIGMOID Rigid sigmoid

AF_LINEAR Linear

AF_LRELU Leaky linear rectifier (Leaky ReLU)

AF_RELU Truncated linear transformation ReLU

AF_SELU Scaled exponential linear function (Scaled ELU)

AF_SIGMOID Sigmoid

AF_SOFTMAX Softmax
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Identifier Description

AF_SOFTPLUS Softplus

AF_SOFTSIGN Softsign

AF_SWISH Swish function

AF_TANH Hyperbolic tangent

AF_TRELU Linear rectifier with threshold

1.3 Weight initialization methods in neural networks

When creating a neural network, before its first training run, we need to somehow set the initial weight.

This seemingly simple task is of great importance for the subsequent training of the neural network

and, in general, has a significant impact on the result of the entire work.

The fact is that the gradient descent method, which is most often used for training neural networks,

cannot distinguish the local minima of a function from its global minimum. In practice, various solutions

are applied to minimize this problem, and we will talk about them a bit later. However, the question

remains open.

The second point is that the gradient descent method is an iterative process. Therefore, the total

training time for a neural network directly depends on how far from the endpoint we are at the

beginning.

Moreover, let's not forget about the laws of mathematics and the peculiarities of the activation

functions that we discussed in the previous section of this book.

Initializing weights with a single value

Probably the first thing that comes to mind is to take a certain constant (0 or 1) and initialize all

weights with a single value. Unfortunately, this is far from the best option, which is related to the laws

of mathematics. 

Using zero as a synaptic coefficient is often fatal to neural networks. In this case, the weighted sum of

the input data would be zero. As we know from the previous section, many versions of the activation

function in such a case return 0, and the neuron remains deactivated. Consequently, no signal goes

further down the neural network.

 

The derivative of such a function with respect to x 
i
 will be zero. Consequently, during the training of the

neural network, the error gradient through such a neuron will also not be passed to the preceding

layers, paralyzing the training process.
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Using 0 for the initialization of synaptic (weight) coefficients results in an untrainable neural

network, which in most cases will generate 0 (depending on the activation function) regardless of

the input data received. 

Using a constant other than zero as a weighting factor also has disadvantages. The input layer of the

neural network is supplied with a set of initial data. All neurons of the subsequent layer work with this

dataset in the same way. Within the framework of a single neuron, according to the laws of

mathematics, the constant can be factored out in the formula for calculating the weighted sum. As a

result, in the first stage, we get a scaling of the sum of the initial values. Changes in weights are

possible during training. However, this only applies to the first layer of neurons receiving the initial data.

If you look at the neural layer as a whole. Then all neurons in the same layer receive the same dataset.

By using the same coefficient, all neurons generate the same signal. As a consequence, all neurons of

one layer work synchronously as one neuron. This, in turn, leads to the same value being present at all

inputs of all neurons of the subsequent layer. This happens from layer to layer throughout the neural

network.

The applied learning algorithms do not allow the isolation of an individual neuron among a large number

of identical values. Therefore, all weights will be changed synchronously during the training process.

Each layer, except for the first one after the input, will receive its weights, uniform for the entire layer.

This results in the linear scaling of the results obtained on the same neuron.

Initializing the synaptic coefficients with a single number other than zero causes the neural network

to degenerate down to one neuron.

Initializing weights with random values

Since we cannot initialize a neural network with a single number, let’s try initializing with random

values. For maximum efficiency, let's not forget about what was mentioned above. We need to make

sure that no two synaptic coefficients are the same. This will be facilitated by a continuous uniform

distribution.

As practice has shown, such an approach yields results. Unfortunately, this is not always the case. Due

to the random selection of weights, it is sometimes necessary to initialize the neural network several

times before the desired result is achieved. The range of variation in the weights has a significant

impact. If the gap between the minimum and maximum is large enough, some neurons will be isolated

and others completely ignored.

Moreover, in deep neural networks, there is a risk of the so-called "gradient explosion" and "gradient

vanishing".

The gradient explosion manifests itself when using weights greater than one. In this case, when the

initial data is multiplied by factors greater than one, the weighted sum increases continuously and

exponentially with each layer. At the same time, generating a large number at the output often leads to

a large error.

During the training process, we will use an error gradient to adjust the weights. In order to pass the

error gradient from the output layer to each neuron of our network, we need to multiply the obtained

error by the weights. As a result, the error gradient, just like the weighted sum, will grow exponentially

as it progresses through the layers of the neural network.
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As a consequence, at some point, we will get a number that exceeds our technical capabilities for

recording values, and we won't be able to further train and use the network.

The opposite situation occurs if we choose weight values close to zero. Constantly multiplying the initial

data by weights less than one reduces the weighted sum of weight values. This process progresses

exponentially with the increase in the number of layers of the neural network.

As a consequence, during the training process, we may encounter a situation where the gradient of a

small error, when passing through layers, becomes smaller than the technically feasible precision. For

our neurons, the error gradient will become zero, and they will not learn.

At the time of writing the book, the common practice is to initialize neurons using the Xavier method,

proposed in 2010. Xavier Glorot and Yoshua Bengio proposed initializing the neural network with

random numbers from a continuous normal distribution centered at point 0 and with a variance (δ2)

equal to 1/n.

This approach enables the generating of synaptic coefficients such that the average of the neuron

activations will be zero, and their variance will be the same for all layers of the neural network. Xavier

initialization is most relevant when using hyperbolic tangent (tanh) as an activation function.

The theoretical justification for this approach was given in the article "Understanding the difficulty of

training deep feedforward neural networks".

Xavier initialization gives good results when using sigmoid activation functions. But when ReLU is used

as an activation function, it is not as efficient. This is due to the characteristics of the ReLU itself.

Since ReLU only misses positive weighted sum values, and negative ones are zeroed, the probability

theory states that half the neurons will be deactivated most of the time. Consequently, the neurons of

the subsequent layer will receive only half of the information, and the weighted sum of their inputs will

be less. As the number of layers in the neural network increases, this effect will intensify: fewer and

fewer neurons will reach the threshold value, and more and more information will be lost as it passes

through the neural network.

A solution was proposed by Kaiming He in February 2015 in the article "Surpassing Human-Level

Performance on ImageNet Classification". In the article, it's suggested to initialize the weights for

neurons with ReLU activation from a continuous normal distribution with a variance (δ2) equal to 2/n.

And when using PReLU as activation, the distribution variance should be 2/((1+a2) *n). This method of

initializing synaptic scales is called “He-initialization”.

Initializing with a random orthogonal matrix

In December 2013, Andrew M. Saxe presented a three-layer neural network in the form of matrix

multiplication in the article "Exact solutions to the nonlinear dynamics of learning in deep linear neural

networks", thereby showing the correspondence between the neural network and singular

decomposition. The synaptic weight matrix of the first layer is represented by an orthogonal matrix, the

vectors of which are the coordinates of the initial data in some n-dimensional space.

Since the vectors of an orthogonal matrix are orthonormalized, the initial data projections they

generate are completely independent. This approach allows for the neural network to be pre-prepared

in such a way that each neuron will learn to recognize its feature in the input data independently of the

training of other neurons located in the same layer.

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi
https://arxiv.org/pdf/1502.01852.pdf Delving Deep into Rectifiers:
https://arxiv.org/pdf/1502.01852.pdf Delving Deep into Rectifiers:
https://arxiv.org/pdf/1312.6120v3.pdf
https://arxiv.org/pdf/1312.6120v3.pdf
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However, the method is not used widely, primarily due to the complexity of generating orthogonal

matrices. The advantages of the method are demonstrated with the growth of the number of layers of

the neural network. Therefore, in practice, initialization with orthogonal matrices can be found in deep

neural networks when initialization with random values does not yield results.

Using pre-trained neural networks

This method can hardly be referred to as initialization, but its practical application is becoming

increasingly popular. The essence of the method is as follows: to solve the problem, use a neural

network that was trained on the same or similar data but solves different tasks. A series of lower layers

are taken from a pre-trained neural network. These layers have already been trained to extract

features from the initial data. Then, a few new layers of neurons are added, which will solve the given

task based on the already extracted features.

In the first step, pre-trained layers are blocked and new layers are trained. If the training fails to

produce the desired result, the learning block is removed from the borrowed neural layers and the

neural network is retrained.

A variation of this method is the approach of first creating a multilayer neural network and training it to

extract different features from the initial data. These can be unsupervised learning algorithms for

dividing data into classes or autoencoder algorithms. In the latter, the neural network first extracts

features from the initial data and then tries to return the original data based on the selected features.

After pre-training, the layers of neurons responsible for feature extraction are taken, and additional

layers of neurons for solving the given task are added to them.

When constructing deep networks, this approach can help train the neural network faster compared to

training a large neural network directly. This is because, during one training pass, a smaller neural

network requires fewer operations to be performed compared to training a deep neural network. In

addition, smaller neural networks are less prone to the risk of gradient explosion or vanishing.

In the practical part of the book, we will return to the process of initializing neural networks and in

practice evaluate the advantages and disadvantages of each method. 

1.4 Neural network training

We have already learned about the structure of an artificial neuron, the organization of data exchange

between neurons, and the principles of neural network construction. We also learned how to initialize

synaptic coefficients. The next step is to train the neural network.

Tom Mitchell proposed the following definition of machine learning:

"A computer program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks T, as measured by P, improves with experience

E."

Usually, three main approaches to neural network training are distinguished:

· Supervised learning

· Unsupervised learning

· Reinforcement learning

Algorithms of supervised learning in practice produce the best results, but they require a lot of

preparatory work. The very principle of supervised learning implies that there are correct answers. As a
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supervisor, at each iteration of learning, we will guide the neural network by showing it the correct

results, thereby encouraging the neural network to memorize what is true and what is false.

In this approach, correlation links between the raw data and the correct answers are set up within the

neural network. Ideally, a neural network should learn to extract essential features from the set of

initial data. By generalizing the set of extracted features, it should determine the object's affiliation to a

particular class (classification tasks) or indicate the most probable course of events (regression tasks).

The complexity of this approach lies in the need for extensive preparatory work. This approach requires

mapping the correct answers to each set of initial data from the training sample. It is not always

possible to automate this work, and human resources have to be involved. At the same time, using

manpower to prepare the training set and correct answers increases the risk of errors in the sample

and, as a result, improper configuration of the neural network.

Another risk of this approach is the overfitting of the neural network. This phenomenon usually occurs

when training deep networks on a small set of input data. In such a case, the neural network is able to

"memorize" all pairs of initial data sets with correct answers. In doing so, it will lose any ability to

generalize the data. As a result, we will get a neural network with excellent results on the training data

set and completely random answers on the test sample and when using it on real data.

The risk of neural network overfitting can be reduced by using various regularization, normalization, and

dropout methods which we will discuss later.

Also, note that we can encounter a task where there is no clear correct answer for the presented data

sets. In such cases, other approaches to training neural networks are used. 

Unsupervised learning is used when there are no correct answers for the training sample. Unsupervised

learning algorithms allow for the extraction of individual features of the original data objects. Comparing

the extracted features, the algorithms cluster the original data, grouping the most similar objects into

certain classes. The number of such classes is specified in the hyperparameters of the neural network.

Cost saving during the preparation stage comes at the expense of object recognition quality and a more

limited range of solvable tasks.

With the growth of the volume of initial data for training, unsupervised learning algorithms are widely

used for the preliminary training of neural networks Initially, a neural network is created and trained

unsupervised on a large dataset. This allows us to train the neural network to extract individual features

from the initial data set and to partition a large amount of data into separate classes of objects.

Then, decision-making neural layers (most often fully connected perceptron neural layers) are added to

the pre-trained network, and the neural network is further trained using supervised learning algorithms.

This approach allows training the neural network on a large volume of initial data, which helps minimize

the risk of overfitting the neural network. At the same time, since training on the primary dataset

occurs unsupervised, we can further train the deep neural network on a relatively small set of paired

original data with correct answers. This reduces the resources required for preparatory work during

supervised training.

A separate approach to neural network training can be called reinforcement learning. This approach is

used to solve optimization problems that require constructing a strategy. The best results are

demonstrated when training neural networks with computer and logic games, for which this method was

developed. It is applicable for long finite processes, when throughout the process the neural network

needs to make a series of decisions based on the state of the environment, and the cumulative result of

the decisions taken will only be clear at the end of the process. For example, winning or losing a game.
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The essence of the method is to assign some sort of reward or penalty for each action. During the

training process, the strategy with the maximum reward is determined.

In this book, more attention will be given to supervised learning, which in practice shows the best

training results and is applicable for solving regression tasks, including time series forecasting.

1.4.1 Loss functions

When starting training, it is necessary to choose methods for determining the quality of network

training. Training a neural network is an iterative process. At each iteration, we need to determine how

accurate the neural network calculations are. In the case of supervised learning, it refers to how much

they differ from the reference. By knowing the deviation only can we understand how much and which

way we need to adjust the synaptic coefficients.

Therefore, we need a certain metric that will impartially and mathematically accurately indicate the

error of the neural network's performance.

At first glance, it is quite a trivial task to compare two numbers (the calculated value of the neural

network and the target). But as a rule, at the output of a neural network, we get not one value, but an

entire vector. To solve this problem, let’s turn to mathematical statistics. Let us introduce a loss

function that depends on the calculated value (y') and the reference value (y).

This function should determine the deviation of the calculated value from the reference value (error). If

we consider the computed and target values as points in space, then the error can be seen as the

distance between these points. Therefore, the loss function should be continuous and non-negative for

all permitted values.

In an ideal state the calculated and reference values are the same, and the distance between the

points is zero. Therefore, the function must be convex downwards with a minimum at L(y,y')=0.

The book "Robust and Non-Robust Models in Statistics " by L.B.Klebanov describes four properties that

a loss function should have:

· Completeness of information

· The absence of a randomization condition

· Symmetry condition

· Rao-Blackwell state (statistical estimates of parameters can be improved)

The book presents quite a few mathematical theorems and their proofs. It demonstrates the

relationship between the choice of loss function and a statistical estimate. As a consequence, certain

statistical issues can be resolved through the proper choice of the loss function.

Mean Absolute Error (MAE)

One of the earliest loss functions, the Mean Absolute Error (MAE), was introduced by the 18th-century

French mathematician Pierre-Simon Laplace. He proposed using the absolute difference between the

reference and computed values as a measure of deviation.

https://www.researchgate.net/publication/286926757_Robust_and_Non-Robust_Models_in_Statistics


1. Basic principles of artificial intelligence construction

29

1.4 Neural network training

The function has a graph that is symmetric about zero, and linear before and after zero.

Graph of the Mean Absolute Deviation function

The use of Mean Absolute Error provides a linear approximation of the analytical function to the training

dataset across the entire range of error.

Let's look at the implementation of this function in MQL5 program code. To calculate deviations, the

function must receive two data vectors: calculated and reference values. This data will be passed as

parameters to the function.

At the beginning of the method, we compare the size of the resulting arrays. Ideally, array sizes should

be at least zero. If the check fails, we exit the function with a result of the maximum possible error,

DBL_ MAX.

double MAE(double &calculated[], double &target[])

  {

   double result = DBL_MAX;

//---

   if(calculated.Sizel() < target.Sizel() || target.Sizel() <= 0)

      return result;

After successfully passing the checks, we create a loop to accumulate the absolute values of

deviations. In conclusion, we divide the accumulated sum by the number of reference values.
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//---

   result = 0;

   int total = target.Size();

   for(int i = 0; i < total; i++)

      result += MathAbs(calculated[i] - target[i]);

   result /= total;

//---

   return result;

  }

Mean Squared Error (MSE)

The 19th-century German mathematician Carl Friedrich Gauss proposed using the square of the

deviation instead of the absolute value in the formula for mean absolute deviation. The function is called

the standard deviation.

Thanks to squaring the deviation, the error function takes the form of a parabola. 

Graph of the mean squared deviation function

When using mean squared deviation, the speed of error compensation is higher when the error itself is

larger. When the error decreases, the speed of its compensation also decreases. In the case of neural

networks, this allows for faster convergence of the neural network with large errors and finer tuning

with small errors.

But there is a flip side to the coin: the property mentioned above makes the function sensitive to noisy

phenomena, as rare, large deviations can lead to a bias in the function. 

Currently, the use of mean squared error as a loss function is widely employed in solving regression

problems.
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The algorithm for implementing MSE in MQL5 is similar to implementing MAE. The only difference is in

the body of the loop, where the sum of the squares of the deviations is calculated instead of their

absolute values.

double MSE(double &calculated[], double &target[])

  {

   double result = DBL_MAX;

//---

   if(calculated.Size() < target.Size() || target.Size() <= 0)

      return result;

//---

   result = 0;

   int total = target.Size();

   for(int i = 0; i < total; i++)

      result += MathPow(calculated[i] - target[i], 2);

   result /= total;

//---

   return result;

  }

Cross-entropy

For solving classification tasks, the cross-entropy function is most commonly used as the loss function.

Entropy is a measure of uncertainty in distribution.

Applying entropy shifts calculations from the realm of absolute values into the realm of probabilities.

Cross-entropy defines the similarity of probabilities of events occurring in two distributions and is

calculated using the formula:

where:

· p(y
i
) = the probability of the ith event occurring in the reference distribution

· p(y
i
') = the probability of the ith event occurring in the calculated distribution

Since we are examining probabilities of events occurring, the probability values of an event always lie

within the range of 0 to 1. The value of the logarithm in this range is negative, so adding a minus sign

before the function shifts its value into the positive range and makes the function strictly decreasing.

For clarity, the logarithmic function graph is shown below.

During training, for events in the reference distribution, when an event occurs, its probability is equal to

one. The probability of a missing event occurring is zero. Based on the graph of the function, the event

that occurred in the reference distribution but was not predicted by the analytical function will

generate the highest error. Thus, we will stimulate the neural network to predict expected events.

It is the application of the probabilistic model that makes this function most attractive for classification

purposes.
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Graph of the logarithmic function

An implementation of this feature is presented below. The implementation algorithm is similar to the

previous two functions.

double LogLoss(double &calculated[], double &target[])

  {

   double result = DBL_MAX;

//---

   if(calculated.Size() < target.Size() || target.Size() <= 0)

      return result;

//---

   result = 0;

   int total = target.Size();

   for(int i = 0; i < total; i++)

      result -= target[i] * MathLog(calculated[i]);

//---

   return result;

  }

Only three of the most commonly used loss functions are described above. But in fact, their number is

much higher. And here, as in the case of activation functions, we will be assisted by vector and matrix

operations implemented in MQL5, among which the Loss function is implemented. This function allows to

compute the loss function between two vectors/matrices of the same size in just one line of code. The

function is called for a vector or matrix of calculated values. The parameters of the function include a

vector/matrix of reference values and the type of loss function.
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double vector::Loss(

  const vector&       vect_true,    // true value vector

  ENUM_LOSS_FUNCTION  loss          // loss function type

   );

double matrix::Loss(

  const matrix&       matrix_true,  // true value matrix

  ENUM_LOSS_FUNCTION  loss          // loss function type

   );

MetaQuotes provides 14 readily implemented loss functions. These are listed in the table below.

Identifier Description

LOSS_MSE Mean squared error

LOSS_MAE Average absolute error

LOSS_CCE Categorical cross-entropy

LOSS_BCE Binary cross-entropy

LOSS_MAPE Average absolute error in percentages

LOSS_MSLE Mean-squared logarithmic error

LOSS_KLD Kulback-Leibler divergence

LOSS_COSINE Cosine similarity/proximity

LOSS_POISSON Poisson loss function

LOSS_HINGE Hinge loss function

LOSS_SQ_HINGE Quadratic piecewise linear loss function

LOSS_CAT_HINGE Categorical piecewise linear loss function

LOSS_LOG_COSH The logarithm of the hyperbolic cosine

LOSS_HUBER Huber loss function

1.4.2 Error gradient backpropagation method

Once we have defined the loss function, we can move on to training the neural network. The actual

learning process involves iteratively adjusting the neural network parameters (synaptic weights) at

which the value of the neural network loss function will be minimized.

From the previous section, we learned that the loss function is concave downward. Therefore, when

starting the training from any point on the loss function graph, we should move in the direction of

minimizing the error. For complex functions like a neural network, the most convenient method is the

gradient descent algorithm.
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The gradient of a multi-variable function (which a neural network is) is defined as a vector composed of

the partial derivatives of the function with respect to its arguments. From our mathematics course, we

know that the derivative of a function characterizes the rate of change of the function at a given point.

Hence, the gradient indicates the direction of the fastest growth of the function. Moving in the direction

of the negative gradient (opposite to the gradient), we will descend at the maximum speed towards the

minimum of the function.

The algorithm of action will be as follows:

1. Initialize the weights of the neural network using one of the ways described earlier.

2. Compute the predicted data on the training sample.

3. Using the loss function, calculate the computational error of the neural network.

4. Determine the gradient of the loss function at the obtained point.

5. Adjust the synaptic coefficients of the neural network towards the negative gradient.

Gradient descent

Since a nonlinear loss function is used often, the direction of the anti-gradient vector will change at

each point on the loss function graph. Therefore, we will reduce the loss function gradually, getting

closer and closer to the minimum with each iteration.

At first glance, the algorithm is quite simple and logical. But how do we technically implement point 5 of

our algorithm in the case of a multilayer neural network?

This issue is addressed using the backpropagation algorithm, which consists of two main components:

1. Forward pass. Point 2 from our algorithm above. During the forward pass, a set of data from the

training sample is fed to the input of the neural network and processed in the neural network

sequentially from the input layer to the output layer. The intermediate values on each neuron are

preserved.
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Forward pass of the neural network

2. The backward pass includes steps 3-5 of our algorithm.

At this point, it's worth recalling some mathematics. We talk about partial derivatives of a function, but

we also want to train a neural network that consists of a large number of neurons. At the same time,

each neuron represents a complex function, and to update the weights of the neural network, we need

to calculate the partial derivatives of the composite function of our neural network with respect to each

weight.

According to the rules of mathematics, the derivative of a composite function is equal to the product of

the derivative of the outer function and the derivative of the inner function.

Let us use this rule and find the partial derivatives of the loss function L by the weight of the output

neuron w
i
 and by the ith input value x

i
.

Where:

· L = loss function

· A = activation function of the neuron
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· S = weighted sum of the raw data

· X = vector of initial data

· W = vector of weights

· w
i
 = ith weighting factor for which the derivative is calculated

· x
i
 = ith element of the initial data vector

The first thing to notice in the formulas presented above is the complete coincidence of the first two

multipliers. I.e., when calculating partial derivatives on weights and initial data, we only need to

calculate the error gradient in front of the activation function once, and using this value, calculate

partial derivatives for all elements of the vectors of weights and initial data.

Using a similar method, we can determine the partial derivative with respect to the weight of one of the

neurons in the hidden layer that precedes the output neuron layer. For this purpose, in the previous

formula we replace the vector of initial data with the function of the hidden layer neuron. The vector of

weights will be transformed into a scalar value of the corresponding weight. 

Where:

· A
h
 = activation function of the hidden layer neuron

· S
h
 = weighted sum of the original data of the hidden layer neuron

· X
h
 = vector of initial data for the hidden layer neuron

· W
h
 = vector of weights of the hidden layer neuron

· w
h
 = weight of the hidden layer for which the derivative is calculated

Note that if in the last formula, we return X instead of the function of the hidden layer neuron, we see

in the first function multipliers the function of the private derivative of the ith input value presented

above.

Hence,

Similar formulas can be provided for each neuron in our network. Thus, we can calculate the derivative

and error gradient of the neuron output once, and then propagate the error gradient to all the

connected neurons in the previous layer.

Following this logic, we first determine the deviations from the reference value using the loss function.

The loss function can be anything that satisfies the requirements described in the previous section.

,
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Where:

· Y = vector of reference values

· Y' = vector of values at the output of the neural network

Next, we determine how the states of the neurons in the output layer should change in order for our

loss function to reach its minimum value. From a mathematical perspective, we determine the error

gradient on each neuron in the output layer by calculating the partial derivative of the loss function with

respect to each parameter.

We then "descend" the error gradient from the output neural layer to the input layer by running it

sequentially through all the hidden neural layers of our network. In this way, we are effectively bringing

the reference value to each neuron at this stage of training.

Where:

·  grad
i
j—1 = gradient at the output of the ith neuron of the j —1 layer

· A
kj
 = the activation function of the kth neuron on the j th layer

· S
kj
 = weighted sum of incoming data of the kth neuron on the j th layer

· W
kj
 = vector of synaptic coefficients of the kth neuron on the j th layer

After obtaining the error gradients at the output of each neuron, we can proceed to adjust the synaptic

coefficients of the neurons. For this purpose, we will go through all layers of the neural network one

more time. At each layer, we will search all neurons and for each neuron, we will update all synaptic

connections.
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Backward pass of the neural network

We will talk about ways to update the weights in the next chapter.

After updating the weights, we return to step 2 of our algorithm. The cycle is repeated until the

minimum of the function is found. Determining the achievement of the minimum can be done by

observing zero partial derivatives. In general, it will be noticeable by the absence of change of the error

at the output of the neural network after the next cycle of updating the weights, because at zero

derivatives the process of training of the neural network stops.

1.4.3 Methods for optimizing neural networks

We continue to move forward in studying the basic principles of neural network training. In previous

chapters, we have already discussed various loss functions and the error gradient backpropagation

algorithm, which allows us to determine the influence of each neuron on the overall result and the

direction of change in the output value of each neuron to minimize the overall error at the output.

Below is the formula of the mathematical model of a neuron.

Where:

· f = activation function

· n = number of elements in the input sequence

· w
i
 = weight of the ith element of the sequence

· x
i
 = ith element of the input sequence
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Gradient descent and stochastic gradient descent

In the above formula, you can see that the output value of the neuron depends on the activation

function, the input sequence, and the weight vector. The activation formula is set during the

construction of the neural network and remains unchanged. The neuron does not affect the input

sequence. Therefore, in the learning process, we can change the value at the output of the neuron only

by choosing the optimal values of the weights.

The rate of change of the neuron's output value when changing a particular weight is equal to the

partial derivative of the neuron's mathematical model function with respect to that weight. From this,

to get the delta change of a particular weight, you need to multiply the error at the neuron's output in

the current situation by the partial derivative of the neuron's mathematical model with respect to that

weight.

It should be noted that the function of the mathematical model of a neuron most often is non-linear.

Therefore, the partial derivative is not constant over the entire permitted range of values. Therefore,

the "learning coefficient" parameter is introduced into the formula for updating the weights, which

determines the learning rate.

The approach described above is called gradient descent. In general, it can be expressed by the

formula:

where:

· wj
il
 = lth weight on the ith neuron of the j th layer

· α = learning coefficient that determines the learning rate

· grad
i
j  = gradient at the output of the ith neuron of the j th layer

The training coefficient α is a hyperparameter that is selected during the neural network validation

process. It is selected from the range 0 to 1. In this case, the training coefficient cannot be equal to

the extreme values.

When α=0, there will be no learning, because by multiplying any gradient by zero, we always get zero

for updating the weights.

When α=1 or close to this value, there is another problem. If, when moving towards the error minimum,

the value of the partial derivative decreases, then using a sufficiently large step will throw us past the

minimum point. In the worst case, the error at the output of the neural network will even increase.

Moreover, a large learning coefficient promotes maximum adaptation of the network to the current

situation. In this case, the ability to generalize is lost. Such training will not be able to identify key

features and adequately work "in the field."

The method works well with small neural networks and datasets. But neural networks are getting

bigger, and training sets are growing. To make one training iteration, you need to perform a forward

pass through the entire dataset and save information about the state of all neurons for all samples as

this information will be needed for the backward pass. Consequently, we will need additional memory

allocation in the amount of the number of neurons * the number of data sets.
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The solution was found in the use of stochastic gradient descent. The method retains the algorithm of

standard gradient descent, but the weights are updated for each randomly selected data set.

On each iteration, we randomly select one data set from the training sample. Then we perform a

forward and backward pass and update the weights. After that, we "shuffle" the training sample and

select the next data set randomly.

We repeat the iterations until we achieve an acceptable error in the neural network output.

Stochastic gradient descent has lower convergence compared to standard gradient descent.

Furthermore, more iterations are usually required to achieve an acceptable error. But in stochastic

gradient descent, a single iteration takes less time, since it is carried out on a randomly chosen data

set, rather than on the entire sample, as in standard gradient descent. In general, the process of

training a neural network is carried out with less time and resource costs.

Below is an example of implementing a function to update weights using the gradient descent method.

In parameters, the function receives two pointers to data arrays (current weights and gradients to

them) and a training coefficient. First, we check the correspondence of the sizes of the arrays. Then,

we organize a loop where for each element of the weight array, we calculate a new value using the

formula mentioned above. The obtained value is saved in the corresponding cell of the array.

bool SGDUpdate(double &m_cWeights[], 

               double &m_cGradients[],

               double learningRate)

  {

   if(m_cWeights.Size() > m_cGradients.Size()  ||

      m_cWeights.Size()<= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

      m_cWeights[i] -= learningRate * m_cGradients[i];

   return true;

  }

Momentum accumulation method 

Probably, the main drawback of gradient descent methods is the inability to distinguish between local

and global minima. During the training process, there is always a high risk of stopping at a local

minimum without reaching the desired accuracy level of the neural network.

Careful selection of the learning coefficient, experiments with different weight initialization options, and

several training iterations do not always yield the desired results.
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Local minima on the graph of a complex function

One of the solutions was borrowed from the physics of natural phenomena. If you put the ball in a small

depression or hole, then it will lie motionless at its bottom. But as soon as we send the same ball along

some inclined surface into this hole, it will easily jump out of it and roll further. This behavior of the ball

is explained by the momentum accumulated during the descent along the inclined surface.

Similar to the ball, it was suggested to accumulate momentum during the training of the weights, and

then add this momentum to the weight update formula using the gradient descent method.

Momentum accumulates for each individual weight. When updating a specific weight for a prolonged

period in one direction, its momentum will accumulate, and as a result, it will move towards the desired

goal at a faster pace. Thanks to the accumulated energy, we can overcome local minima, similar to a

ball rolled down an inclined surface.

Unfortunately, there is also a flip side to the coin. By accumulating momentum, we will skip not only

the local minimum but also the global one. With unlimited momentum accumulation, the value of our

error will move like a pendulum on the loss function graph. Let's mimic the force of friction in nature

and add the β coefficient in the range from 0 to 1 (excluding the boundary points), which will serve the

role of frictional force. This coefficient characterizes the rate of momentum attenuation. The closer β is

to 1, the longer the momentum is maintained.

All of the above can be written in the form of two mathematical formulas:

where:

· Δ
t
 = change in the weight at the current step

· Δ
t—1

 = change in the weight at the previous training iteration

· β = pulse damping factor
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As a result, we got a decent algorithm for dealing with local minima. Unfortunately, it is not a panacea.

To overcome the local minimum, you need to accumulate enough momentum. To do this, the

initialization must be at a sufficient distance from the local minimum. When solving practical problems,

we do not know where the local and global minima actually are. And the initialization of weights in a

random way can throw us anywhere.

Moreover, the application of this method requires additional memory to store the last momentum of

each neuron and extra computational effort for the added calculations.

Still, the momentum accumulation method is used in practice and demonstrates better convergence

compared to stochastic gradient descent.

When implementing the momentum accumulation method, we will need to add a decay coefficient to

the function parameters and another array to store the accumulated momentum for each weight. The

logic of building the function remains the same: first, we check the correctness of the input data, and

then in a loop, we update the weights. When updating the weights, as in the provided formulas, we first

calculate the change in the synaptic coefficient taking into account the accumulated momentum, and

then its new value. The obtained values are stored in the corresponding cells of the arrays for weights

and momentum values.

bool MomentumUpdate(double &m_cWeights[],

                    double &m_cGradients[],

                    double &m_cMomentum[],

                    double learningRate,

                    double beta)

  {

   if(m_cWeights.Size() > m_cGradients.Size() ||

      m_cWeights.Size() > m_cMomentum.Size()  ||

      m_cWeights.Size() <= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

     {

      m_cMomenum[i] = learningRate * m_cGradients[i] + 

                     beta * m_cMomenum[i];

      m_cWeights[i] -= m_cMomenum[i];

     }

   return true;

  }

Adaptive gradient method (AdaGrad)

Both methods discussed above have a learning rate hyperparameter. It is important to understand that

the entire process of neural network training largely depends on the choice of this parameter. Setting

the learning rate too high can cause the error to continually increase instead of decreasing. Using a low

learning rate will lead to an extended duration of the training process and increase the likelihood of

getting stuck in a local minimum, even when using the momentum accumulation method. 

Therefore, when validating the architecture of a neural network, a lot of time is devoted specifically to

selecting the correct learning rate coefficient. Furthermore, it is always difficult to select the right

learning rate. Moreover, one always wants to train a neural network with minimal time and resource

expenditures.
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There is a practice of gradually decreasing the learning rate during the training process. The network

training process starts with a relatively high rate, which allows for a rapid descent to a certain error

level. After reducing the learning rate, a more refined adjustment of the neural network weights is

carried out to reduce the overall error. There can be several iterations with a reduced coefficient, but

with each reduction of the weight, the effectiveness of that iteration decreases.

Note that we use one learning rate for all neural layers and neurons. However, not all features and

neurons contribute equally to the final result of the neural network, so our learning rate should be quite

versatile.

I think it goes without saying that universality is the enemy of the best: to create any universal product

or select a value (as in our case), we need to compromise to meet all the requirements as best as

possible, while these requirements are often contradictory.

One might think, in such a case, it would be advisable to offer individual learning rates for neurons. But

to solve this problem manually is virtually impossible. In 2011, the AdaGrad adaptive gradient method

was proposed. The proposed method is a variation of the gradient descent discussed above and does

not exclude the use of the learning rate coefficient. At the same time, the authors of the method

suggest accumulating the sum of the squares of the gradients for all previous iterations and, when

updating the weights, dividing the learning coefficient by the square root of the accumulated sum of the

squared gradients.

  

Where:

· G
t
 , G

t—1
 = sum of the squares of the gradients at the current and previous steps, respectively

· ε = a small positive number to avoid division by zero

In this way, we obtain an individual and constantly decreasing learning rate coefficient for each neuron.

However, this requires additional computational resources and extra memory to store the sums of

squared gradients.

The implementation function for the AdaGrad method is very similar to the function of updating the

weights using the cumulative momentum method. In it, we abandon the use of the decay coefficient

but still use the momentum array, in which we will accumulate the sum of squared gradients. The

changes also affected the calculation of the new weight value. The complete function code is shown

below.
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bool AdaGradUpdate(double &m_cWeights[],

                   double &m_cGradients[],

                   double &m_cMomentum[],

                   double learningRate)

  {

   if(m_cWeights.Size() > m_cGradients.Size() ||

      m_cWeights.Sizel() > m_cMomentum.Size()  ||

      m_cWeights.Size() <= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

     {

      double G = m_cMomenum[i] + MathPow(m_cGradients[i], 2);

      m_cWeights[i] -= learningRate / (MathSqrt(G) + 1.0e-10) * 

                 m_cGradients[i];

      m_cMomentum[i] = G;

     }

   return true;

  }

In the above formula, you can notice the main problem of this method. We continuously accumulate

the sum of squared gradients. As a consequence, on a sufficiently long training sample, our learning

rates will quickly tend to zero. This will lead to the paralysis of the neural network and the impossibility

of further training.

A solution was proposed in the RMSProp method.

RMSProp method

The RMSProp weight update method is a logical extension of the AdaGrad method. It retains the idea of

automatically adjusting the learning rate based on the frequency of updates and the magnitude of

gradients coming to the neuron. However, it addresses the main issue of the previously discussed

method – the paralysis of training on large training datasets.

Like AdaGrad, the RMSProp method exploits the sum of squared gradients, but in RMSProp, an

exponentially smoothed average of squared gradients is used.

Where:

· REMS(G)
t
 and REMS(G)

t—1
 = exponential average of the squares of the gradients at the current and

previous iteration

· γ = exponential smoothing factor

The use of an exponentially smoothed average of squared gradients prevents the learning rate of

neurons from decreasing to zero. At the same time, each weight will receive an individual learning rate,
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depending on the incoming gradients. As the gradients increase, the learning rate will gradually

decrease, and as the gradients decrease, the learning rate coefficient will increase. This will allow in the

first case to limit the maximum learning rate, and in the second case, to update the coefficients even

with small error gradients.

It should be noted that the use of the squared gradient allows this method to work even when the

neuron receives gradients of different directions. If we skip over the minimum because of the high

learning rate during the training process and move in the opposite direction on the next iteration, the

accumulated square of gradients will gradually decrease the learning rate, thereby allowing us to

descend closer to the minimum error.

The implementation of this approach almost completely repeats the implementation of the adaptive

gradient method. We will simply replace the calculation of the sum of squared gradients with their

exponential average. To do this, we need an additional parameter γ.

bool RMSPropUpdate(double &m_cWeights[],

                   double &m_cGradients[],

                   double &m_cMomentum[],

                   double learningRate,

                   double gamma)

  {

   if(m_cWeights.Size() > m_cGradients.Size() ||

      m_cWeights.Size() > m_cMomentum.Size()  ||

      m_cWeights.Size() <= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

     {

      double R = (1-gamma) * m_cMomenum[i] +

                 gamma * MathPow(m_cGradients[i], 2);

      m_cWeights[i] -= learningRate / (MathSqrt(R) + 1.0e-10) *

                 m_cGradients[i];

      m_cMomentum[i] = R;

     }

   return true;

  }

Adadelta method

In the AdaGrad and RMSProp methods, we gave an individual learning rate to each neuron, but still left

the learning rate hyperparameter in the numerator of the formula. The creators of the Adadelta

method went a little further and proposed to completely abandon this hyperparameter. In the

mathematical formula of the Adadelta method, it is replaced by the exponential average of changes in

weights over the previous iterations.
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Where:

· REMS(δw)
t
 , REMS(δw)

t—1
 = exponential average of squared changes in weights for the current and

previous iterations

In the practical application of this method, you may encounter cases where both the coefficients for

the exponential smoothing of squared weight deltas and gradients are the same, as well as cases where

they are individual. The decision is made by the neural network architect.

Below is an example of the implementation of the method using MQL5 tools. The logic behind

constructing the algorithm fully replicates the functions presented above. The changes only affected

the calculations that are peculiar to the method: the abandonment of the learning rate and the

introduction of an additional averaging coefficient, along with another array of data.

bool AdadeltaUpdate(double &m_cWeights[],

                   double &m_cGradients[],

                   double &m_cMomentumW[],

                   double &m_cMomentumG[],

                   double gammaW, double gammaG)

  {

   if(m_cWeights.Size() > m_cGradients.Size() ||

      m_cWeights.Size() > m_cMomentumW.Size() ||

      m_cWeights.Size() > m_cMomentumG.Size()  ||

      m_cWeights.Size() <= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

     {

      double W = (1-gammaW) * m_cMomenumW[i] + 

                 gammaW * MathPow(m_cWeights[i], 2);

      double G = (1-gammaG) * m_cMomenumG[i] +

                 gammaG * MathPow(m_cGradients[i], 2);

      m_cWeights.At(i) -= MathSqrt(W) / (MathSqrt(G) + 1.0e-10) *

                 m_cGradients[i];

      m_cMomentumW[i] = W;

      m_cMomentumG[i] = G;

     }

   return true;

  }

Adaptive moment estimation method

In 2014, Diederik P. Kingma and Jimmy Lei Ba proposed Adam's adaptive moment assessment method.

According to the authors, the method combines the advantages of the AdaGrad and RMSProp methods

and works well in online learning. This method consistently demonstrates good results on various

datasets and is currently recommended as the default choice in various packages.
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The method is based on the calculation of the exponential average of the gradient m and the

exponential average of the squares of the gradient v. Each exponential average has its own

hyperparameter ß, which determines the averaging period.

The authors suggest using the default ß
1
 at the level of 0.9, and ß

2
 at the level of 0.999. In this case,

m
0
 and v

0
 take zero values. With the parameters of the formulas presented above, at the beginning of

training, they return values close to zero. As a consequence, we get a low learning rate at the initial

stage. To speed up learning, the authors proposed to correct the obtained moments.

The updating of parameters is carried out by adjusting them based on the ratio of the corrected

gradient moment m to the square root of the corrected gradient moment v. To eliminate division by

zero, the ε constant close to zero is added to the denominator. The resulting ratio is corrected by the

learning factor α, which in this case is the upper limit of the learning step. By default, the authors

suggest using α at the level of 0.001.

The implementation of the Adam method is a little more complicated than the ones presented above,

but in general it follows the same logic. Changes are visible only in the body of the weight update loop.
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bool AdamUpdate(double &m_cWeights[],

                double &m_cGradients[],

                double &m_cMomentumM[],

                double &m_cMomentumV[],

                double learningRate,

                double beta1, double beta2)

  {

//---

   if(m_cWeights.Size() > m_cGradients.Size() ||

      m_cWeights.Size() > m_cMomentumM.Size() ||

      m_cWeights.Size() > m_cMomentumV.Size()  ||

      m_cWeights.Size() <= 0)

      return false;

//---

   for(int i = 0; i < m_cWeights.Size(); i++)

     {

      double w = m_cWeights[i];

      double delta = m_cGradients[i];

      double M = beta1 * m_cMomenumM[i] + (1 - beta1) * delta;

      double V = beta2 * m_cMomenumV[i] + (1 - beta2) * MathPow(delta, 2);

      double m = M / (1 - beta1);

      double v = V / (1 - beta2);

      w -= learningRate * m / (MathSqrt(v) + 1.0e-10);

      m_cWeights[i] = w;

      m_cMomenumM[i] = M;

      m_cMomenumV[i] = V;

     }

//---

   return true;

  }

1.5 Techniques for improving the convergence of neural networks

In the previous chapters of the book, we have learned the basic principles of building and training neural

networks. However, we also have identified certain challenges that arise during the training process of

neural networks. We have encountered local minimums that can stop training earlier than we achieve

the desired results. We also discussed issues of vanishing and exploding gradients and touched upon the

problems of co-adaptation of neurons, retraining, and many others which we'll discuss later.

On the path of human progress, we continually strive to refine tools and technologies. This applies to

the algorithms of training neural networks as well. Let's discuss methods that, if not completely solve

certain issues in neural network training, at least aim to minimize their impact on the final learning

outcome.

1.5.1 Regularization

In the pursuit of minimized neural network error, we often complicate our model. What a

disappointment it can be when, after prolonged and meticulous work, we achieve an acceptable training
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set error, only to find the model's error soaring during testing. Such a situation is quite common and is

known as 'model overfitting'.

The reasons for this phenomenon are quite mundane and are related to the imperfections, or more

precisely, the complexity of our world. Both the raw data and the benchmark results for the training

and test datasets were obtained not under controlled laboratory conditions but were taken from real

life. Hence, in addition to the analyzed features, they include a number of unaccounted factors, which

we attributed to the so-called noise at the design stage for various reasons.

During the training process, we expect that the model will extract significant features from the given

volume of raw data and establish relationships between these features and the expected outcome.

However, due to the excessive complexity of the model, it can discover relationships between random

variables that don't actually exist. It ends up "memorizing" the training dataset. As a result, we get an

error close to zero on the training sample. In this process, the test dataset contains its own random

noise deviations that don't fit into the concept learned from the training dataset. This confuses our

model. As a result, we get a striking difference in the error of the neural network on the training and

test samples.

The regularization methods discussed in this section are designed to exclude or minimize the influence

of random noise and emphasize the regular features during the model training process. In the practice

of training neural networks, you most commonly encounter the use of two methods: L1 and L2

regularizations. Both of them are built on the addition of the sum of weight norms to the loss function.

L1-regularization 

L1-regularization is often referred to as lasso regression or Manhattan regression. The essence of this

method lies in adding the sum of absolute values of weights to the loss function.

Where:

· L
L1

(Y,Y',W) = loss function with L1-regularization

· L(Y,Y') = one of the loss functions discussed earlier

· λ = regularization coefficient (penalty)

· w
i
 = ith weighting coefficient

In the process of training the neural network, we will minimize our loss function. In this case, the

minimization of the loss function depends directly on the sum of the absolute weight values. Thus, in

our model training, we introduce an additional constraint of selecting weights as close to zero as

possible.

The partial derivative of such a loss function will take the form:

Here, we don't explicitly calculate the derivative of the loss function itself to isolate the influence of

regularization directly.
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The function sign(w
i
) returns the sign of the weight when it is non-zero and 0 when the weight is zero.

Since λ is a constant, and we consistently subtract the value of the derivative multiplied by the learning

rate and the error gradient when updating the weights, then, when training the neural network, the

model will set features that do not have a direct impact on the outcome to zero. This will completely

eliminate the influence of random noise on the result.

L1 regularization introduces a penalty for large weights, thus enabling the selection of important features

and mitigating the influence of random noise on the final outcome.

L2-regularization

L2, or ridge, regularization, like L1 regularization, introduces a large weighting penalty into the loss

function. However, in this case, the L2 norm is used, which is the sum of the squares of the weights. As

a result, the loss function will have the following form.

Similar to L1-regularization, we add a constraint to the model training process to use weighting

coefficients as close to zero as possible. Let's look at the derivative of our loss function.

In the L2-regularization derivative formula, the penalty λ is multiplied by the weight. This implies that

during training, the penalty is not constant but dynamic. It decreases proportionally as the weight

decreases. In this process, each weight receives an individual penalty based on its magnitude. Hence,

unlike L1 regularization, during the training of the neural network, the weights of the features that do

not have a direct impact on the outcome will decrease. However, they will never reach zero, unless

calculation precision limits allow for it.

L2 regularization introduces a penalty for large weights, thus enhancing the influence of important features

and reducing, though not eliminating, the impact of random noise on the final outcome.

Elastic Net

As mentioned above, L1-regularization simplifies the model by zeroing out the weights for parameters

that do not directly affect the expected outcome of the model. Applying such an approach is justified

when we are reasonably confident about the presence of a small number of redundant features, the

exclusion of which can only improve the model performance.

If, however, we understand that the overall result is a combination of small contributions from all the

features used and the exclusion of any feature would worsen the model performance, then in such a

scenario, using L2 regularization is justified.

But which of the methods to use when our model receives an obviously excessive number of features?

Moreover, we do not understand the individual impact of features on the outcome. Perhaps excluding

certain features could simplify our model and improve its performance. At the same time, excluding

other features would have a negative impact on the model's performance.

At such times, Elastic Net regularization is applied. This model adds penalties based on both the L1 and

L2 norms of weights to the loss function, combining the advantages of L1 and L2 regularization.
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Please note that in the Elastic Net formula, L1 and L2 regularization each have their own regularization

coefficients. Thus, by changing the regularization coefficients λ
1
 and λ

2
, the regularization model can

be controlled. By setting them both to zero, we achieve model optimization without regularization.

When λ
1
>0 and λ

2
=0 we have pure L1 regularization, and when λ

1
=0 and λ

2
>0 we get L2-

regularization.

1.5.2 Dropout

We continue studying methods for improving the convergence of neural networks. Let’s consider the

dropout technology.

When training a neural network, a large number of features are fed into each neuron, the influence of

each of which is difficult to assess. As a result, errors of some neurons are smoothed out by the correct

values of others, and errors accumulate at the output of the neural network. Training stops at a certain

local minimum with a sufficiently large error that does not meet our requirements. This effect was

called co-adaptation of features, in which the influence of each feature seemingly adjusts to the

surrounding environment. It would be better for us to get the opposite effect when the environment is

decomposed into individual features and evaluate separately the impact of each of them.

To combat complex co-adaptation of features, in July 2012, a group of scientists from the University of

Toronto, in a paper "Improving neural networks by preventing co-adaptation of feature detectors",

proposed randomly excluding some neurons during the training process. Reducing the number of

features during training increases the significance of each one, and the constant change in the

quantitative and qualitative composition of features reduces the risk of their co-adaptation. Such a

method is called Dropout.

Applying this method can be compared to decision trees because by excluding some neurons at

random, we get a new neural network with its own weights at each training iteration. According to the

rules of combinatorics, the variability of such networks is quite high.

At the same time, all the features and neurons are evaluated during the operation of the neural

network. Thereby, we obtain the most accurate and independent assessment of the current state of

the studied environment.

The authors of the solution in their paper point out that the method can also be used to improve the

quality of pre-trained models. 

https://arxiv.org/abs/1207.0580


1. Basic principles of artificial intelligence construction

52

1.5 Techniques for improving the convergence of neural networks

Dropout implementation model for a perceptron with two hidden layers

Describing the proposed solution from a mathematical point of view, we can say that each individual

neuron is excluded from the process with a certain given probability P. Thus, the the neuron will

participate in the neural network training process with a probability of q=1–P.

To determine the list of excluded neurons, the method uses a pseudorandom number generator with a

normal distribution. This approach allows for the most uniform possible exclusion of neurons. In

practice, we will generate a vector of binary features of size equal to the input sequence. In the vector,

we will set 1 for the features that are used and 0 for the excluded elements.

However, the exclusion of the analyzed features undoubtedly leads to a decrease in the sum at the

input of the neuron activation function. To compensate for this effect, we multiply the value of each

feature by a factor of 1/q. It's easy to notice that this coefficient will increase the values, as the

probability q is always in the range from 0 to 1.

Where:

· D
i
 = elements of the Dropout results vector

· q = probability of using a neuron during the learning process

· m
i
 = the element of the masking vector

· x
i
 = the elements of the input sequence vector

During the backward pass in the training process, the error gradient is multiplied by the derivative of

the aforementioned function. As can be easily seen, in the case of Dropout, the backward pass will be

similar to the forward pass which uses the masking vector from the forward pass. 
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During the operation of the neural network, the masking vector is filled with units, allowing values to be

transmitted seamlessly in both directions.

In practice, the coefficient 1/q is constant throughout training, so we can easily count this coefficient

once and write it instead of units in the masking tensor. In this way, we eliminate the operations of

recalculating the coefficient and multiplying it by 1 of the mask in each training iteration.

1.5.3 Batch normalization

The practical application of neural networks implies the use of various approaches to data

normalization. All of these approaches aim to maintain the training data and the output of hidden layers

of the neural network within a specified range and with certain statistical characteristics of the dataset,

such as variance and median. Why is this so important? We remember that network neurons apply

linear transformations which shift the sample towards the anti-gradient in the learning process.

Consider a fully connected perceptron with two hidden layers. In the forward pass, each layer

generates a set of data that serves as a training sample for the next layer. The output layer's results

are compared with the reference data, and during the backward pass, the error gradient is propagated

from the output layer through hidden layers to the input data.

Perceptron with two hidden layers

Having obtained the error gradient for each neuron, we update the weights, tuning our neural network

to the training samples from the last forward pass. Here arises a conflict: we are adjusting the second

hidden layer (labeled as 'Bull pattern' and 'Bear pattern' in the above diagram) to the output data of

the first hidden layer (labeled as 'Hidden pattern' in the diagram). However, by changing the
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parameters of the first hidden layer, we have already altered the data array. In other words, we are

adjusting the second hidden layer to a data sample that no longer exists.

The situation is similar to the output layer, which adjusts to the already modified output of the second

hidden layer. If we also consider the distortion between the first and second hidden layers, the scales of

error amplification increase. The deeper the neural network, the stronger the manifestation of this

effect. This phenomenon is referred to as internal covariate shift.

In classical neural networks, this problem was partially solved by reducing the learning rate. Small

changes in the weights do not significantly alter the distribution of the output of the neural layer.

However, this approach does not solve the problem of scaling with an increase in the number of layers

of the neural network and reduces the learning rate. Another issue with a low learning rate is the

potential stop at local minima (we already discussed this issue in the section about neural network

optimization methods).

Here, it's also worth mentioning the necessity of normalizing the input data. Quite often, when solving

various tasks, diverse input data is fed into the input layer of a neural network, which might belong to

samples with different distributions. Some inputs can have values that significantly exceed the

magnitudes of the others. Such values will have a greater impact on the final result of the neural

network. At the same time, the actual impact of the described factor might be significantly lower, while

the absolute values of the sample are determined by the nature of the metric.

The below chart shows an example illustrating the reflection of a single price movement using two

oscillators (MACD and RSI). When considering the indicator charts, you can notice the correlation of

the curves. At the same time, the numerical values of the indicators differ by hundreds of thousands of

times. This is because RSI values are normalized on a scale from 0 to 100, while MACD values depend

on the accuracy of price representation on the graph, as MACD shows the distance between two

moving averages. 

When building a trading strategy, we can utilize either of these indicators individually or consider the

values of both indicators and execute trading operations only when the signals from the indicators align.

In practice, this approach enables the exclusion of some false signals, which eventually can reduce the

drawdown of the trading strategy. However, before we input such diverse signals into the neural

network, it's advisable to normalize them to a comparable form. This is what the normalization of the

initial data will help us to achieve.

Of course, we can perform the normalization of the input data while preparing the training and testing

datasets outside the neural network. But this approach increases the preparatory work. Moreover,

during practical usage of such a neural network, we will need to consistently prepare the input data

using a similar algorithm. It is much more convenient to assign this work to the neural network itself.

In February 2015, Sergey Ioffe and Christian Szegedy proposed the Batch Normalization method in

their work "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate

Shift". The method was proposed to address the issue of internal covariate shift. This algorithm can

also be applied for normalizing input data.

https://arxiv.org/abs/1502.03167
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EURUSD H1

The essence of the method was to normalize each individual neuron over a certain time interval by

shifting the median of the sample to zero and scaling the sample's variance to one.

The normalization algorithm is as follows. First, the average value is calculated from the data sample.

Where :

· μ
 B

 = the arithmetic mean of the feature over the sample

· m = the sample size (batch)

Then we calculate the variance of the original sample.

We normalize the sample data by reducing the sample to zero mean and unit variance.

Note that a small positive constant ε is added to the denominator of the sample variance to prevent

division by zero.
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As it turned out, such normalization can distort the influence of the input data. This is why the authors

of the method added one more step: scaling and offset. They introduced the variables γ and β, which

are trained together with the neural network using the gradient descent method.

Applying this method allows obtaining a dataset with a consistent distribution at each training step,

which in practice makes the training of the neural network more stable and enables an increase in the

learning rate. Overall, this enhances the training quality while reducing the time required for neural

network training.

However, at the same time, the cost of storing additional coefficients increases. Furthermore,

calculating the moving average and variance requires storing in memory the historical data of each

neuron for the entire batch size. An alternative here could be the use of Exponential Moving Average

(EMA): calculating the EMA only requires the previous value of the function and the current element of

the sequence.

Experiments conducted by the authors of the method demonstrate that the application of Batch

Normalization also serves as a form of regularization. This allows for the elimination of other

regularization methods, including the previously discussed Dropout. Moreover, there are more recent

works showing that the combined use of Dropout and Batch Normalization has a negative effect on the

training results of a neural network.

In modern architectures of neural networks, the proposed normalization algorithm can be found in

various shapes. The authors suggest using Batch Normalization directly before the non-linearity

(activation function). One of the variations of this algorithm is Layer Normalization, introduced by

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton in July 2016 in their work "Layer

Normalization."

1.6 Artificial intelligence in trading

Previous sections introduced the basic principles and algorithms for building neural networks. However,

our primary interest lies in the practical application of the presented technologies, and, I am certainly

not the first to consider it.

Computer technologies have long been integrated and successfully applied in trading. It's difficult to

imagine trading without the use of computer technologies nowadays. Primarily, thanks to the internet

and computers, traders no longer need to be physically present on the trading floor. The trading

terminal software can be easily installed on any computer and even on mobile devices (smartphones,

tablets). This enables traders to analyze the market and execute trading operations from virtually any

location on our planet.

The aforementioned trading terminals not only facilitate trade execution but also provide all the

necessary tools for detailed real-time market analysis. They include features for constructing graphical

objects on price charts and a variety of indicators that can dynamically update values and display them

on the chart according to the current market situation.

Another direction of applying computer technologies in trading is algorithmic trading. Algorithmic

trading involves creating computer programs (robots) that execute trading operations without human

intervention, following a predefined trading strategy. This method has its own advantages and

disadvantages compared to manual human trading.

https://arxiv.org/abs/1607.06450
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A created program can work tirelessly 24 hours a day, 7 days a week, which is impossible for a human.

Accordingly, the program will not miss any signal to enter or exit a position. The robot will strictly follow

the specified algorithm. In contrast, a human, while evaluating the market situation, may consider

personal past experiences and subjective feelings, which can vary.

First and foremost, deviating from the trading strategy disrupts the balance between profitable and

losing trades, and over a long time frame, it's likely to have a negative impact on the trading account

balance.

On the other hand, it can be quite challenging to precisely describe all aspects of a trading strategy in

mathematical terms. In this case, the trader's personal experience and their personal feeling of the

market will play a significant role. The program does not have these features, and the tolerances built

in by the programmer may not be ideal.

Among the benefits of algorithmic trading, we can also include the absence of psychological factors in

programs. Meanwhile, the psychological barrier often causes traders, especially newcomers, to deviate

from their trading strategies.

On the other hand, time series are variable. Therefore, any trading strategy has a limited lifespan. As a

consequence, over time, there's a need to adapt trading systems to current market conditions, and a

classical robot can't evaluate its performance or make changes to its trading algorithm or parameters

without human assistance.

So what do we expect from the application of artificial intelligence and neural networks in particular?

When building a mathematical model using a neural network, we do not prescribe the entire trading

algorithm, as in classical algorithmic trading. We simply provide a training dataset and let the neural

network itself discover patterns and correlations between the input data and the final outcome. In

doing so, we expect the neural network to capture not only the obvious patterns but also the subtle

fluctuations that can enhance the effectiveness of the trading system.

When creating a training dataset for the neural network, we should not limit ourselves to the input data

of a single strategy. There may be much more input data than a human is capable of processing.

However, the final mathematical model might produce signals that don't fit neatly into any of the

expected strategies. As a result, we expect to obtain performance higher than that of robots built

according to the classical algorithmic trading scheme.

And, of course, the learning ability of neural networks enables the creation of methods for assessing the

performance of a strategy and initiating the training process of the neural network in a timely manner

for adaptation to current market conditions.

Thus, we anticipate a reduction in the negative aspects of algorithmic trading while retaining its positive

aspects. 

2. MetaTrader 5 features for algorithmic trading

For the practical part of this book, we will use the MetaTrader 5 trading terminal. It is a modern,

constantly evolving platform developed by MetaQuotes Ltd.

https://www.metaquotes.net/en/metatrader5
https://www.metaquotes.net/
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MetaTrader 5

MetaTrader 5 is a multi-asset trading platform. It is widely used by traders all around the world to

execute trading operations in the Forex market, stock exchanges, and futures markets. MetaTrader 5

is a comprehensive program that enables trading operations and provides extensive capabilities for

conducting detailed technical and fundamental analysis of the market situation.

The platform features an extended Depth of Market with a tick chart and the Time and Sales window.

This tool enables the analysis of the current state and the one-click execution of trading operations.

Moreover, there is the option to set stop loss and take profit levels for placed orders, which proves

quite beneficial for implementing scalping trading strategies.

The provided Depth of Market allows placing market and pending orders, as well as modifying them. For

more information on the capabilities of this tool, please visit

https://www.metatrader5.com/en/terminal/help/trading/depth_of_market.

Additionally, for conducting technical analysis, there are extensive capabilities for adding various

graphical objects directly onto the price chart. The range of applied objects is quite impressive. Among

these are simple lines (vertical, horizontal, and various diagonal trend lines), as well as various

channels, Fibonacci levels, and more complex shapes. There's the possibility to assign different colors

and visual styles to objects, as well as adding custom names and descriptions to objects.

https://www.metatrader5.com/en/terminal/help/trading/depth_of_market
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Depth of Market

Objects of technical analysis on the chart

The platform features a comprehensive list of oscillators, volume indicators, and trend indicators,

capable of meeting the requirements of any user. At the same time, if the available range of indicators

is not enough for you, it is possible to create a custom indicator based on your own formula. You can

create it yourself or order it from experienced programmers via the Freelance service at mql5.com.

Furthermore, in the Market section of the platform, you can purchase or download indicators from

various third-party developers, and the list of these indicators is constantly updated and expanded. It's

unlikely that any other platform could offer such a broad spectrum of technical analysis tools. 

https://www.mql5.com/en/job
https://www.mql5.com
https://www.mql5.com/en/market
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Indicators on the chart

The capability to analyze each instrument across 21 timeframes, ranging from 1 minute to 1 month,

provides a comprehensive and detailed analysis.

The indicators and graphical objects applied to the price chart can be saved as templates, which can

then be easily reloaded onto the chart with just a couple of mouse clicks. 

For enthusiasts of fundamental analysis, the platform provides a news feed and a calendar of financial

events, allowing the display of markers for past and upcoming events directly on the instrument's

chart. This enables tracking changes and analyzing trading situations rapidly in the future.

The one-click trading feature from the chart of the trading instrument helps traders execute operations

swiftly and at the best price.

In addition, the platform gives almost unlimited possibilities for algorithmic trading, that is, for

automated trading by using robots. MetaQuotes specialists have developed the MQL5 IDE (Integrated

Development Environment) specifically for the platform. This environment allows users to create their

own indicators and trading strategies, as well as test and optimize them using the built-in strategy

tester with historical data gathered from real ticks.

The MetaTrader 5 platform is widely adopted and offered for use by the majority of brokers around the

world, enabling traders to choose a trading provider according to their preferences.
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In the context of the book's theme, you will undoubtedly be interested in exploring the potential for

implementing neural network technologies and algorithms through the tools provided by the MetaTrader

5 platform. Let's take a closer look at the proposed tool.

2.1 Program types and their construction features

The MetaTrader 5 platform package includes a modern development environment MetaEditor which

enables the creation of various programs for algorithmic trading. Programs can be written in the

specially designed programming language called MetaQuotes Language 5 (MQL5). The language syntax

is closely aligned with C++, enabling programming in an object-oriented style. This facilitates the

transition to using MQL5 for a large community of programmers.

The interaction of the MetaTrader 5 platform with programs is organized in such a way that the price

movements of instruments and changes in the trading account are tracked by the platform. When

predetermined changes occur, the platform generates events in the instrument chart open in the

platform. When an event occurs, the user programs attached to the chart are checked. These can be

software Expert Advisors, indicators, and scripts. Event handlers are defined in the platform for each

event and program type.

An event handler is a special function defined by the MQL5 programming language. Such a function has

a strictly specified name, return value type, and a list and type of parameters. Based on the return

value type and the parameter types, the event handler of the client terminal identifies functions for

processing the occurred event. If a function has parameters that do not match the predetermined ones

or if a different return value type is specified, then such a function will not be used to process the

event.

https://www.metaquotes.net/en/metatrader5
https://www.metatrader5.com/en/metaeditor/help
https://www.mql5.com/en/docs/runtime/event_fire
https://www.mql5.com/en/docs/basis/function/events
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Built-in development environment MetaEditor

Each type of program can only handle certain events. Thus, if the event handler does not correspond to

the program type, such a function will not be called by the terminal.

The MQL5 language includes a series of trading functions and predefined event handlers, which are

used for Expert Advisors to allow them to execute the trading strategies embedded in them. It also

offers an opportunity to write your own technical analysis indicators, scripts, services, and libraries of

included functions.

Each program type is designed to perform its specific tasks and has special features of construction.

Expert Advisors (EAs)

Probably, at the forefront of algorithmic trading are Expert Advisors (trading robots) which are

programs capable of independently analyzing the market and conducting trading operations based on a

programmed strategy and its trading rules.

Technically, in MetaTrader 5, an Expert Advisor is tied to a specific chart on which it runs. In doing so,

it only handles predefined events from this specific chart. The occurrence of each event triggers the

corresponding functionality of the trading strategy. Among such events can be program launch and

deinitialization, timer triggering, arrival of a new tick, scheduled events, and user events.

At the same time, the trading strategy of the Expert Advisor can include the analysis of other

timeframes of the current instrument, as well as the analysis of any instrument in the terminal on any

timeframe. This allows you to build multi-currency and multi-timeframe strategies.

In addition, Expert Advisors have the technical ability to receive data from any technical indicator

installed in the terminal. This greatly expands the possibilities for building different trading strategies.

https://www.mql5.com/en/docs/trading
https://www.mql5.com/en/docs/basis/function/events
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Each predefined event calls the corresponding EA function, in which the program code for event

processing is written.

Immediately after launching the Expert Advisor, the terminal generates an Init event, which triggers

the OnInit function. Global variables and objects are initialized in the body of this function. If necessary,

a timer is started. The function has no input parameters but returns an integer value of the return code

as a result of its execution. A non-zero return code indicates a failed initialization. In this case, the

terminal generates a program termination event called Deinit.

//+------------------------------------------------------------------+

//| Expert initialization function                                   |

//+------------------------------------------------------------------+

int OnInit()

  {

//---

 

//--- create timer

   EventSetTimer(60);

//---

   return(INIT_SUCCEEDED);

  }

When the program is completed, the MetaTrader 5 terminal generates a Deinit event that triggers the

execution of the OnDeinit function. The function has one input integer parameter which receives the

code of the reason for the program termination. Inside the function body, if necessary, global variables,

classes, and graphical objects are removed, data is saved in file resources, the timer initiated during

program initialization is closed, and other operations required for the proper termination of the program

and the cleanup of its traces in the terminal are performed.

//+------------------------------------------------------------------+

//| Expert deinitialization function                                 |

//+------------------------------------------------------------------+

void OnDeinit(const int reason)

  {

//---

//--- destroy timer

   EventKillTimer();

  }

When a new tick arrives for the symbol chart on which the Expert Advisor is running, the NewTick event

is generated. This triggers the OnTick function. This event is generated only for Expert Advisors, so the

OnTick function will not be launched in other programs. Of course, the specified function can always be

called forcibly from any place in the program, but it will no longer be the NewTick event processing.

The OnTick function has no input parameters and does not return any code. The main purpose of the

function is to execute the price fluctuations handler in the advisor, which evaluates changes in the

market situation and checks the rules of the embedded strategy for the need to perform any trading

operations. Sometimes, according to the trading strategy rules, the Expert Advisor should perform

operations not at every price movement, but, for example, at the opening of a new candlestick. In such

cases, checking for the occurrence of the expected event is added to the OnTick function.
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//+------------------------------------------------------------------+

//| Expert tick function                                             |

//+------------------------------------------------------------------+

void OnTick()

  {

//---

   

  }

If the algorithm of an Expert Advisor does not require the processing of each price movement but is

based on the execution of cyclic operations with a certain time interval, even if there are no price

movements observed during this time, the use of a timer can be very beneficial.

For this, when initializing the program in the OnInit function, it is necessary to initialize the timer using

the EventSetTimer function. The function parameters specify the timer delay period in seconds. After

that, the terminal will generate a Timer event for the chart, and the OnTimer function of the Expert

Advisor will be launched for execution.

//+------------------------------------------------------------------+

//| Timer function                                                   |

//+------------------------------------------------------------------+

void OnTimer()

  {

//---

   

  }

When using a timer in the program's code, it is necessary to unload it from the terminal's memory upon

program termination within the OnDeinit function. The EventKillTimer function is used for this purpose.

This function has no parameters. It should be noted that the platform provides for the use of only one

timer on the chart.

Within one EA, you can use both the OnTick and OnTimer functions, if necessary.

Among Expert Advisors, there is a subclass of semi-automatic Expert Advisors and trading panels. Such

programs are not capable of independent trading without human intervention. Programs of this type

perform trading operations at the trader's command. The programs themselves are designed to

facilitate the trader's work and to take over some routine operations. This can be money management,

setting stop loss and take profit levels, position maintenance, and much more.

The interaction between the program and the user is implemented through ChartEvent group events in

Expert Advisors. These events trigger the execution of the OnChartEvent function, which accepts four

parameters from the terminal:

· id: event identifier,

· lparam: event parameter of type long,

· dparam: event parameter of type double,

· sparam: event parameter of type string.
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//+------------------------------------------------------------------+

//| ChartEvent function                                              |

//+------------------------------------------------------------------+

void OnChartEvent(const int id,

                  const long &lparam,

                  const double &dparam,

                  const string &sparam)

  {

//---

   

  }

The event can be generated for Expert Advisors and technical indicators. In this case, for each type of

event, the input parameters of the function have certain values required to process the event.

Technical indicators

Another program type is a custom indicator. Indicators are programs that perform analytical functions

to assist traders in conducting technical analysis of the market situation. During their operation,

indicators process each price movement on the chart of their trading instrument. They can display

various graphical objects, thus generating signals for subsequent analysis by the trader.

Like Expert Advisors, custom indicators can use data from other indicators, instruments, and

timeframes in their calculations. But at the same time, indicators cannot perform trading operations.

Thus, the indicator application scope is limited to the framework of technical analysis.

Similar to Expert Advisors, technical indicators have Init, Timer, and ChartEvent event handlers. The

construction of functions for processing these events is similar to the corresponding functions of

electronic Expert Advisors, but instead of the NewTick event, the Calculate event is generated for

indicators. This event is handled by the OnCalculate function. There are two types of OnCalculate

function depending on the scope of the indicator:

· shorthand

//+------------------------------------------------------------------+

//| Custom indicator iteration function                              |

//+------------------------------------------------------------------+

int OnCalculate (const int rates_total, 

                 const int prev_calculated,

                 const int begin,

                 const double& price[] 

  {

//---

   

//--- return value of prev_calculated for the next call

   return(rates_total);

  }

· full



2. MetaTrader 5 features for algorithmic trading

66

2.1 Program types and their construction features

//+------------------------------------------------------------------+

//| Custom indicator iteration function                              |

//+------------------------------------------------------------------+

int OnCalculate(const int rates_total,

                const int prev_calculated,

                const datetime &time[],

                const double &open[],

                const double &high[],

                const double &low[],

                const double &close[],

                const long &tick_volume[],

                const long &volume[],

                const int &spread[])

  {

//---

   

//--- return value of prev_calculated for the next call

   return(rates_total);

  }

Within a single indicator, you can only use one of the versions of the function.

Both versions of the OnCalculate function have parameters:

· rates_ total: number of items in the timeseries,

· prev_ calculated: number of recalculated elements of the time series at the previous run of the

function.

The use of the prev_ calculated parameter allows you to implement algorithms in which the indicator

does not recalculate previously calculated historical values. This reduces the number of iterations in

processing each new price fluctuation.

The work of indicators in the MetaTrader 5 terminal is organized as follows. The prev_ calculated

parameter receives the value that the function returned at the previous run. Therefore, in the general

case, at the end of a successful function completion, it's sufficient to return the value of the rates_ total

parameter. If errors occur while the function is running, you can return the current value of

prev_ calculated. In this case, the function will start recalculating from the current location the next

time it is run. If you return 0, upon the next launch, the indicator will be recalculated for the entire

history, as it was during the initial launch.

When defined briefly, the function has only one input array of time series (price) and a parameter for

shifting significant values relative to the beginning of the time series (begin). In this version, the

calculation of indicator values is based on the data of one time series. Which time series will be used is

set by the trader when launching the technical indicator. This can be either any of the price time series

or the buffer values of another indicator.

When using the full version of the OnCalculate function, the function gets all price time series in its

parameters. In such a case, the user does not have the option to choose a time series when launching

the indicator. If it's necessary to use a buffer of data from another indicator, it needs to be explicitly

written in the program code of the indicator. 

In MetaTrader 5, there is a limitation in the ability to run only one Expert Advisor for each chart. If you

need to run two or more Expert Advisors in one terminal, you should open an individual chart for each

Expert Advisor. There is no such limitation for indicators as MetaTrader 5 allows you to use built-in and
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custom indicators in different versions in parallel on one chart of a trading instrument. The indicator

can display data both on the price chart of the instrument itself and in sub-windows. 

Scripts

Following launching, Expert Advisors and custom indicators remain in the terminal memory until they

are forcibly closed by the trader. As certain events occur, the terminal launches the relevant

functionality of Expert Advisors and indicators. Scripts are provided to perform any one-time

operations. This is a separate type of program that does not handle any events other than its startup

event.

Immediately after being launched, they perform the designated functionality and are unloaded from the

terminal's memory. Along with Expert Advisors, scripts are able to perform trading operations, but it is

impossible to run more than one script on a symbol chart at the same time. 

There is only one OnStart event handler in the body of the script, which is launched immediately after

the program starts. The OnStart function does not receive any parameters and does not return any

codes.

//+------------------------------------------------------------------+

//| Script program start function                                    |

//+------------------------------------------------------------------+

void OnStart()

  {

//---

   

  }

A separate program type is Services. Unlike the aforementioned types of programs, a service does not

require binding to a specific price chart of a trading instrument. Just like scripts, services do not

process any events other than their own launch. However, they are capable of generating custom

events themselves and sending them to charts for further processing in Expert Advisors. 

The MetaEditor development environment provides the possibility to create libraries and include files.

These files are designed to store and distribute frequently used program blocks. Libraries are compiled

files and provide individual functions for export to other running programs. The code of the executed

functions itself is hidden. Plug-in files, unlike libraries, are open-source files. In terms of performance,

it's preferable to use include files, but they do not ensure code secrecy during distribution.

In addition to event handlers, all programs can contain other functions and classes that will need to be

called from the event handler functions. They can also have external input parameters set by the user

when the program is launched.

Another technical aspect should also be taken into consideration. MetaTrader 5 is positioned as a

platform with multi-threaded computing. In this case, three threads are allocated for each trading

instrument's chart: one for the Expert Advisor, one for the script, and one for indicators. All indicators

loaded onto one trading instrument's chart operate within the same thread as the chart itself.

Therefore, it's not recommended to perform complex calculations within indicators.

Hence, we can use EAs or scripts to build our neural network.
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2.2 Statistical analysis and fuzzy logic tools

The MetaEditor development environment provides a separate type of include files with the mqh

extension, which enable the exchange of frequently used code blocks. MetaQuotes delivers MetaTrader

5 with a vast Standard Library, which includes classes and methods for implementing a wide variety of

tasks. This includes classes available for analyzing data using mathematical statistics and fuzzy logic. 

The library of mathematical statistics offers functionality for working with basic statistical distributions.

It has more than twenty distributions and five features are presented for each:

1. Calculation of distribution density.

2. Calculation of probabilities.

3. Calculation of distribution quantiles.

4. Generation of random numbers with a given distribution.

5. Calculation of theoretical distribution moments.

The library also allows you to calculate the statistical characteristics of a given data set. With the help

of this library, one can easily perform statistical analysis of a sample from the historical data of the

analyzed instrument. You can also compare the statistical indicators of several instruments and observe

the dynamics of the statistical indicators of one instrument based on historical data from different time

intervals.

Additionally, one can conduct a multifaceted and comprehensive analysis, and use its results as the

foundation for building one's trading system.

Before discussing the capabilities of the fuzzy logic library, let us consider the concept itself. The

concept of fuzzy logic was proposed by American scientist Lotfi Zadeh in 1965. This innovation allows

the addition of a certain share of subjectivity inherent in real life to calculations. After all, you'll agree

that when describing certain objects and processes, we often use vague and approximate reasoning.

We often hear the phrase "Words are used out of context." This suggests that the interpretation of

words and their use in speech is highly dependent on the context. It is also difficult to describe a single

candlestick on a chart. We can tell what color it is and mention the presence of shadows. But you'll

agree, with such a description, we can divide all candlesticks into two classes based on their color. In

fuzzy logic theory, these would be two sets.

https://www.metatrader5.com/en/metaeditor/help
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Candlesticks

For further description, we will need to introduce additional concepts and measurements. We can

compare a candlestick with neighboring candlesticks, calculate some kind of average, or take some

kind of benchmark and compare to it. In doing so, we again get an inaccurate description. The

deviation from our benchmark or average can vary, just as the influence of a factor can change

significantly depending on the size of this deviation. The application of fuzzy logic allows us to solve this

problem by introducing "fuzzy" set boundaries.

Three stages are distinguished in the history of fuzzy systems development:

1. 1960-70s: development of theoretical aspects of fuzzy logic and fuzzy sets;

2. 1970s-80s: the first practical results in the field of fuzzy systems control;

3. From the 1980s to the present day: the creation of various software packages for constructing

fuzzy systems significantly broadens the application scope of fuzzy logic.

Let us review the basic concepts of fuzzy set theory.

First, it is a fuzzy  set, that is, a set of values unified by some rules.

The mathematical description of these rules is combined into a membership function which is a

characteristic of a fuzzy set and is denoted by MF
C
(x) – the degree of the x value membership in the

fuzzy set C.

The set of values of initial data satisfying the membership function is called the term set.

A collection of fuzzy sets and their rules are combined into a fuzzy  model (system).

The results of the fuzzy model operation are determined from a combination of fuzzy sets using a

system of fuzzy logical inferences. The MQL5 fuzzy logic library implements the Mamdani and Sugeno

fuzzy logic inference systems.

To understand the differences between the usual mathematical description and the fuzzy logic

membership function, let us consider an example of the description of a Doji candlestick (a candlestick

without a body). Such candlesticks often act as harbingers of a trend change, as they appear in the

area of supply and demand equilibrium.



2. MetaTrader 5 features for algorithmic trading

70

2.2 Statistical analysis and fuzzy logic tools

In practice, it's rare to encounter a candlestick with a zero body size, where the opening price equals

the closing price with mathematical precision. Therefore, some sort of tolerance is used when

specifying a Doji. For example, let's assume that a Doji candlestick is any candlestick with a body of no

more than 5 pips.

With such an assumption, using conventional logic, candlesticks with a body size of 1 point and 4 points

will be classified as Doji and will have the same value for the strategy being used. At the same time, a

candlestick with a body of 6 pips will no longer fall into the Doji category and will be ignored by the

strategy. Why is it that a deviation of 3 points in the first case (4 - 1 = 3) doesn't matter, but a smaller

deviation of 2 points (6 - 4 = 2) in the second case makes a fundamental difference? The application of

fuzzy logic can smooth out these angles and account for deviations in both cases.

The figure below shows the chart of assigning a candlestick to the Doji class (set) depending on the

length of the candlestick body. The red line represents the classical mathematical logic with the

previously accepted allowance, and the green line reflects the rule of fuzzy logic. As we can see from

the graph, the use of fuzzy logic rules will allow us to make decisions depending on the strength level of

the incoming signal. For instance, if the candlestick body is larger and approaches the boundaries of

the fuzzy set, we can reduce the risk for the operation or even ignore such a signal.

Mathematically, the function showing the membership of a candlestick in the Doji fuzzy set can be

represented as:

 

Graph of assigning a candle to the Doji class (red - mathematical logic, green - fuzzy logic)

In this case, we have obtained a special case of the symmetric triangular activation function. To define

it, in fact, we needed only one parameter a which stands for boundary of the the range of 5 points. The

center of the distribution is at point 0. In the general case, to define a triangular membership function,

three parameters are required: the lower bound, the center, and the upper bound of the fuzzy set.
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There are other membership functions, but the most widespread are the aforementioned triangular,

trapezoidal, and Gaussian membership functions. Meanwhile, the triangular and trapezoidal functions

can be symmetric (when the left and right zones of boundary fuzziness are equal) and asymmetric.

The graph of a trapezoidal function differs from the graph of a triangular function by the presence of a

plateau in the upper part. To define such a function, four points are required, indicating the upper and

lower boundaries of the left and right zones of fuzziness. Between the blur zones, the function takes the

value 1, and to the left and right of these zones, it takes the value 0. For instance, let's introduce a

rule to determine the size of the body of an average candlestick with a body size ranging from 5 to 15

points and a fuzziness boundary zone of 5 points. The mathematical notation of such a rule will take the

form:

Thus, we have already defined the second rule for the candlestick body. It is common to show the set

of rules for a single variable on a single graph. In the chart below, the red triangular term represents

the Doji candlestick, and the green trapezoidal term represents the average candlestick.

The aggregate term sets of Doji (red) and the average statistical candlestick (green).

Please note that on the graph, there is no sharp division between the Doji and the average candlestick

at the 5-point mark, as it would be with threshold classification. Instead, we have a line crossing at

about 2.5 points. In this case, the membership function will take a value of about 0.5. This means that

a candlestick with a body of 2.5 points is equally applicable to the fuzzy Dodgy and medium candlestick

sets. In such a case, secondary factors should be looked at to determine the controlling influence.

Continuing such iterations, we can describe the rules for a candlestick with a large body, as well as add

rules for the candlestick shadows. Once we have done the work of defining the rules for describing

candlesticks and their components, we will be able to describe various candlestick patterns with ease.

For example, we can use fuzzy logic tools to describe a pin bar in quite a simple way by definition: a

candlestick with a long one shadow, a small body, and a small or absent second shadow.
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Note that using the rules of fuzzy logic allows us to move from clear values to some abstract definitions

and approximate reasoning inherent in human logic. Therefore, the concepts of linguistic and fuzzy

variables are introduced in fuzzy logic theory.

The linguistic variable has:

· A name, in the above examples it is "Candlestick Body";

· A set of its values referred to as the base termset. In our case, these are the Doji, Medium (regular)

and Large candlesticks;

· A set of permitted values;

· A syntactic rule that describes terms using natural language words;

· A semantic rule defining the correspondence between the values of a linguistic variable and a fuzzy

set of valid values.

In general practice, the fuzziness of the boundaries of fuzzy sets allows us to consider the natural

symbiosis of the influence of different forces in the areas of their intersection. It also allows us to

account for the fact that the effect of the force fades as the distance from the source of the impact

increases.

The presence of fuzzy rules is an important, but not the sole, part of constructing a model. The process

of fuzzy model building can be divided into three conventional stages:

1. Selecting baseline data

2. Defining a knowledge base (set of rules)

3. Defining the fuzzy logic inference method

It is quite natural that the entire construction process depends on the initial stage: the determination

of the set of source data influences both the overall possibility of their classification and the number of

possible classes (terms). Consequently, the set of rules (as well as their filling) for defining fuzzy sets is

also determined based on the set of permitted values and the task at hand. It should be noted that

even for the same set of input data, the underlying term set and rule set may vary depending on the

task at hand.

Very often the parameters of the rules for defining fuzzy sets are strongly influenced by the subjective

knowledge and experience of the model architect. Therefore, the practice of hybrid models has become

widespread. In them, the parameter selection of rules is carried out by a neural network during its

training on a training dataset.

Based on the created knowledge base, a fuzzy logic inference system is defined in the model. Fuzzy

logical inference is the process of obtaining a fuzzy set that corresponds to the current input values,

using fuzzy rules and fuzzy operations.

A number of logical operations have been developed for fuzzy sets, just as for regular sets. The main

ones are union (fuzzy OR) and intersection (fuzzy AND). There is a general approach to performing

fuzzy intersection, union, and complement operations.

To build the process of fuzzy logical inference, the MQL5 library offers the implementation of two main

methods: Mamdani and Sugeno.

When using the Mamdani method, the value of the output variable is defined by a fuzzy term. The fuzzy

rule of this method can be described as follows:

 

https://www.mql5.com/en/docs/standardlibrary/mathematics/fuzzy_logic/fuzzy_system/cmamdanifuzzysystem
https://www.mql5.com/en/docs/standardlibrary/mathematics/fuzzy_logic/fuzzy_system/csugenofuzzysystem
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Where:

· X = a vector of input variables

· Y = an output variable

· a = a vector of initial data

· d = a value of the output variable

· W = the rule weight

In the Sugeno method, unlike Mamdani, the value of the output variable is determined not by a fuzzy

set but by a linear function of the input data. The rule of this method is of the form:

 

where b is the vector of weights at free terms of the output value function.

2.3 OpenCL: Parallel computations in MQL5

A large huge number of calculations are carried out while training and running neural networks. This is a

rather resource-intensive process. Solving more complex problems also requires more complex neural

networks with a large number of neurons. With an increase in the number of neurons in the network,

the amount of computations performed increases, and consequently, the consumption of resources and

time also increases. While humanity has learned to create new and more advanced computational

machines, managing time is still beyond our capabilities.

It's natural that the next wave of neural network development has come with the advancement of

computational power. As a rule, neurons perform fairly simple operations, but in large numbers. At the

same time, there are a lot of similar neurons in the neural network. This allows for parallelizing

individual blocks of computations on different computational resources and then consolidating the

obtained data. As a result, the time for performing operations is significantly reduced.

The development of computing technologies has led to the emergence of video cards (GPU) with a

large number of computing cores capable of performing simple mathematical operations. Next, it

became possible to transfer part of the calculations from the CPU to the GPU, which made it possible

to parallelize the calculation process both between the microprocessor and the video card, and at the

video card level between different computing units.

OpenCL (Open Computing Language) is an open free standard for cross-platform parallel programming

of various accelerators used in supercomputers, cloud servers, personal computers, mobile devices, and

embedded platforms.

OpenCL is a C-like programming language that allows GPU computing. The support of this language in

MQL5 allows us to organize multi-threaded calculations of our neural networks on the GPU directly

from the MQL5 program.

To understand the organization of GPU computing, it is necessary to make a short digression into the

architecture of video cards and the OpenCL API.

In OpenCL terminology, a computer's microprocessor (CPU) is a Host. It manages all the processes of

the program that is being executed. All microprocessors with support for OpenCL technology in the CPU

and GPU are Devices. Each device has its own unique number within the platform.

https://www.khronos.org/opencl/
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One Device can have multiple Computer Units. Their number is determined by the number of physical

and virtual microprocessor cores. For video cards, these will be SIMD cores. Each SIMD core contains

several Stream Cores. Each thread processor has several processing elements Processing Elements (or

ALU).

The specific number of Computer Units, SIMD cores, Stream Cores, and Processing Elements depends

on the architecture of a particular device.

An important feature of the GPU is vector computing. Each microprocessor consists of several

computing modules. They can all execute the same instruction. At the same time, different executable

threads may have different initial data. This allows all threads of the GPU program to process data in

parallel. Thus, all computing modules are loaded evenly. A big advantage is that vectorization of

computations is done automatically at the hardware level, without the need for additional processing in

the program code.

OpenCL was developed as a cross-platform environment for creating programs using mass parallel

computing technology. The applications created in it have their own hierarchy and structure.

Organization of the program, preparation, and consolidation of data are carried out in the Host

program.

The Host, like a regular application, starts and runs on the CPU. To organize multi-threaded

computations, a context is allocated, which is an environment for executing specialized objects of the

OpenCL program. A context combines a set of OpenCL devices for running a program, the program

objects themselves with their source codes, and a set of memory objects visible to the host and to

OpenCL devices. The function responsible for creating a context in MQL5 is CLContextCreate, in which

the device for executing the program is specified as a parameter. The function returns a context

handle.

int CLContextCreate(

  int          device       // OpenCL device sequence number or macro

  );

Inside the context, an OpenCL program is created using the CLProgramCreate function. The parameters

of this function include the context handle and the source code of the program itself. As a result of the

function execution, we obtain a program handle.

int CLProgramCreate(

  int          context,     // handle for OpenCL context

  const string source       // source

  );

An OpenCL program is divided into separate kernels which are executable functions. The

CLKernelCreate function is provided for declaring a kernel. In the parameters of the function, you

specify the handle of the previously created program and the name of the kernel within it. At the

output, we get the handle of the kernel.

int CLKernelCreate(

  int          program,     // handle to an OpenCL object

  const string kernel_name  // kernel name

  );

Please note that later, when the kernel is called from the main program on the GPU, several of its

instances are launched in different parallel threads. This defines the index space, NDRange, which can

be one-dimensional, two-dimensional, or three-dimensional. NDRange is an array of integers. The size of

https://www.mql5.com/en/docs/opencl/clcontextcreate
https://www.mql5.com/en/docs/opencl/clprogramcreate
https://www.mql5.com/en/docs/opencl/clkernelcreate
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the array indicates the dimension of the space, and its elements indicate the dimension in each of the

directions.

Each copy of the kernel is executed for each index from this space and is called a Work-Item. Each

work item is provided with a global index ID. In addition, each such unit executes the same code, but

the data for execution may be different.

Work items are organized into Work-Groups. Work groups represent a larger partition in the index

space. Each group is assigned a group index ID. The dimensionality of work groups corresponds to the

dimensionality used for addressing individual elements. Each element is assigned a unique local index ID

within the group. Thus, work units can be addressed either by the global index ID or by a combination

of group and local indices.

This approach allows for reducing the computation time, but at the same time complicates the process

of data exchange between different kernel instances. This needs to be taken into account when

creating programs.

As mentioned above, the OpenCL program operates within its own context, isolated from the calling

program. As a consequence, it does not have access to the variables and arrays of the main program.

Therefore, before starting the program, you need to copy all the data necessary for executing the

program from RAM to GPU memory. After the kernel has finished its execution, the obtained results

need to be loaded back from the GPU memory. At this point, you need to understand that the time

spent on copying data from RAM to GPU memory and back is an overhead time when performing

calculations on video cards. Therefore, in order to reduce the overall execution time of the entire

program, transferring calculations to the GPU is advisable only when the time saved from GPU

computations significantly outweighs the costs of data transfer.

Inside the GPU, there is also a ranking of memory into global, local, and private. The fastest access is

achieved for the kernel to private memory, but access to it is only possible from the current instance of

the kernel. The most time-consuming access is required for the global memory, but its capacity is the

largest among the three mentioned. All running instances of the kernel have access to it. Global

memory is used to exchange information with the main program.

Global memory provides read and write access to elements for all work groups. Each Work-Item can

write to and read from any part of the global memory.

Local memory is a group-local memory area, in which you can create variables shared by the entire

group. It can be implemented as dedicated memory on the OpenCL device or allocated as a region

within the global memory.

Private memory is an area visible only to the Work-Item. Variables defined in the private memory of

one work item are not visible to others.

Sometimes constant memory is also allocated. This is an area of global memory that remains constant

during the execution of the kernel. The host allocates and initializes memory objects located in

constant memory.

Let's consider two implementations of a single task: one using the OpenCL technology and the other

without. As you will see later, one of the main operations we will be using is matrix multiplication. We

will be performing matrix multiplication of matrix by matrix and matrix by vector. For the experiment, I

propose comparing the multiplication of a matrix by a vector.

For the matrix-vector multiplication function in the classical implementation, we will use a system of

two nested loops. Below is an example of such an implementation. The function parameters include a
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matrix and two vectors: the matrix and one vector of input data, as well as one vector for storing the

results. According to the rules of vector mathematics, multiplication is only possible when the number

of columns in the matrix is equal to the size of the vector. The result of such an operation will be a

vector with a size equal to the number of rows in the matrix.

//+------------------------------------------------------------------+

//|  CPU vector multiplication function                              |

//+------------------------------------------------------------------+

bool MultCPU(matrix<TYPE> &source1, vector<TYPE> &source2, vector<TYPE> &result)

  {

//---

   ulong rows = source1.Rows();

   ulong cols = source1.Cols();

   if(cols != source2.Size())

     {

      PrintFormat("Size of vectors not equal: %d != %d", cols, source2.Size());

      return false;

     }

//---

   result = vector<TYPE>::Zeros(rows);

   for(ulong r = 0; r < rows; r++)

     {

      result[r] = 0;

      for(ulong c = 0; c < cols; c++)

         result[r] += source1[r, c] * source2[c];

     }

//---

   return true;

  }

//+------------------------------------------------------------------+

In the body of the function, we will first determine the dimensions of the matrix, check for compatibility

with the vector size, and set the size of the output vector to be equal to the number of rows in the

input matrix. After that, we will construct a system of loops. The outer loop will iterate over the rows of

the matrix and, accordingly, the elements of the result vector. In the body of this loop, we will start by

setting the corresponding element of the result vector to zero. Then, we will create a nested loop and

calculate the sum of the products of corresponding elements of the current matrix row and the vector.

The function is not complicated. However, the weak point of such an implementation is the increase in

execution time proportional to the growth of the number of elements in the matrix and the vector.

This issue can be solved by using OpenCL. Of course, such an implementation will be a little more

complicated. First, let's write an OpenCL program and save it in the mult_ vect_ ocl.cl file. The *.cl

extension is generally accepted for OpenCL programs, but not necessary for implementation in the

MQL5 environment. In this case, we will use the file only to store the program text, while the program

will be loaded as text.

We will enable support for the double data type in the program code. Please note that not all GPUs

support the double type. And even if they do, in most cases this functionality is disabled by default.



2. MetaTrader 5 features for algorithmic trading

77

2.3 OpenCL: Parallel computations in MQL5

//--- By default some GPUs don't support doubles

//--- cl_khr_fp64 directive is used to enable work with doubles

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

And another aspect to consider. MetaTrader 5 allows the use of OpenCL devices for calculations with

both double precision support and without. Therefore, when using the double data type in your OpenCL

program, it's important to check the compatibility of the used device. Otherwise, we can get an error

during the execution of the OpenCL program and while terminating its operation.

At the same time, MetaTrader 5 does not limit the ability to use all available data types. The OpenCL

language allows for the use of various scalar data types:

· Boolean: bool

· Integers: char, uchar, short, ushort, int, uint, long, ulong

· Floating-point: float, double

Similar data types are also supported in MQL5. It's important to remember that each data type has its

own limitations on the possible range of values, as well as the amount of memory used to store the

data. Therefore, if your program doesn't require high precision or the range of possible values isn't too

large, it's recommended to use less resource-intensive data types. This will allow more efficient use of

device memory and reduce the cost of copying data between the main memory and OpenCL context

memory. In particular, the type double can be replaced with float. It provides lower precision, but it

occupies half the memory and is supported by all modern OpenCL devices. This helps reduce the costs

of data transfer between devices and expand the application's usability.

OpenCL also allows you to use vector data types. Vectorization allows parallelizing computations at the

microprocessor level rather than at the software level. Using a vector of four elements of the type

double allows you to completely fill the 256-bit vector of SIMD instructions and perform calculations on

the entire vector in one cycle. In this way, during one clock cycle of the microprocessor, we perform

operations on four elements of our data array.

OpenCL supports vector variables of all integer and floating point types of 2, 3, 4, 8, and 16 elements.

However, the possibility of using them depends on the specific device. Therefore, before choosing a

vector dimension, check the technical characteristics of your equipment.

Now back to our program. Please provide the kernel code for calculating the vector product of a matrix

row with a vector. In the kernel parameters, we will specify pointers to the arrays of input data and

results. We will also pass the number of columns in the matrix as a parameter. The number of rows in

the matrix does not matter for operations in the kernel, since it only performs operations of multiplying

one row by a vector. Essentially, it is the multiplication of two vectors.

Note here that instead of the type of data buffers, we specified the abstract type TYPE. You will not find

such a data type in any documentation. In fact, as mentioned above, not all OpenCL devices support

the type double. To make our program more versatile, it was decided to replace the data type using a

macro substitution. We will specify the actual data type in the main program. This approach allows us

to literally change the data type in one place in the main program. After that, the entire program will

switch to working with the specified data type without the risk of losing information due to type

mismatch.

In the kernel body, the get_ global_ id function will specify the global ID index of the running Work-Item

unit. In this case, the index serves as an equivalent to the iteration counter of the outer loop in the

classical implementation. It specifies the sequence number of the matrix array and the element of the

result vector. Next, we will calculate the sum of values for the corresponding thread in a similar manner
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to the calculation inside the nested loop of the classical implementation. But there is a nuance here.

For the calculations, we will utilize vector operations with four elements. In turn, to use vector

operations, we need to prepare the data. We get an array of scalar elements from the Host program, so

we will transfer the necessary elements to our private vector variables using the ToVect function (we

will consider its code below). Then, using the vector operation dot, we obtain the value of the

multiplication of two vectors of four elements. In other words, with one operation, we obtain the sum of

the products of four pairs of values. The obtained value is added to a local variable where the product of

the matrix row and the vector accumulates.

After exiting the loop, we will save the accumulated sum into the corresponding element of the result

vector.

//+------------------------------------------------------------------+

//| Mult of vectors                                                  |

//+------------------------------------------------------------------+

__kernel void MultVectors(__global TYPE *source1,

                          __global TYPE *source2,

                          __global TYPE *result,

                          int cols)

  {

   int shift = get_global_id(0) * cols;

   TYPE z = 0;

   for(int i = 0; i < cols; i+=4)

     {

      TYPE4 x = ToVect(source1, i, cols, shift);

      TYPE4 y = ToVect(source2, i, cols, 0);

      z += dot(x,y);

     }

   result[get_global_id(0)] = z;

  }

As mentioned earlier, to transfer data from the scalar value buffer to a vector variable, we have created

the ToVect function. In the function parameters, we pass a pointer to the data buffer, the starting

element, the total number of elements in the vector (matrix row), and the offset in the buffer before

the beginning of the vector. The last parameter, offset, is needed to accurately determine the start of

a row in the matrix buffer since OpenCL uses one-dimensional data buffers.

Next, we check the number of elements until the end of the vector to avoid going beyond its bounds

and transfer the data from the buffer to the private vector variable. We fill the missing elements with

zero values.
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TYPE4 ToVect(__global TYPE *array, int start, int size, int shift)

  {

   TYPE4 result = (TYPE4)0;

   if(start < size)

     {

      switch(size - start)

        {

         case  1:

            result = (TYPE4)(array[shift+start], 0, 0, 0);

            break;

         case  2:

            result = (TYPE4)(array[shift+start], array[shift+start + 1], 0, 0);

            break;

         case  3:

            result = (TYPE4)(array[shift+start], array[shift+start + 1],

                             array[shift+start + 2], 0);

            break;

         default:

            result = (TYPE4)(array[shift+start], array[shift+start + 1],

                             array[shift+start + 2], array[shift+start + 3]);

            break;

        }

     }

   return result;

  }

As a result, the function returns the created vector variable with the corresponding values.

This completes the OpenCL program. Next, we will continue working on the side of the main program

(Host). MQL5 provides the COpenCL class in the standard library OpenCL.mqh for operations with

OpenCL.

First, let's perform the preparatory work: we will include the standard library, load the previously

created OpenCL program as a resource, and declare constants for the kernel, buffer, and program

parameters indices. We will also specify the data type used in the program. I specified the float type

because my laptop's integrated GPU does not support double.

https://www.mql5.com/en/docs/standardlibrary/copencl
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#include <OpenCL/OpenCL.mqh>

#resource "mult_vect_ocl.cl" as string OCLprogram

#define TYPE                        float

const string ExtType = StringFormat("#define TYPE %s\r\n"

                                    "#define TYPE4 %s4\r\n",

                                    typename(TYPE), typename(TYPE));

//+------------------------------------------------------------------+

//|  Defines                                                         |

//+------------------------------------------------------------------+

#define cl_program                  ExtType+OCLprogram

//---

#define k_kernel                    0

#define k_source1                   0

#define k_source2                   1

#define k_result                    2

#define k_cols                      3

Let's declare an instance of the class for working with OpenCL and variables for storing data buffer

handles. 

COpenCL*                  cOpenCL;

int                       buffer_Source1;

int                       buffer_Source2;

int                       buffer_Result;

In the next step, we will initialize an instance of the class. To do this, we will create the OpenCL_ Init

function. In the function parameters, we will pass the matrix and the vector of input data.

In the function body, we will create an instance of the class for working with OpenCL, initialize the

program, specify the number of kernels, and create pointers to the kernel and data buffers. We will also

copy the input data into the context memory. At each step, we check the results of the operations, and

in case of an error, we exit the method with a result of false. The function code is provided below.
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bool OpenCL_Init(matrix<TYPE> &source1, vector<TYPE> &source2)

  {

//--- creation of OpenCL program, kernel and buffers

   cOpenCL = new COpenCL();

   if(!cOpenCL.Initialize(cl_program, true))

      return false;

   if(!cOpenCL.SetKernelsCount(1))

      return false;

   if(!cOpenCL.KernelCreate(k_kernel, "MultVectors"))

      return false;

   buffer_Source1 = CLBufferCreate(cOpenCL.GetContext(), 

                                      (uint)(sizeof(TYPE) * source1.Rows() * 

                                             source1.Cols()), CL_MEM_READ_ONLY);

   buffer_Source2 = CLBufferCreate(cOpenCL.GetContext(),

                                     (uint)(sizeof(TYPE) * source2.Size()),

                                            CL_MEM_READ_ONLY);

   buffer_Result = CLBufferCreate(cOpenCL.GetContext(),

                                     (uint)(sizeof(TYPE) * source1.Rows()),

                                            CL_MEM_WRITE_ONLY);

   if(buffer_Result <= 0 || buffer_Source1 <= 0 || buffer_Source2 <= 0)

      return false;

   if(!CLBufferWrite(buffer_Source1,0,source1) ||

      !CLBufferWrite(buffer_Source2,0,source2))

     return false;

//---

   return true;

  }

The actual calculations will be carried out in the kernel. To run it, let's write the MultOCL function. In

the function parameters, we will pass a pointer to the result vector and the dimensions of the input

data matrix.

First, we will pass pointers to data buffers and parameters of buffer sizes to the kernel. These

operations are performed by the CLSetKernelArgMem and SetArgument methods. We define the index

space in the NDRange array according to the number of rows in the source data matrix. The kernel is

launched for execution using the Execute method. After executing the entire array of kernel instances,

we read the computation results from the device memory using the CLBufferRead method.
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bool MultOCL(int rows, int cols, vector<TYPE> &result)

  {

   result=vector<TYPE>::Zeros(rows);

//--- Set parameters

   if(!CLSetKernelArgMem(cOpenCL.GetKernel(k_kernel), k_source1, buffer_Source1))

      return false;

   if(!CLSetKernelArgMem(cOpenCL.GetKernel(k_kernel), k_source2, buffer_Source2))

      return false;

   if(!CLSetKernelArgMem(cOpenCL.GetKernel(k_kernel), k_result, buffer_Result))

      return false;

   if(!cOpenCL.SetArgument(k_kernel, k_cols, cols))

      return false;

//--- Run kernel

   int off_set[] = {0};

   int NDRange[] = {rows};

   if(!cOpenCL.Execute(k_kernel, 1, off_set, NDRange))

      return false;

//--- Get result

   uint data_read = CLBufferRead(buffer_Result, 0, result);

   if(data_read <= 0)

      return false;

//---

   return true;

  }

After the program has finished running, it's necessary to release resources and delete the instance of

the class for working with OpenCL. This functionality is performed in the OpenCL_ Deinit function. In it,

we will first check the validity of the pointer to the object, then call the Shutdown method to release

resources, and finally delete the object.

void OpenCL_Deinit()

  {

   if(!cOpenCL)

      return;

//---

   cOpenCL.Shutdown();

   delete cOpenCL;

  }

Obviously, when using OpenCL, the amount of work for the programmer increases. What do we get in

return?

To evaluate the performance, let's create a small script opencl_ test.mq5. In the external parameters of

the script, we specify the size of the input data matrix.

//+------------------------------------------------------------------+

//| External parameters                                              |

//+------------------------------------------------------------------+

sinput int Rows = 100000;   // Rows in a matrix

sinput int Colms = 100;     // Columns in a matrix

In the body of the script, let's declare the matrix and data vectors We will fill the input data with

random values.
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//+------------------------------------------------------------------+

//| Script Program                                                   |

//+------------------------------------------------------------------+

void OnStart()

  {

   matrix<TYPE> X = matrix<TYPE>::Zeros(Rows, Colms);

   vector<TYPE> Y = vector<TYPE>::Zeros(Colms);

   vector<TYPE> Z;

   for(int i = 0; i < Colms; i++)

     {

      for(int r = 0; r < Rows; r++)

         X[r, i] = MathRand() / (TYPE)32767;

      Y[i] = MathRand() / (TYPE)32767;

     }

In the next step, we will initialize the OpenCL context by calling the previously discussed OpenCL_ Init

function. At the same time, do not forget to check the results of the operations.

   if(!OpenCL_Init(X, Y))

      return;

Now we can measure the speed of operations in the OpenCL context. Using the GetTickCount function,

we get the number of milliseconds from the system start before and after the calculations. Calculations

are feasible in the previously considered MultOCL function.

   uint start = GetTickCount();

   if(!MultOCL(Rows, Colms, Z))

      Print("Error OCL function");

   uint end = GetTickCount();

   PrintFormat("%.1e OCL duration %0 000d msec, result %.5e",

                           Rows * Colms, end - start, Z.Sum());

   OpenCL_Deinit();

After performing the operations, we clear the OpenCL context.

In a similar manner, we will measure the execution time of operations using the classical method on the

CPU.

   start = GetTickCount();

   if(!MultCPU(X, Y, Z))

      Print("Error CPU function");

   end = GetTickCount();

   PrintFormat("%.1e CPU duration %0 000d msec, result %.5e",

                            Rows * Colms, end - start, Z.Sum());

In conclusion of the script, we will once again add a timing measurement for the matrix-vector

multiplication using matrix operations in MQL5.
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   start = GetTickCount();

   Z = X.MatMul(Y);

   end = GetTickCount();

   PrintFormat("%.1e matrix operation duration %0 000d msec, result %.5e", 

                                        Rows * Colms, end - start, Z.Sum());

  }

The described script was tested on a laptop with an Intel Core i7-1165G7 CPU and an integrated

Intel(R) Iris(R) Xe GPU. Based on the measured execution times, the OpenCL technology emerged as

the winner. The slowest was the classical implementation using the nested loops system. Furthermore,

the computation results were identical in all three variants.

The results of the comparative testing of computations using OpenCL and without it are as follows:

It's important to note that when measuring the computation speed using OpenCL technology, we

excluded overhead costs such as the initialization and deinitialization of the OpenCL context, program,

buffers, and data transfer. Therefore, when performing individual operations, its usage might not be as

efficient. However, as will be shown further, during the training and operation of neural networks, there

will be many such operations, and the process of initializing the OpenCL context and program will only

occur once, during the program launch. At the same time, we will try to minimize the process of data

exchange between devices. Therefore, utilizing this technology will be highly beneficial.

2.4 Integration with Python

Python is a high-level programming language with dynamic typing and automatic memory management.

It is oriented towards improving developer productivity and code readability, and it belongs to fully

object-oriented programming languages.

Python belongs to interpreted programming languages. It is often used to create scripts.

The syntax of the language is minimalistic, which increases the productivity of the programmer. In

conjunction with the language interpretability, this allows for quick coding and immediate testing of

individual program components. This helps reduce the time spent on finding and fixing errors during

debugging of software products, and in some cases, it enables the evaluation of solution effectiveness

at the design stage without the need to create a complete product.

At the same time, interpreted programming languages are noticeably inferior to compiled ones in terms

of program execution speed. The solution to this problem lies within the Python architecture itself. It is

designed so that its small core can be easily extended with a set of libraries, including those written in

compiled programming languages.

Thus, Python can be compared to a constructor in which programs are assembled from ready-made

blocks that are already written and defined in libraries. This explains the large number of standard

libraries. Moreover, in your program, you utilize only the functionality that is necessary to solve a

specific task.
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An unusual feature of the language is the use of whitespace indentation to denote code blocks. If

you're accustomed to the clear delineation of code blocks with curly braces in C-like languages, this

might seem inconvenient. On the other hand, structuring the program code makes it visually

understandable. One glance at the code is enough to determine the presence of nested blocks and their

boundaries.

At the same time, this places a certain responsibility on the programmer. While in languages where the

compiler checks for the presence of opening and closing braces and issues an error message if they

don't match, in the case of structuring code with indentation, the responsibility lies entirely on the

programmer. In this case, an incorrect structure can change the course of program execution. 

Dynamic typing allows the programmer to be less concerned about data compatibility when storing

them in variables, as the variables will automatically acquire the type of data being assigned.

The standard library contains a large set of useful functions. There are tools for working with text, and

for writing network applications.

Additional functionality can be implemented using a wide range of third-party libraries. Among them,

you can find tools for mathematical modeling, and for writing web applications, and for developing

games. In addition, there is the possibility of integrating libraries written in C or C++ and other

languages.

A specialized software repository has been created for software written in Python, which provides tools

for easy installation of packages into the operating system. Among the repository libraries, you can find

functions to suit any preference, including those for currency markets and machine learning.

Considering all the above, Python has become one of the most popular programming languages. It is

used in data analysis and machine learning. As of July 2021, Python is ranked third in the TIOBE

Programming Language Popularity Rankings with a score of 10.95%.

Starting the with Build 2085 version, released in June 2019, MetaTrader 5 received API for requesting

data from the terminal to Python applications. Since then, this functionality has been constantly

developed. Currently, you can run Python scripts directly on the terminal chart along with MQL5

applications.

At the same time, the functionality of Python applications is also expanding. You can fetch quotes from

the terminal for analysis and based on the analysis results, open and close positions, and set pending

orders. There's also the capability to retrieve information about the current account status, open

positions, and orders. For a complete list of features, see the Python integration documentation page.

To set up a Python connection to MetaTrader 5, you first need to download and install the latest

version of the interpreter from https://www.python.org/downloads/windows/.

When installing Python, be sure to check the "Add Python 3.9 to PATH%" checkbox (version may

vary ) to be able to run Python scripts from the command line.

After that, launch and update the MetaTrader5 module. In this case, we are talking about the Python

library, not the terminal. To do this, enter the following commands at the command prompt.

pip install MetaTrader5

pip install --upgrade MetaTrader5

After these iterations, Python scripts will be able to access operations with the MetaTrader 5 terminal.

MetaEditor also has Python support. In the editor settings on the "Compilers" tab, all you need to do is

specify the location of the interpreter.

https://www.mql5.com/en/docs/python_metatrader5
https://www.python.org/downloads/windows/
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After that, you can create multilingual projects in the MetaEditor integrated environment. Such projects

will include programs written in MQL and Python. Similarly, you can add support for the C/C++

language. 

Python integration in MetaEditor

3. Building the first neural network model using MQL5

This book should not be regarded as a textbook for studying artificial intelligence and neural networks.

Its purpose is not to serve as a comprehensive work that encompasses all aspects of this field. On the

contrary, the book provides only the basic concepts without delving into the mathematical explanations

of specific points.

It aims to be a practical work. We invite you to explore possible solutions to a practical case and

compare the effectiveness of different algorithms in solving a particular problem. We believe this book

will be useful in studying the practical implementation of various neural network algorithms, their

training, and practical use.

And, of course, our case study will be directly related to financial markets. Artificial intelligence

technologies have long been used in the financial sector, but this topic has not yet received wide

coverage. This is largely due to the commercial use of such products.

This chapter delves into the topic of algorithmic trading, with an emphasis on demonstrating various

methodologies for addressing tasks related to algorithmic trading, as well as analyzing and comparing

the performance of different algorithmic approaches. The discussion is based on a clear statement of

the problem, which includes defining key objectives and constraints specific to the financial markets

context.

A separate section covers the selection and analysis of raw data, including the choice of suitable

financial metrics and the analysis of their correlations. It also explains the features of time series,

which are critically important for successfully forecasting market movements. Also, the chapter shows
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how to create the framework of the future program in MQL5 and how to declare constants to ensure

code robustness and portability. You will learn how to describe the structure of the created neural

network and how to effectively organize work with complex network architectures.

In the section on creating the base neural network class, you will be introduced to the concepts of

feed-forward and backpropagation runs in the context of neural network programming. Special

attention is given to dynamic arrays for storing neural layers, greatly simplifying the management of

complex data structures during the development process.

The description of methods for integrating a neural network into a Python program provides an

understanding of how various components of a neural network can be combined into a single system

using the capabilities of this popular programming language. The section on the fully connected neural

layer provides details about its architecture and creation principles, explaining the general structure

and operation of such layers in neural networks. In addition, it covers the process of creating an

activation function class and selecting appropriate activation functions.

The section on parallel computing using OpenCL demonstrates how this technology can be used to

speed up computational processes in neural networks. This solution can significantly increase the

efficiency of data processing by distributing tasks among several computing devices.

3.1 Problem statement

Before embarking on the practical implementation of our first neural network, it's essential to define

the objective and the means to achieve it. When developing the architecture of a neural network, we

must have a clear understanding of what data should be provided as input and output for the neural

network. The number of neurons in the input layer and their type entirely depend on the dataset being

used. The architecture of the output layer depends on the expected outcome and on how the results of

the developed neural network's work will be represented. 

Let's formulate a problem that we would like to solve using artificial intelligence. We work on financial

markets, and we need a tool to forecast the future movement of the analyzed instrument. The task

seems somewhat familiar and is often on the minds of traders. Everyone tries to solve it in their own

way.

But there are no specifics in this task. What do we mean by "future movement"? Does the future arrive

in 5 minutes, 1 hour, 1 day, or 1 month? How about something in between? What is the minimum price

movement we will react to? What metrics can we use to evaluate the accuracy of our model's

performance? Our goal must be specific and measurable.

We realize that price does not move in a straight line. There are always large and small price

fluctuations. Small fluctuations are essentially noise. To identify trends and tendencies that can

potentially yield profits, we must filter out this noise. The MetaTrader 5 platform provides the ZigZag

indicator. It is one of the oldest indicators used in financial markets. The sole purpose of this indicator

is to identify the most significant extremes on the instrument's chart, thereby indicating trends and

tendencies while excluding minor noisy fluctuations.
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ZigZag on the price chart of the instrument

Three parameters are used to customize the indicator:

· Depth sets the number of candlesticks to search for extrema. As the parameter increases, the

indicator highlights the most significant extremes.

· Deviation defines the number of points between two neighboring extrema to be displayed on the

chart.

· Backstep indicates the minimum distance between neighboring extrema in candlesticks.

In our case, we can use ZigZag to find extrema and specify training targets for our neural network. By

applying the indicator to historical data of the training set, we can determine the direction and distance

to the nearest extreme for each candlestick and its preceding candlestick combination. By doing so, we

will teach the model to determine the potential direction and strength of a future price movement.

Metrics for evaluating the model's performance can include both the proportion of correctly predicted

directional movements and the accuracy in determining the strength of such movements.

The task of predicting the upcoming direction of movement is regarded as a binary classification

problem. Based on the ZigZag indicator data, at any given point we can have either an upward

movement of the price chart (Buy) or a downward movement of the price chart (Sell). This does not

contradict the generally accepted division of trend movements into BUY, SELL, and FLAT, as flat

movements are essentially alternating Buy and Sell oscillations of small amplitude.

At the same time, using mathematical statistics alone, we cannot provide a definitive answer about the

direction of the upcoming movement. We can only provide a probabilistic answer based on our past

experience. We will "draw" this experience from the training sample.

As for predicting the strength of movement, here we would like to obtain a quantitative assessment.

This will help to correctly assess the risk of the trade and determine the point for setting take profit

with the highest probability of achievement.
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In this way, the task of predicting future movement becomes specific and measurable. Let's formulate

it as forecasting the most probable direction of the upcoming price movement and its expected

strength.

3.2 File arrangement structure

In this book, we will create many files for various purposes. Before proceeding, I suggest that you

decide on the structure of the file arrangement. It should be noted that working in the MQL5

development environment imposes some limitations on the file structure: each type of program has its

own directory.

· terminal_ dir\MQL5\Experts is the directory for storing Expert Advisors; 

· terminal_ dir\MQL5/Indicators stores indicators;

· terminal_ dir\MQL5\Scripts is the directory for scripts;

· terminal_ dir\MQL5\Include is the directory for storing various libraries of included files;

· terminal_ dir\MQL5\Libraries is the directory for storing compiled dynamic libraries.

At the same time, the development environment does not restrict the creation of subdirectories for

organizing files. Within the scope of this book, we will be creating three types of files. First and

foremost, we have our library of include files, where we will primarily focus on organizing the operation

of neural network models. As part of testing the created models, we will be generating and using

various scripts. At the end of the book, we will create an Expert Advisor template to demonstrate the

approaches of using models in practical trading.

Thus, we will create our files in three subdirectories:

· terminal_ dir\MQL5\Experts for Expert Advisors; 

· terminal_ dir\MQL5\Scripts for scripts;

· terminal_ dir\MQL5\Include for various libraries of included files.

To separate our files from all others, we will create a NeuroNetworksBook subdirectory in each of the

specified directories. We will specify deeper structuring for each file we create.

3.3 Choosing the input data

Having defined the problem statement, let's now turn our attention to the selection of input data. There

are specific approaches to this task. At first glance, it might seem like you could load all available

information into the neural network and let it learn the correct dependencies during training. This

approach will prolong learning indefinitely, without guaranteeing the desired outcome.

The first challenge we face is the volume of information. To convey a large amount of information to

the neural network, we would need a considerably large input layer of neurons with a substantial

number of connections. Hence, more training time will be required.

Furthermore, we will encounter the issue of data incomparability. Samples of different metrics will have

very different statistical characteristics. For example, the price of an instrument will always be positive,

while its change can be both positive and negative.

Some indicators have normalized values and others do not. The magnitudes of values for various

indicators and the amplitude of their changes can differ by orders of magnitude. However, their impact



3. Building the first neural network model in MQL5

90

3.3 Choosing the input data

on the outcome may be comparable, or an indicator with lower values may have an even greater

impact.

Such a situation will significantly complicate the training process, as it will be challenging to discern the

impact of small values within an array of large values.

Another problem lies in the use of highly correlated features. The presence of a correlation between

features can indicate either a cause-and-effect relationship between them or that both variables are

dependent on a common underlying factor. Consequently, the use of correlated variables combines the

two mentioned problems and their consequences. Using multiple variables depending on one factor

exaggerates its impact on the overall outcome. Unnecessary neural connections complicate the model

and delay learning.

Selecting features

Let's undertake preparatory work, taking into account the considerations mentioned above. Of course,

we won't manually select and compare data, as we live in the era of computer technology. To calculate

the correlation coefficient, let's create a small script in the file initial_ data.mq5.

As a reminder, according to the previously described directory structure, all scripts are saved in the

folder terminal_ dir\MQL5\Scripts. For the scripts in our book, we will create the NeuroNetworksBook

subdirectory, and for all the scripts in this chapter, we will create the initial_ data subdirectory. So the

full path of the file to be created will be:

· terminal_ dir\MQL5\Scripts\NeuroNetworksBook\initial_ data\initial_ data.mq5

We will directly calculate the correlation coefficient using the Mathematical Statistics Library from the

MetaTrader 5 platform. In the script header, include the necessary library, and in the external

parameters, specify the period for analysis.

#include <Math\Stat\Math.mqh>

//+------------------------------------------------------------------+

//| Script Parameters                                                |

//+------------------------------------------------------------------+

input datetime Start = D'2015.01.01 00:00:00';   // Period Start

input datetime End  = D'2020.12.31 23:59:00';    // Period End

When you run a script, MetaTrader 5 generates a Start event that is handled by the OnStart function

in the script body. At the beginning of this function, we get multiple indicator handles for further

analysis.

Note that first on my list of indicators is ZigZag, which we will use to get reference values when training

the neural network. Here, we will use it to check the correlation of indicator readings with reference

values.

Indicator settings are defined by the user at the problem statement stage. The neural network will be

trained on the M5 timeframe data, so I set the Depth parameter to 48, which corresponds to four

hours. In this way, I expect that the indicator will reflect 4-hour extremes.

The selection of the indicators list and parameters is up to the neural network architect. Parameter

tuning is also possible when assessing correlation, which we will explore a bit later. At this stage, let us

specify the indicators and their parameters from our subjective considerations.
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void OnStart(void)

  {

   int h_ZZ=iCustom(_Symbol,PERIOD_M5,"Examples\\ZigZag.ex5",48,1,47);

   int h_CCI=iCCI(_Symbol,PERIOD_M5,12,PRICE_TYPICAL);

   int h_RSI=iRSI(_Symbol,PERIOD_M5,12,PRICE_TYPICAL);

   int h_Stoh=iStochastic(_Symbol,PERIOD_M5,12,8,3,MODE_LWMA,STO_LOWHIGH);

   int h_MACD=iMACD(_Symbol,PERIOD_M5,12,48,12,PRICE_TYPICAL);

   int h_ATR=iATR(_Symbol,PERIOD_M5,12);

   int h_BB=iBands(_Symbol,PERIOD_M5,48,0,3,PRICE_TYPICAL);

   int h_SAR=iSAR(_Symbol,PERIOD_M5,0.02,0.2);

   int h_MFI=iMFI(_Symbol,PERIOD_M5,12,VOLUME_TICK);

The next step is to load historical quotes and indicator data. To obtain historical data, we will create a

series of arrays with names corresponding to the names of indicators and quotes. This will help us avoid

confusion while working with them.

Price data in MQL5 can be obtained by CopyOpen, CopyHigh, CopyLow, and CopyClose functions. The

functions are created according to the same template, and it is clear from the function name which

quotes it returns. The CopyBuffer function is responsible for receiving data from indicator buffers. The

function call is similar to the function for obtaining quotes, with the only difference being that the

instrument's name and timeframe are replaced with the indicator handle and the buffer number. I'll

remind you that we obtained the indicator handles a little earlier.

   double close[], open[],high[],low[];

   if(CopyClose(_Symbol,PERIOD_M5,Start,End,close)<=0 ||

      CopyOpen(_Symbol,PERIOD_M5,Start,End,open)<=0   ||

      CopyHigh(_Symbol,PERIOD_M5,Start,End,high)<=0   ||

      CopyLow(_Symbol,PERIOD_M5,Start,End,low)<=0)

      return; 

All functions write data to the specified array and return the number of copied values. So, when making

the call, we check for the presence of loaded data, and if there is no data, we exit the script. In this

case, we'll give the terminal some time to load quotes from the server and recalculate indicator values.

After that, we will rerun the script.
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   double zz[], cci[], macd_main[], macd_signal[],rsi[],atr[], bands_medium[];

   double bands_up[], bands_low[], sar[],stoch[],ssig[],mfi[];

   datetime end_zz=End+PeriodSeconds(PERIOD_M5)*(12*24*5);

   if(CopyBuffer(h_ZZ,0,Start,end_zz,zz)<=0 ||

      CopyBuffer(h_CCI,0,Start,End,cci)<=0  ||

      CopyBuffer(h_RSI,0,Start,End,rsi)<=0  ||

      CopyBuffer(h_MACD,MAIN_LINE,Start,End,macd_main)<=0     ||

      CopyBuffer(h_MACD,SIGNAL_LINE,Start,End,macd_signal)<=0 ||

      CopyBuffer(h_ATR,0,Start,End,atr)<=0  ||

      CopyBuffer(h_BB,BASE_LINE,Start,End,bands_medium)<=0 ||

      CopyBuffer(h_BB,UPPER_BAND,Start,End,bands_up)<=0    ||

      CopyBuffer(h_BB,LOWER_BAND,Start,End,bands_low)<=0   ||

      CopyBuffer(h_SAR,0,Start,End,sar)<=0  ||

      CopyBuffer(h_Stoh,MAIN_LINE,Start,End,stoch)<=0  ||

      CopyBuffer(h_Stoh,SIGNAL_LINE,Start,End,ssig)<=0 ||

      CopyBuffer(h_MFI,0,Start,End,mfi)<=0)

     {

      return;

     }

As mentioned above, not all variables are comparable. Although linear transformations will not

significantly affect the correlation coefficient, we still need to preprocess some values.

First, this applies to parameters that directly point to the instrument price. Since our goal is to create

a tool capable of projecting accumulated knowledge onto future market situations, where there will be

similar price movements but at a new price level, we need to move away from absolute price values and

move toward a relative range.

So, instead of using the candlestick opening and closing prices, we can take their difference (the size of

the candlestick body) as an indicator of price movement intensity. We will also replace the High and

Low candlestick extremes with their deviation from the opening or closing price. We will treat SAR and

Bollinger Bands indicators in the same way.

Remember the classic MACD trading rules. In addition to the actual indicator values, their position

relative to the signal line within the histogram is also crucial. To test this relationship, let’s add the

difference between the indicator lines as another variable.

Now, let's address our reference point for the price movement. The ZigZag indicator gives absolute

price values of extremes on a particular candlestick. However, we ideally want to know the price

reference point for each market situation. In other words, we need a price guide for the upcoming

movement on each candlestick. In doing so, we will consider two options for such a benchmark:

· Direction of movement (vector target1).

· Magnitude of movement (vector target2).

We can solve this task using a loop. We will iterate over the ZigZag indicator values in reverse order

(from the newest values to the oldest values). If the indicator finds an extremum, we will save its value

in a local variable extremum. If there is no extremum, we will use the last saved value.

Simultaneously, in the same loop, we will calculate and save the target values for our dataset. For this,

we will subtract the closing price of the analyzed bar from the price value of the last peak. This way we

get the magnitude of the movement to the nearest future extremum (target2 vector). The sign of this

value will indicate the direction of movement (vector target1).
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   int total = ArraySize(close);

   double target1[], target2[], oc[], bmc[], buc[], blc[], macd_delta[];

   if(ArrayResize(target1, total) <= 0 || ArrayResize(target2, total) <= 0 ||

      ArrayResize(oc, total) <= 0 || ArrayResize(bmc, total) <= 0   ||

      ArrayResize(buc, total) <= 0 || ArrayResize(blc, total)  <= 0 ||

      ArrayResize(macd_delta, total) <= 0)

      return;

   double extremum = -1;

   for(int i = ArraySize(zz) - 2; i >= 0; i--)

     {

      if(zz[i + 1] > 0 && zz[i + 1] != EMPTY_VALUE)

         extremum = zz[i + 1];

      if(i >= total)

         continue;

      target2[i] = extremum - close[i];

      target1[i] = (target2[i] >= 0);

      oc[i] = close[i] - open[i];

      sar[i] -= close[i];

      bands_low[i] = close[i] - bands_low[i];

      bands_up[i] -= close[i];

      bands_medium[i] -= close[i];

      macd_delta[i] = macd_main[i] - macd_signal[i];

     }

After completing the preparatory work, we will proceed to check the data correlation. Since we'll be

performing the same operation for different indicator data, it makes sense to encapsulate this iteration

in a separate function. From the body of the Start function, we will only make the function call, passing

different source data to it. The results of the correlation analysis will be saved to a CSV file for further

processing.
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   int handle = FileOpen("correlation.csv", FILE_WRITE | FILE_CSV | FILE_ANSI,

                                                                "\t", CP_UTF8);

   string message = "Indicator\tTarget 1\tTarget 2";

   if(handle != INVALID_HANDLE)

      return;

   FileWrite(handle, message);

//---

   Correlation(target1, target2, oc, "Close - Open", handle);

   Correlation(target1, target2, hc, "High - Close %.5f", handle);

   Correlation(target1, target2, lc, "Close - Low", handle);

   Correlation(target1, target2, cci, "CCI %.5f", handle);

   Correlation(target1, target2, rsi, "RSI", handle);

   Correlation(target1, target2, atr, "ATR", handle);

   Correlation(target1, target2, sar, "SAR", handle);

   Correlation(target1, target2, macd_main, "MACD Main", handle);

   Correlation(target1, target2, macd_signal, "MACD Signal", handle);

   Correlation(target1, target2, macd_delta, "MACD Main-Signal", handle);

   Correlation(target1, target2, bands_medium, "BB Main", handle);

   Correlation(target1, target2, bands_low, "BB Low", handle);

   Correlation(target1, target2, bands_up, "BB Up", handle);

   Correlation(target1, target2, stoch, "Stochastic Main", handle);

   Correlation(target1, target2, ssig, "Stochastic Signal", handle);

   Correlation(target1, target2, mfi, "MFI", handle);

//---

   FileFlush(handle);

   FileClose(handle);

  }

The algorithm of our correlation test method is pretty straightforward. The correlation coefficient is

calculated using the MathCorrelationPearson function from the MQL5 standard statistical analysis

library. We will call this function sequentially for two sets of data:

· Indicator and direction of the upcoming movement; and

· Indicator and strength of the upcoming movement.

The results of the analysis are used to form a text message, which is then written to a local file.
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void Correlation(double &target1[], double &target2[],

                          double &indicator[], string name,

                          int handle)

  { 

//---

   double correlation=0;

   string message="";

   if(MathCorrelationPearson(target1,indicator,correlation))

      message=StringFormat("%s\t%.5f",name,correlation);

   if(MathCorrelationPearson(target2,indicator,correlation))

      message=StringFormat("%s\t%.5f",message,correlation);

   if(handle!=INVALID_HANDLE)

      FileWrite(handle,message);

  }

The results of my analysis are presented in the graph below. The data show that there is no correlation

between our target data and the ATR indicator values. The deviation from the extremes of the

candlestick to its closing price (High – Close, Close – Low) also shows a low correlation with the

expected price movement. Consequently, we can safely exclude these figures from our further analysis.

Correlation of indicator values with expected price movements

In general, the conducted analysis shows that determining the direction of the upcoming movement is

much easier than predicting its strength. All indicators showed a higher correlation with the direction

rather than the magnitude of the upcoming movement. However, the correlation with all values remains

rather low. The RSI indicator demonstrated the highest correlation, with a value of 0.40 for the

direction and 0.22 for the magnitude of the movement.

The correlation coefficient takes values from -1 (inverse relationship) to 1 (direct relationship), with 0

indicating a complete absence of dependence between random variables.
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It's worth noting that among the three arrays of data obtained from the MACD indicator (histogram,

signal line, and the difference between them), it's the distance between the MACD lines that

demonstrated the highest correlation with the target data. This only confirms the validity of the

classical approach to using indicator signals.

The next step is to test the correlation between data from different indicators. To avoid comparing

each indicator with all others, we will analyze the correlation of indicators with RSI (the winner of the

previous stage). We will perform the task using the previously created script with minor modifications.

The new script will be saved in the file initial_ data_ rsi.mq5 in our subdirectory.

Correlation of indicator values to RSI

The analysis showed a strong correlation of RSI with a range of indicators. Stochastic, CCI, and MFI

have a correlation coefficient with RSI which is greater than 0.70, while the main line of Bollinger Bands

showed an inverse correlation of -0.76 with RSI. This indicates that the indicators mentioned above will

only duplicate signals. Including them for analysis in our neural network will only complicate its

architecture and maintenance. The expected impact of their use will be minimal. Therefore, we are

excluding the aforementioned indicators from further analysis.

The indicators that show the minimum correlation with RSI are the two deviation variables:

· MACD signal line (0.40);

· Between opening and closing prices (0.23).

The deviation of the MACD signal line from the histogram in the first step showed a strong correlation

with the target data of the upcoming price movement. Based on this data, it is MACD that will be taken

into our indicator basket. Next, we will check its correlation with the remaining indicators.

The updated script is saved in the file initial_ data_ macd.mq5 in the subdirectory.
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Correlation of indicator values to MACD Main-Signal

The SAR indicator here shows some interesting data. With moderate levels of inverse correlation to the

target data, it shows a relatively high negative correlation with both selected indicators. The correlation

coefficient with MACD was -0.66 and for RSI it was -0.62. This gives us reason to exclude the SAR

indicator from the basket of analyzed indicators.

A similar situation is observed for all three Bollinger Bands indicator lines.

So far, we have selected two indicators for our indicator basket for further training of the neural

network.

But this is not the end of the road to initial data selection. It should be noted that the neural network

analyzes linear dependencies between the target values and the initial data in their pure form. So, it

analyzes the data that is input into it. Each indicator is analyzed in isolation from other data available

on the neuron input layer.

Hence, the neural network won't be able to capture the relationship between the source data and

target values if it's not a linear relationship, such as being power law or logarithmic instead. To find

such relationships, we need to prepare data beforehand. And to test the usefulness of such work, we

need to test the correlation between such values.

In the script initial_ data_ rsi_ pow.mq5, we will analyze the change in correlation with the expected price

movement when the RSI indicator values are set to different degrees. The new script can be saved in

the appropriate subdirectory.
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The dynamics of how the correlation of RSI values changes in relation to the expected movement when raising the

indicator to a power.

The presented graph clearly shows that as the exponentiation of the indicator values increases, the

correlation with the original values decreases much faster than with the expected price movement. This

observation gives us a potential opportunity to expand the basket of original data indicators with

exponential values of the selected indicators. A little later, we will be able to see how it works in

practice. 

It's important to note that when using exponential operations on indicators, you need to consider the

properties of exponents and the nature of indicator values. Indeed, when raising any number to an even

exponent, the result will always be positive. In other words, we lose the sign of the number.

For example, if we have two equal-magnitude values of a certain indicator with opposite signs, and they

correlate with the target data. If the indicator is positive, the target function grows and if it is negative,

it falls. Squared values for such an indicator will give us the same value. In this case, we will observe a

decrease in correlation or a complete absence of it, as our target function remains unchanged while the

indicator loses its sign.

This effect is noticeable when analyzing the change in correlation when raising the power of the

difference between the lines of the MACD indicator, which we conducted in the script

initial_ data_ macd_ pow.mq5 from our subdirectory.
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Dynamics of changing the correlation of MACD values to expected movement when raising the indicator to the power

Similarly, you can test the correlation of various indicators with the target values. The only limit is your

ability and common sense. In addition to standard indicators and price quotes, these could also include

custom indicators, and quotes from other instruments, including synthetic ones. Don't be afraid to

experiment. Sometimes you can find good indicators in the most unexpected places.

Effect of the time shift on the correlation coefficient

After selecting the indicators for analysis, let's remember that we are dealing with time series data.

One of the features of time series is their "historical memory". Each subsequent value depends not only

on one previous value but also on a certain depth of historical values.

Certainly, one approach could be experimental – building a neural network and conducting a series of

experiments to identify the optimal configuration. In this approach, it will take time to create and train

several experimental models. Optionally, we could use our sample to test the correlation of the data

with the historical shift.

To solve this problem, let's modify the script slightly and replace the Correlation function with

ShiftCorrelation. The new function is a complete descendant of the Correlation function and is built

using the same algorithm.

In the function parameters, we add a new variable max_ shift to which we pass the maximum shift for

analysis.

Time offsets are organized by copying the data to the new shifted arrays. The initial data will be copied

without offset but to a lesser extent. Data reduction corresponds to time offset. At the same time, we

will transfer the target values data to new arrays with offsets. However, since the size of the target

data in our dataset is constant, when shifting, the number of elements for correlation analysis
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decreases. Therefore, after copying the data, we get data sets that are comparable in size and with a

given time shift.

All we need to do is call the correlation coefficient calculation function and write the resulting data to a

file.

To analyze the change in correlation with the increase in displacement over time, wrap all operations in

a loop. The number of looping iterations corresponds to the max_ shift parameter. 
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void ShiftCorrelation(double &targ1[], double &targ2[],

                      double &signal[], string name,

                      int max_shift, int handle)

  {

   int total = ArraySize(targ1);

   if(max_shift > total)

      max_shift = total - 10;

   if(max_shift < 10)

      return;

   double correlation = 0;

   for(int i = 0; i < max_shift; i++)

     {

      double t1[], t2[], s[];

      if(ArrayCopy(t1, targ1, 0, i, total - i) <= 0 ||

         ArrayCopy(t2, targ2, 0, i, total - i) <= 0 ||

         ArrayCopy(s, signal, 0, 0, total - i) <= 0)

        {

         continue;

        }

      //---

      string message;

      if(MathCorrelationPearson(s, t1, correlation))

         message = StringFormat("%d\t%.5f", i, correlation);

      if(MathCorrelationPearson(s, t2, correlation))

         message = StringFormat("%s\t%.5f", message, correlation);

      if(handle != INVALID_HANDLE)

         FileWrite(handle, message);

     }

//---

   return;

  }
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Dynamics of the correlation between RSI values and the expected movement, with time shift

To analyze the effect of shifting RSI indicator values over time on the correlation with target data, we

will create a new script in the file initial_data_rsi_shift.mq5 in the specified initial_ data_ rsi_ shift.mq5

subdirectory.

The results of the analysis show a rapid decline in the correlation up to the 30th bar. Then, a slight

inverse correlation with a peak coefficient of -0.042 is observed around the 60th bar, followed by a

gradual approach to 0. In such a situation, the use of the first 30 bars would be most effective. Further

expansion of the analysis depth may lead to a decrease in the efficiency of utilizing computational

resources. The value of such a solution can be tested in practice.

A similar analysis of MACD indicator data in the script initial_ data_ macd_ shift.mq5 showed a similar

dynamic with a slight shift in the transition zone from direct to inverse correlation at around the 40th

bar.

Thus, conducting a correlation analysis of available source data and target values allows us to choose

the optimal set of indicators and historical depth during the preparatory phase. This helps in analyzing

data and forecasting target values more effectively. This enables us to significantly reduce expenses

during the neural network creation and training phases with relatively low effort spent on the

preparatory stage.  
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Dynamics of the correlation between MACD values and the expected movement, with time shift

3.4 Creating the framework for the future MQL5 program

In the previous section, we talked about preparatory work and methods for selecting indicators for

analysis by a neural network. After conducting the analysis, we have determined a set of indicators to

train the neural network and the depth of historical data to be loaded.

Now let's move on to the practical part of our book. We will look at various neural network algorithms

and architectures. You will learn the specifics of constructing and implementing a fully connected

perceptron, convolutional neural networks, and recurrent neural networks. After that, we will discuss

the features and advantages of attention mechanisms. Finally, we will look at the GPT architecture,

which, at the time of writing the book, demonstrates the best results in natural language processing

problems.

As we explore the algorithms, step by step, we will create a tool for designing and organizing neural

networks using MQL5. Each algorithm under consideration will be implemented in three versions: MQL5,

OpenCL, and Python.

We will build and train neural networks using all the learned algorithms. Then, we will practically assess

the strengths and weaknesses of their use for time series forecasting. We will train and test the built

models on real data. And, of course, during the training process, we will discuss the nuances of this

process.

The book will showcase the practical results of using neural networks to solve the problem defined in

the previous sections, using real-world data. During testing, we will conduct a comparative analysis of

various implementations and evaluate the practical effectiveness of each implementation in solving the

given problem.
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Let's begin working on refining the architecture of our future tool. It's quite logical to consolidate our

entire development into a single entity (class) that can be easily integrated into any program. This way,

we'll be able to configure the entire operation of our model within this class.

At the same time, we need to ensure the ability to create models of various architectures within our

main model. The architecture of the model itself will be defined in the main program and passed to the

class through created interfaces. To make this process convenient and easy to use, it is necessary to

standardize it. To address standardization matters, we will use constants and named enumerations.

3.4.1 Defining constants and enumerations

The process of defining constants is one of those basic processes that is often overlooked. Moreover, it

enables the organization and systematization of future work on creating a software product. Particular

attention should be given to it when creating complex, structured products with a multi-block branched

architecture.

Here, we won't discuss specific local variables and constants, as their scope will often be determined by

separate blocks or functions. We will discuss creating constants that will serve as a common thread

throughout our program and will frequently be used for organizing interactions both between blocks

within our product and for data exchange with external programs.

Starting a large project by creating constants and enumerations is a very useful practice. Here, we can

also include the creation of global variables. Primarily, this is one of the integral parts of developing

project architecture. When contemplating the list of global constants and enumerations, we are re-

evaluating our project as a whole, reconsidering its objectives and the means to achieve them. Even in

broad strokes, we conceptualize the project structure and define the tasks of each block and the flow

of information between them. We also understand what information needs to be obtained from an

external program, what information needs to be returned, and at which stage of the process.

The work done at this stage will be our roadmap when creating the project. A detailed examination of

data exchange interface organization allows us to assess the necessity of having specific information at

each stage. This also provides the opportunity to identify the sources of information and uncover

potential data deficits. Eliminating data deficits during the design stage will be much easier than during

the implementation phase. At that point, we would have to revisit the design stage to search for the

necessary data sources. Next, it will be necessary to consider possible ways of transmitting information

from the source to the processing location and attempt to seamlessly integrate them into the

established architecture with minimal adjustments. This will lead to an unpredictable number of

revisions in the already established processes, and it will be necessary to assess the impact of these

revisions on adjacent processes.

We will collect all the files of the library to be built in the NeuroNetworksBook\realization subdirectory

according to the file structure.

All global constants of our project will be collected in one file, defines.mqh.

So what constants are we going to define?

Let's take a look at the architecture of the project. As we've discussed, the result of our work will be a

class that encompasses the complete organization of a neural network's operation. In the MQL5

architecture, all objects are inherited from the base class CObj ect. It includes the virtual Type method

which is defined for class identification and which returns an integer value. Consequently, for a unique

identification of our class, we should define a certain constant, preferably distinct from the constants of

https://www.mql5.com/en/docs/standardlibrary/cobject
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existing classes. This will serve as a prototype for the business card of our class within the program. To

create named constants, we will utilize the mechanism of macro substitution.

#define defNeuronNet             0x8000

Next, our neural network will consist of neurons. Neurons are organized into layers, and a neural

network may consist of multiple layers. Since we are constructing a universal constructor, at this

stage, we don't know the number of layers in the neural network or the number of neurons in each

layer. Therefore, we assume that there will be a dynamic array for storing pointers to neuron layers.

Most likely, in addition to simple storage of pointers to neural layer objects, we will need to create

additional methods for working with them. Based on these considerations, we will create a separate

class for such storage. Consequently, we will also create a business card for it.

#define defArrayLayers           0x8001

Next in the structure, we will create a separate class for the neural layer. Later, when we approach the

implementation of computation algorithms using the OpenCL technology, we will discuss the

organization of vector computations and the means of transferring data to the GPU memory. In this

context, creating classes for each individual neuron might not be very convenient, but we will need a

class for storing information and organizing data exchange buffering. Thus, we must create "business

cards" for these objects as well.

It should be noted that the book will explore several architectural solutions for organizing neurons. Each

architecture has its own peculiarities in terms of forward and backward propagation algorithms.

However, we have already decided that we will not create distinct objects for neurons. So, we need to

introduce identification at the level of neural layers. Therefore, we will create separate identifiers for

each architecture of the neural layer.

#define defBuffer                0x8002

#define defActivation            0x8003

#define defLayerDescription      0x8004

#define defNeuronBase            0x8010

#define defNeuronConv            0x8011

#define defNeuronProof           0x8012

#define defNeuronLSTM            0x8013

#define defNeuronAttention       0x8014

#define defNeuronMHAttention     0x8015

#define defNeuronGPT             0x8016

#define defNeuronDropout         0x8017

#define defNeuronBatchNorm       0x8018

We have defined constants and object identifiers and can move further. Let's recall what this book

starts with. At the very beginning of the book, we considered a mathematical model of a neuron. Each

neuron has an activation function. We've seen several options for activation functions, and all of them

are valid choices. Due to the absence of a derivative, we'll exclude the threshold function from the list.

However, we'll implement the remaining discussed activation functions using the OpenCL technology. In

the case of working with the CPU, we will use vector operations in which activation functions are

already implemented. To maintain consistency in approaches and to indicate the used activation

function, we use the standard enumeration ENUM_ ACTIVATION_ FUNCTION.

However, it's worth noting that later, when discussing convolutional neural network algorithms, we will

become familiar with the organization of a pooling layer. It utilizes other functions.

https://www.mql5.com/en/docs/matrix/matrix_types/matrix_enumerations#enum_activation_function
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//--- pooling layer activation functions

enum ENUM_PROOF

  {

   AF_MAX_POOLING,

   AF_AVERAGE_POOLING

  };

Take a look at the chapter Training a neural network. In it, we discussed various options for loss

functions and optimization methods for neural networks. In my understanding, we should provide the

user with the ability to choose what they want to use. However, we need to restrict the choices to the

capabilities of our library. For a loss function, we can use the standard enumeration

ENUM_ LOSS_ FUNCTION by analogy with the activation function. For model optimization methods, we

will create a new enumeration.

As you can observe, in the enumeration of optimization methods, I added the None element to allow

the option of disabling training for a specific layer. Such an approach is often utilized when using a pre-

trained network on new data. For instance, we might have a trained and functioning neural network

that works well on one financial instrument, and we would like to replicate it for other instruments or

timeframes. In all likelihood, without retraining, its performance will drop dramatically.

enum ENUM_OPTIMIZATION

  {

   None=-1,

   SGD,   

   MOMENTUM,

   AdaGrad,

   RMSProp,

   AdaDelta,

   Adam

  };

In this case, we have a choice: to train the neural network from scratch or to retrain the existing

network. The second option usually requires less time and resources. However, to avoid disrupting the

entire network, the retraining process starts with a low learning rate and focuses on the final layers

(decision-making neurons), while leaving the initial analytical layers untrained.

Along with the learning methods, we discussed techniques for improving the convergence of neural

networks. In this regard, normalization and dropout will be organized as separate layers – for them, we

have already defined constants when discussing neural layers. We will implement one regularization –

Elastic Net. The process will be controlled through the variables λ1 and λ2. If both variables are zero,

regularization is disabled. In the case where one of the parameters is equal to zero, we will obtain L1 or

L2 regularization, depending on the non-zero parameter.

Have you noticed that in this chapter we have refreshed our memories of the major milestones of the

material we have studied? In addition, behind each constant or enumeration element, there is a specific

functionality that we still need to implement.

But I'd like to add one more point. When introducing the OpenCL technology, we discussed that not all

OpenCL-enabled devices work with the double type. It would probably be foolish to create copies of the

library for different data types.

Here it's important to understand that different data types provide different levels of precision for

computations. Therefore, when creating a model, it's important to ensure consistent conditions for all

https://www.mql5.com/en/docs/matrix/matrix_types/matrix_enumerations#enum_loss_function
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scenarios of model operation, both with and without using the OpenCL technology. To address this

issue, we will introduce data type macros along with corresponding types for vectors and matrices.

#define TYPE                      double

#define MATRIX                    matrix<TYPE>

#define VECTOR                    vector<TYPE>

We organize a similar macro substitution for an OpenCL program.

#resource "opencl_program.cl" as string OCLprogram

//---

#define LOCAL_SIZE                256

const string ExtType=StringFormat("#define TYPE %s\r\n"

                                  "#define TYPE4 %s4\r\n"

                                  "#define LOCAL_SIZE %d\r\n",

                                   typename(TYPE),typename(TYPE),LOCAL_SIZE);

#define cl_program                ExtType+OCLprogram

Here we can also add to the models various hyperparameters. For example, it could be a learning rate.

You can also add parameters for optimization and regularization methods.

#define defLossSmoothFactor       1000

#define defLearningRate           (TYPE)3.0e-4

#define defBeta1                  (TYPE)0.9

#define defBeta2                  (TYPE)0.999

#define defLambdaL1               (TYPE)0

#define defLambdaL2               (TYPE)0

However, it's important to keep in mind that the hyperparameter values mentioned here are just

default values. During the operation of the model, we will use variables that will be initialized with these

values when the model is created. However, the user has the right to specify different values without

changing the library code. We will discuss the mechanism of such a process when constructing classes

and their methods.

3.4.2 Mechanism for describing the structure of the future neural network

We have already decided that we will build a universal constructor for the convenient creation of neural

networks of various configurations. Hence, we need some mechanism (interface) to be able to pass the

model configuration to be built. Let's think about what information we need to get from the user to

unambiguously understand what kind of neural network is supposed to be created.

First of all, we need to understand how many layers of neurons our network will have. There should be

at least two such layers: an input layer with initial data and an output layer with results. Additionally,

the new neural network may include a varying quantity of hidden layers. Their quantity may vary, and

we will not limit them now.

To create each layer of the neural network, we need to know the number of neurons in that layer.

Hence, in addition to the number of neural layers, the user must specify the number of neurons in each

layer.

Now let's recall that in the previous section, we defined constants for several types of neural layers,

which will differ by the type of neurons. To understand what kind of layer the user wants to create, you
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need to get that initial information. So, the user should be able to specify it for each layer that is

created.

In addition, we considered different variants of activation functions. Which one should be used when

creating neurons?

When creating a universal tool, we must provide the user with the option to choose the activation

function. Hence, we add the activation function to the list of parameters that the user should specify.

Then there is another question: will all neurons in the same layer use the same activation function? Or

will there be options to use different activation features within a single layer? I propose to focus on the

first option, where all neurons of one layer use one activation function.

Let me explain my point. While discussing techniques to improve the convergence of neural networks

and, in particular, data normalization, we talked about the importance of data comparability at the

input of the neural layer. The use of different activation functions, on the other hand, is highly likely to

lead to data imbalance. This is due to the nature of the activation functions themselves. Remember,

the sigmoid returns data in the range from 0 to 1. The value range of the hyperbolic tangent lies in the

range from -1 to 1. ReLU can return values from 0 to +∞. Evidently, different activation functions will

produce significantly different values and only complicate the training and operation of the neural

network.

Additionally, from a technical perspective, there are also advantages to using one activation function

for the entire neural layer. In this case, we can then limit ourselves to a single integer value to store

the activation code of neurons in a layer regardless of the number of neurons. To store individual

activation functions, we would have had to create a whole vector of values the size of the number of

neurons in the layer.

The next thing we need to know when creating the architecture of a neural network is the weight

optimization method. In the chapter Neural network optimization methods, we covered six optimization

methods. In the previous chapter, we set up an enumeration to identify them. Now you can take

advantage of this enumeration and let the user choose one of them.

Why is it important for us to know the optimization method now, at the stage of creating the neural

network, rather than during its training? It's very simple. Different optimization methods require

different amounts of objects to store information, so when creating a neural network, it is necessary to

create all the required objects. Given that we have memory constraints on our computing machine, we

need to use it rationally and not create unnecessary objects.

When creating layers such as normalization and Dropout, we will need some specific information. For

normalization, we need the normalization sample size (batch), and for Dropout, we need to specify the

probability of "dropping out" neurons during training.

Looking ahead, for some types of neural layers, we will still need the size of the input and output

window, as well as the step size from the beginning of one input window to the beginning of the next

window.

To make it easier for the user to create consecutively identical layers, let's add another parameter to

specify such a sequence.

As a result, we have accumulated a dozen parameters that the user needs to specify for each layer.

Let's add to this the total number of layers to create in a neural network. These are all things we want

to get from the user before creating the neural network. We will not overly complicate the data transfer
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process, and to describe one neural layer, we will create a class named CLayerDescription with

elements to store the specified parameters.

class CLayerDescription    :  public CObject

  {

public:

                     CLayerDescription(void);

                    ~CLayerDescription(void) {};

   //---

   int               type;         // Type of neural layer

   int               count;        // Number of neurons in a layer

   int               window;       // Source data window size

   int               window_out;   // Results window size

   int               step;         // Input data window step

   int               layers;       // Number of neural layers

   int               batch;        // Weight Matrix Update Packet Size

   ENUM_ACTIVATION_FUNCTION   activation;  // Activation function type

   VECTOR            activation_params[2]; // Array of activation function parameters

   ENUM_OPTIMIZATION optimization; // Weight matrix optimization type

   TYPE              probability;  // masking probability, Dropout only

  };

Note that the created class is inherited from the CObj ect class, which is the base class for all objects in

MQL5. It's a small point that we'll exploit a little later.

We will not complicate the class constructor in any way, but only set some default values. You can use

any of your values here. I recommend, however, that you specify the most commonly used parameters.

This will make it easier for you to specify them later in the program code.

CLayerDescription::CLayerDescription(void)   :  type(defNeuronBase),

                                                count(100),

                                                window(100),

                                                step(100),

                                                layers(1),

                                                activation(AF_TANH),

                                                optimization(Adam),

                                                probability(0.1),

                                                batch(100)

  {

   activation_params = VECTOR::Ones(2);

   activation_params[1] = 0;

  }

Now let's get back to why it was important to inherit from CObj ect. Here everything is quite

straightforward: we have created an object to describe one neural layer but not the whole neural

network. We have not yet specified the total number of layers and their sequence.

I decided not to complicate the process and use the CArrayObj  class from the standard MQL5 library.

This is a dynamic array class for storing pointers to CObj ect objects and their successors. Hence, we

can write our neural layer description objects into it. In this way, we address the issue of a container

for storing and transmitting information about neural networks. The sequence of neural layers will

correspond to the sequence of stored descriptions from the zero-index input layer to the output layer.

https://www.mql5.com/en/docs/standardlibrary/datastructures/carrayobj
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In my opinion, this is a rather simple and intuitive way to describe the structure of a neural network.

But every reader can make use of their own developments. 

3.4.3 Neural network base class and organization of forward and backward pass

processes

We have already done preparatory work to create constants and an interface for transferring the

architecture of the created neural network. Let’s continue. Now I propose to move on to creating a

top-level class CNet, which will act as the manager of our neural network.

To do this work, we will create a new included library file neuronnet.mqh in a subdirectory of our library.

In it, we will collect all the code of our CNet neural network class. Next, we will create a separate file

for each new class. File names will correspond to the names of the classes – this will allow for

structuring the project and quickly accessing the code of a specific class.

We won't be able to write the complete code for the methods of this class right now, as during their

implementation we will need to refer to the neural layer classes and their methods. There are currently

no such classes. Why have I decided to start by creating the top-level object instead of creating the

lower-level objects first? Here, I am addressing the issue of the integrity of the structure and the

standardization of methods and data transfer interfaces between individual blocks of our neural

network.

Later, when examining the architectural features of the neural layers, you will be able to notice

differences in their functionality and, to some extent, in the information flow. When solving the problem

from the bottom up, we run the risk of obtaining quite different methods and interfaces, which will then

be difficult to integrate into a unified system. On the contrary, I want to create a top-level "skeleton"

of our development right from the beginning, and later fill it with functionality. By early planning the

architecture and functionality of the interfaces, we will simply integrate new neural layer architectures

into the already established information flow. 

Let's define the functionality of the CNet class. The first thing this class should do is directly assemble

the neural network with the architecture provided by the user. This can be done in the class

constructor, or you can create a separate method, Create. I picked the second option. Using the base

class constructor without parameters will allow us to create an "empty" class instance, for example, to

load a previously trained neural network. It will also make it easier to inherit the class for possible

future development.

Since we have started on the issue of loading a pre-trained network, the following class functionality

follows from here: saving (Save) and loading (Load) our model.

Whether it is newly created (generated) neural layers or loaded from a file, we will need to store them

and work with them. When elaborating and defining constants, we allocated a separate constant for the

dynamic array storing the neural layers. We will add an instance of this object to the class variables

(m_cLayers). 

Let's take a look at how the work of the neural network is organized. Here we need to implement feed-

forward pass (FeedForward) and backpropagation pass (Backpropagation) algorithms. Let's display

the process of updating the weights UpdateWeights as a separate method.

Of course, you can update the weights in the backpropagation method, which is what is most

commonly encountered in practice. But we're talking about a universal constructor. At the time of

writing the code, we don't know if batch normalization (batch size) will be used. Therefore, there is no

clear understanding at what point it will be necessary to update the weights.
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A complex problem is always easier to solve step by step. Dividing a process into smaller subprocesses

makes it easier to both write code and debug it. Therefore, I decided to separate the process of

updating the weights.

Let's recall the neuron optimization methods. Almost all methods use a learning rate, and some require

additional parameters, such as decay coefficients. We also need to allow the user to specify them. In

this case, the user specifies once, and we will need them at each iteration. So we need to store them

somewhere. Let's add a method for specifying learning parameters (SetLearningRates) and variables

for storing data (m_dLearningRate and m_adBeta). For the decay coefficients, we will create a vector

of two elements, which, in my opinion, will make the code more readable.

In the process of practical use of a neural network, the user may need to obtain the results of

processing of the same source data several times. This option should be possible. However, in order not

to make a direct pass every time, we will output the possibility of obtaining the results of the last direct

pass using a separate GetResults method.

In addition, in the process of training and operating the neural network, we will need to control the

process of accuracy and correctness of the forward pass data. The main indicator of the neural

network's correct operation is the value of the loss function. The actual calculation of the loss function

will be carried out in the Backpropagation method. The calculated value of the loss function will be

stored in the m_dNNLoss variable. Let's add the GetRecentAverageLoss method to display the variable

value at the user's request.

Now, speaking of the loss function. A specific loss function should be selected by the user. Therefore,

we need a method to be able to get it from the user (LossFunction). The actual calculation of the value

of the loss function will be carried out by standard means of matrix operations in MQL5. Here we will

create a variable to store the type of the loss function (m_eLossFunction).

When defining constants, we didn't create a separate enumeration for regularization methods. Then we

agreed to implement Elastic Net and manage the process through regularization coefficients. I suggest

adding the specification of regularization coefficients to the loss function method. After all, look at how

the number of class methods grows. Therefore, the question is not only in the implementation of our

constructor. On the contrary, when building the constructor, all possible usage scenarios should be

anticipated. This will help make it more flexible.

At the same time, the actual use of such a constructor should be as easy and intuitive as possible. In

other words, we should provide the user with an interface that allows for the most flexible configuration

of a new neural network with the minimum number of iterations required from the user.

Note that the algorithm of the normalization layers and Dropout differ depending on the mode of use

(training or operation). Of course, this could have been done as a separate parameter in the forward

and backward pass methods, but it's important to have a clear correspondence between the operations

of the forward and backward passes. Performing a backward pass in training mode after a working

forward pass and vice versa can only destabilize the neural network. Therefore, to avoid overloading the

aforementioned methods with additional checks, we'll create separate functions to set and query the

TrainMode operating mode.

There's another aspect regarding the operating mode of the neural network, specifically, the choice of

tool for conducting computational operations. We have already discussed the topic of using OpenCL

technology for parallel computing. This will allow parallel computation of mathematical operations on

the GPU and speed up calculations during the operation of the neural network. The standard MQL5

library OpenCL.mqh provides the COpenCL class for working with OpenCL.
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In the process of working with this class, I decided to slightly supplement its functionality, for which I

created a new class CMyOpenCL that inherits the standard COpenCL class. Inheritance allowed me to

write the code for just a couple of methods while still utilizing the full power of the parent class.

To use the CMyOpenCL class, add a pointer to an instance of the m_cOpenCL class. We will also add the

m_bOpenCL flag, which will inform you if the functionality is enabled in our neural network. We will also

add methods for initializing the functionality and managing it (InitOpenCL, UseOpenCL).

Let's not forget that we plan to use neural networks to work with timeseries. This leaves a certain

imprint on their work. Do you remember the time-shift correlation score plot of the initial data? As the

time lag increases, the impact of the indicator on the target result decreases. This once again confirms

the importance of taking into account the position of the analyzed indicator on the timeline. Therefore,

it will be necessary to implement such a mechanism.

We will talk about the method itself a little later. For now, let's create an instance of the

CPositionEncoder class to implement positional encoding. We will also create a flag for controlling the

activity of the function and declare methods for managing the function. 

Let's add another class identification method to our list and get the following CNet class structure. 
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class CNet  : public CObject

  {

protected:

   bool               m_bTrainMode;

   CArrayLayers*      m_cLayers;

   CMyOpenCL*         m_cOpenCL;

   bool               m_bOpenCL;

   TYPE               m_dNNLoss;

   int                m_iLossSmoothFactor;

   CPositionEncoder*  m_cPositionEncoder;

   bool               m_bPositionEncoder;

   ENUM_LOSS_FUNCTION m_eLossFunction;

   VECTOR             m_adLambda;

   TYPE               m_dLearningRate;

   VECTOR             m_adBeta;

public:

                      CNet(void);

                     ~CNet(void);

   //--- Methods for creating an object

   bool               Create(........);

   //--- Organization of work with OpenCL

   void               UseOpenCL(bool value);

   bool               UseOpenCL(void)          const { return(m_bOpenCL);          }

   bool               InitOpenCL(void);

   //--- Methods of working with positional coding

   void               UsePositionEncoder(bool value);

   bool               UsePositionEncoder(void) const { return(m_bPositionEncoder); }

   //--- Organization of the basic algorithms of the model

   bool               FeedForward(........);

   bool               Backpropagation(........);

   bool               UpdateWeights(........);

   bool               GetResults(........);

   void               SetLearningRates(TYPE learning_rate, TYPE beta1 = defBeta1,

                                                           TYPE beta2 = defBeta2);

   //--- Methods of the loss function

   bool               LossFunction(ENUM_LOSS_FUNCTION loss_function,

                          TYPE lambda1 = defLambdaL1, TYPE lambda2 = defLambdaL2);

   ENUM_LOSS_FUNCTION LossFunction(void)       const { return(m_eLossFunction);    }

   ENUM_LOSS_FUNCTION LossFunction(TYPE &lambda1, TYPE &lambda2);
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   TYPE               GetRecentAverageLoss(void) const { return(m_dNNLoss);        }

   void               LossSmoothFactor(int value)   { m_iLossSmoothFactor = value; }

   int                LossSmoothFactor(void)   const { return(m_iLossSmoothFactor);}

   //--- Model operation mode control

   bool               TrainMode(void)          const { return m_bTrainMode;        }

   void               TrainMode(bool mode);

   //--- Methods for working with files

l   virtual bool      Save(........);

   virtual bool       Load(........);

   //--- object identification method

   virtual int        Type(void)               const { return(defNeuronNet);       }

   //--- Retrieving pointers to internal objects

   virtual CBufferType* GetGradient(uint layer)     const;

   virtual CBufferType* GetWeights(uint layer)      const;

   virtual CBufferType* GetDeltaWeights(uint layer) const;

  };

You can note that in the declaration of several methods, I left ellipsis instead of specifying parameters.

Now we will analyze the class methods and add the missing data.

Let's start with the class constructor. In it, we initialize the variables with initial values and create

instances of the classes used. 

CNet::CNet(void)     :  m_bTrainMode(false),

                        m_bOpenCL(false),

                        m_bPositionEncoder(false),

                        m_dNNLoss(-1),

                        m_iLossSmoothFactor(defLossSmoothFactor),

                        m_dLearningRate(defLearningRate),

                        m_eLossFunction(LOSS_MSE)

  {

   m_adLambda.Init(2);

   m_adBeta.Init(2);

   m_adLambda[0] = defLambdaL1;

   m_adLambda[1] = defLambdaL2;

   m_adBeta[0]   = defBeta1;

   m_adBeta[1]   = defBeta2;

   m_cLayers     = new CArrayLayers();

   m_cOpenCL     = new CMyOpenCL();

   m_cPositionEncoder = new CPositionEncoder();

  }

In the class destructor, we will clear the memory by deleting the instances of the previously created

objects. 
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CNet::~CNet(void)

  {

   if(!!m_cLayers)

      delete m_cLayers;

   if(!!m_cPositionEncoder)

      delete m_cPositionEncoder;

   if(!!m_cOpenCL)

      delete m_cOpenCL;

  }

Let’s consider the Create method that creates a neural network. I omitted the parameters of this

method earlier, and now I suggest we discuss them.

The interface for passing the structure of a neural network to a class was described in the previous

chapter. Of course, we will pass it to this method. But is this data enough or not? From a technical

perspective, this data is quite sufficient to specify the architecture of the neural network. We have

provided additional methods for specifying learning rates and loss functions.

But if we look at the question from the user's perspective: how convenient is it to use three methods to

specify all the necessary parameters when initializing the neural network? In fact, it is a matter of

personal habits and preferences of the user. Some prefer to use multiple methods specifying one or two

parameters and monitor the process at each step. Others would prefer to 'throw' all the parameters

into one method in a single line of code, check the result once, and move on.

When we work directly with the customer, we can discuss their preferences and make the product

convenient for them. But when creating a universal product, it's logical to try to satisfy the preferences

of all potential users. Moreover, the user can choose different options depending on the task at hand.

Therefore, we will use the ability to overload functions and create several methods with the same name

to satisfy all possible usage scenarios.

First, we'll create a method with a minimal number of parameters, which will only receive a dynamic

array describing the architecture of the neural network. At the beginning of the method, we will check

the validity of the pointer to the object received in the method parameter. Then we check the number

of neural layers in the passed description.

We already mentioned earlier that there cannot be less than two layers, as the first input layer is used

to input the initial data, and the last layer is for outputting the result of the neural network's operation.

If at least one check fails, we exit the method with a false result.

bool CNet::Create(CArrayObj *descriptions)

  {

//--- Control block

   if(!descriptions)

      return false;

//--- Check the number of layers to be created

   int total = descriptions.Total();

   if(total < 2)

      return false;

After successfully passing the controls, we initialize the class to work with the OpenCL technology.

Unlike the previous checks, we will not return false in the case of initialization errors. We will simply

disable this functionality and continue operating in the standard mode. This approach is implemented to

enable the replication of the finished product on various computing machines without altering the

program code. This, in general, expands the potential customer base for distributing the end product.
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//--- Initialize OpenCL objects

   if(m_bOpenCL)

      m_bOpenCL = InitOpenCL();

   if(!m_cLayers.SetOpencl(m_cOpenCL))

      m_bOpenCL = false;

For all objects of our neural network to work in the same OpenCL context, we will pass a pointer to an

instance of the CMyOpenCL class to the storage array of neural layers. From there, it will subsequently

be passed to each neural layer.  

Then we will organize a loop with the number of iterations equal to the number of layers of our network.

In it, we will sequentially iterate through all the elements of the dynamic array describing neural layers.

During this process, we will validate the validity of the description object for each layer, as well as

ensure that the specified parameters adhere to the model's integrity. In the method's code, you can

observe the validation of specific parameters for various types of neural layers, which we will become

acquainted with a little later.

After that, we will call the method to create the corresponding layer. It is worth noting that we will

entrust the creation of the neural layer directly to the element creation method, CreateElement of the

m_ cLayers dynamic storage array of neural layers.
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//--- Organize a loop to create neural layers

   for(int i = 0; i < total; i++)

     {

      CLayerDescription *temp = descriptions.At(i);

      if(!temp)

         return false;

      if(i == 0)

        {

         if(temp.type != defNeuronBase)

            return false;

         temp.window = 0;

        }

      else

        {

         CLayerDescription *prev = descriptions.At(i - 1);

         if(temp.window <= 0 || temp.window > prev.count ||

            temp.type == defNeuronBase)

           {

            switch(prev.type)

              {

               case defNeuronConv:

               case defNeuronProof:

                  temp.window = prev.count * prev.window_out;

                  break;

               case defNeuronAttention:

               case defNeuronMHAttention:

                  temp.window = prev.count * prev.window;

                  break;

               case defNeuronGPT:

                  temp.window = prev.window;

                  break;

               default:

                  temp.window = prev.count;

                  break;

              }

            switch(temp.type)

              {

               case defNeuronAttention:

               case defNeuronMHAttention:

               case defNeuronGPT:

                  break;

               default:

                  temp.step = 0;

              }

           }

        }

      if(!m_cLayers.CreateElement(i, temp))

         return false;

     }
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At the end of the method, we initialize the positional encoding class. Please note that the actual code

for each position remains unchanged throughout the training and utilization of the neural network. The

elements will change, but the size of the input layer of neurons will stay the same. That means, upon

creating the network, we can calculate and store the position code for each element right away, and

subsequently use the saved values instead of repeatedly recalculating the code.

//--- Initialize positional coding objects

   if(m_bPositionEncoder)

     {

      if(!m_cPositionEncoder)

        {

         m_cPositionEncoder = new CPositionEncoder();

         if(!m_cPositionEncoder)

            m_bPositionEncoder = false;

         return true;

        }

      CLayerDescription *temp = descriptions.At(0);

      if(!m_cPositionEncoder.InitEncoder(temp.count, temp.window))

         UsePositionEncoder(false);

     }

//---

   return true;

  }

When organizing method overloads for Create, we won't rewrite the entire code; we'll only carry out

the user's tasks and make calls to the necessary methods with the received parameters. Below are the

possible variations of the overloaded method.
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bool CNet::Create(CArrayObj *descriptions,

                  TYPE learning_rate,

                  TYPE beta1,TYPE beta2,

                  ENUM_LOSS_FUNCTION loss_function,

                  TYPE lambda1,TYPE lambda2)

  {

   if(!Create(descriptions))

      return false;

   SetLearningRates(learning_rate,beta1,beta2);

   if(!LossFunction(loss_function,lambda1,lambda2))

      return false;

//---

   return true;

  }

bool CNet::Create(CArrayObj *descriptions,

                  ENUM_LOSS_FUNCTION loss_function,

                  TYPE lambda1,TYPE lambda2)

  {

   if(!Create(descriptions))

      return false;

   if(!LossFunction(loss_function,lambda1,lambda2))

      return false;

//---

   return true;

  }

bool CNet::Create(CArrayObj *descriptions,

                  TYPE learning_rate,

                  TYPE beta1,TYPE beta2)

  {

   if(!Create(descriptions))

      return false;

   SetLearningRates(learning_rate,beta1,beta2);

//---

   return true;

  }

When creating overloaded methods, be sure to declare any method overloads that you use in the class

declaration.

Let’s move on. Let's talk about the FeedForward fees forward method. The method parameters are

omitted in the declaration above. Let's think about what data we need to perform a direct pass. First of

all, we need initial data. They must be transferred to the neural network from the outside. We are

adding the dynamic array CBufferType to the parameters. We will create this class later; it will serve all

our data buffers.

During the forward pass, the input data is multiplied by the weights stored in the neural layer objects.

This means that the neural network already knows them. The obtained values are passed through an

activation function. The functions used for each layer are specified during the neural network's creation

stage in the architecture description.

Thus, to implement the direct pass, it is enough for us to receive an array of initial data at the input.
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In the method body, we will validate the pointers to the array of input data and the first neural layer of

our network. We will not create a separate type of neural layer for the initial data. Instead, we take a

basic fully connected neural layer and write the received initial data to the buffer of output (resulting)

values of neurons. Thus, we get the unification of neural layers.

bool CNet::FeedForward(const CBufferType *inputs)

  {

//--- control block

   if(!inputs)

      return false;

   CNeuronBase *InputLayer = m_cLayers.At(0);

   if(!InputLayer)

      return false;

In the next step, if necessary, we will position the initial values.

   CBufferType *Inputs = InputLayer.GetOutputs();

   if(!Inputs)

      return false;

   if(Inputs.Total() != inputs.Total())

      return false;

//--- Transfer the source data to the neural layer

   Inputs.m_mMatrix = inputs.m_mMatrix;

//--- Apply positional coding

   if(m_bPositionEncoder && !m_cPositionEncoder.AddEncoder(Inputs))

      return false;

   if(m_bOpenCL)

      Inputs.BufferCreate(m_cOpenCL);

At this stage, the preparation of the initial data can be considered complete. Let's proceed directly to

the forward pass: we will organize a loop that iterates through all the neural layers in our network

sequentially, from the first to the last. For each layer, we will call its corresponding forward pass

method. Note that the loop starts at layer index 1. The neural layer with the initial data recorded has

an index of 0.

Another point to which you should also pay attention. In the process of enumeration, we use one class

CNeuronBase for all objects of neural layers. This is our base class for the neural layer. All other classes

of neural layers will inherit from it.

In addition, we will create the virtual method FeedForward that will be overridden in all other types of

neural layers. This implementation allows us to use the neural layer base class and call the forward

pass virtual method. The task of distributing and utilizing the specific type of neuron's forward pass

method will be handled by the compiler and system on our behalf.
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//--- Create a loop with a complete search of all neural layers

//--- and call the forward pass method for each of them

   CNeuronBase *PrevLayer = InputLayer;

   int total = m_cLayers.Total();

   for(int i = 1; i < total; i++)

     {

      CNeuronBase *Layer = m_cLayers.At(i);

      if(!Layer)

         return false;

      if(!Layer.FeedForward(PrevLayer))

         return false;

      PrevLayer = Layer;

     }

It should be noted here that when using the OpenCL technology, when the kernel is sent for execution,

it is queued. To "push" its execution, we need to initiate the retrieval of the operation results. We have

previously discussed the need to minimize the exchange of data between RAM and the OpenCL context.

Therefore, we will not retrieve data after each kernel is added to the queue. Instead, we will enqueue

the entire chain of operations and only after completing the loop iterating through all the neural layers,

we will request the results of the operations from the last neural layer. Since our data is passed

sequentially from one layer to another, the entire queue of operations will be pulled along. But do not

forget that data loading is only necessary when using the OpenCL technology.

   if(m_bOpenCL)

      if(!PrevLayer.GetOutputs().BufferRead())

         return false;

//---

   return true;

  }

During the feed-forward pass, we obtained certain calculated data. On an untrained neural network, the

obtained result will be quite random. We aim for our neural network to produce results that are as close

as possible to real outcomes. And in order to get closer to them, we need to train a neural network.

The supervised learning process is based on an iterative approach with the gradual adjustment of

weights to the correct answers. As we said earlier, this process consists of two stages: forward and

backward (backpropagation) pass. We have already written about the forward pass method. Let's look

at the backpropagation method.

Above, when describing the class, I also omitted the parameters of this method. Please take another

look at the algorithm for the backward pass. Here we need only correct answers from the external

system. Therefore, we will add a dynamic array of correct answers to the method parameters. But at

the input of the method, we will receive only reference values for the output neural layer. Therefore, we

need to calculate the error gradient for each neuron in our network. The only exception is the neurons

in the input layer: their values are provided by an external system and are independent of the neural

network state. Hence, calculating the error gradient for the input data is unnecessary work that has no

practical value and logical meaning.

At the beginning of the method, as always, we will perform data validation for the method operation. In

this block, we will validate the received pointer to the dynamic array of target values and compare the

result buffer size with the size of the obtained vector of target values. After that, we calculate the value

of the loss function. The calculation of the loss function itself is hidden in the standard MQL5 matrix

operations. The algorithm for calculating the value of the function was shown when considering possible
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options for the loss function. We will check the obtained loss function value and calculate the smoothed

error over the entire training period.

bool CNet::Backpropagation(CBufferType *target)

  {

//--- Control block

   if(!target)

      return false;

   int total = m_cLayers.Total();

   CNeuronBase *Output = m_cLayers.At(total - 1);

   if(!Output ||Output.Total()!=target.Total())

      return false;

//--- Calculate the value of the loss function

   TYPE loss = Output.GetOutputs().m_mMatrix.Loss(target.m_mMatrix,

                                                  m_eLossFunction);

   if(loss == FLT_MAX)

      return false;

   m_dNNLoss = (m_dNNLoss < 0 ? loss :

                m_dNNLoss + (loss - m_dNNLoss) / m_iLossSmoothFactor);

In the next block of our backward pass method, we will bring the error gradient to each neuron of our

network. To achieve this, we will first calculate the error gradient at the output layer and then set up a

backward loop. While iterating from the output of the neural network to its input, for each neural layer,

we will invoke the gradient calculation method. We will discuss the differences in gradient calculation

algorithms for the output and hidden layers of the neural network a bit later while exploring the fully

connected neural layer.

Right here, we will calculate how the weights of our neural network should change in order for it to

produce correct results for the current set of input data. In the sequential enumeration of neural

layers, for each layer we will call the method for calculating deltas.
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//--- Calculate the error gradient at the output of a neural network

   CBufferType* grad = Output.GetGradients();

   grad.m_mMatrix = target.m_mMatrix;

   if(m_cOpenCL)

     {

      if(!grad.BufferWrite())

         return false;

     }

   if(!Output.CalcOutputGradient(grad, m_eLossFunction))

      return false;

//--- Create a loop with enumeration of all neural layers in reverse order

   for(int i = total - 2; i >= 0; i--)

     {

      CNeuronBase *temp = m_cLayers.At(i);

      if(!temp)

         return false;

      //--- Call the method for distributing the error gradient through the hidden layer

      if(!Output.CalcHiddenGradient(temp))

         return false;

      //--- Call the method for distributing the error gradient to the weight matrix

      if(!Output.CalcDeltaWeights(temp, i == 0))

         return false;

      Output = temp;

     }

Similarly to the forward pass, in the case of using OpenCL technology, we need to download the results

of the operations of the last kernel in the queue.

   if(m_cOpenCL)

     {

      for(int i = 1; i < m_cLayers.Total(); i++)

        {

         Output = m_cLayers.At(i);

         if(!Output.GetDeltaWeights() || !Output.GetDeltaWeights().BufferRead())

            continue;

         break;

        }

     }

//---

   return true;

  }

The goal of training a neural network is not to find deviations, but to adjust it for the maximum

likelihood of producing accurate results. A neural network is tuned by adjusting the correct weights.

Therefore, after calculating the deltas, we must update the weights. For the above reasons, I moved

the update of the weights into a separate method UpdateWeights.

When declaring a method in the class description, the parameters are not specified. Let's think: we

have already calculated the deltas for updating the weights, and the training and regularization

coefficients are set when initializing the neural network. At first glance, we have everything we need to

update the weights. But look at the deltas. At each iteration, we will summarize them. If a batch of a

certain size is used for updating coefficients, there is a high likelihood of obtaining an exaggerated

delta. In such a situation, it is logical to use the average delta. To get the average of the sum of the
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packet deltas, it is enough to divide the available sum by the packet size. Of course, mathematically

speaking, batch size can be factored into the learning rate. If we pre-divide the learning rate by the

batch size, the final result will remain unchanged.

But this is manual control, and as always, it's a matter of user preference. We will give the opportunity

to use both options: we will add a parameter to the method to specify the batch size and set its default

value to one. Thus, the user can specify the batch size in the method parameters or can call the

method without specifying parameters. In that case, the batch size will be set to the default value, and

the delta will be adjusted only by the learning coefficient.

The algorithm of the method is quite straightforward. First, we will validate the specified batch size as it

must be a positive integer value. Next, we will set up a loop to iterate through all the neural layers in

our network, calling the corresponding method for each layer. The very process of updating the weights

will be carried out at the level of the neural layer.

bool CNet::UpdateWeights(uint batch_size = 1)

  {

//--- Control block

   if(batch_size <= 0)

      return false;

//--- Organize a loop of enumeration of all hidden layers

   int total = m_cLayers.Total();

   for(int i = 1; i < total; i++)

     {

      //--- Check the validity of the pointer to the neural layer object

      CNeuronBase *temp = m_cLayers.At(i);

      if(!temp)

         return false;

      //--- Call the method of updating the matrix of the weights of the inner layer

      if(!temp.UpdateWeights(batch_size, m_dLearningRate, m_adBeta, m_adLambda))

         return false;

     }

//---

   return true;

  }

Of course, the user should have the ability to obtain the results of the neural network operation after

the forward pass is executed. This will be implemented by the GetResult method.

What external data should the method receive? Logically reasoning, the function should not receive but

rather return data to an external program. However, we do not know what this data will be and in what

numbers. Knowing the possible options for the neuron activation functions, it is logical to assume that

the output of each neuron will be a certain number. The number of such values will be equal to the

number of neurons in the output layer. Accordingly, it will be known at the stage of generation of the

neural network. The logical way out of this situation would be a dynamic array of the appropriate type.

Previously we used the data buffer class CBufferType for passing data into our model. Here we will use a

similar object. Thus, for data exchange between the main program and the model, we will always use

one dynamic array class.
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In the method body, we first obtain a pointer to the array of output layer neuron values and validate

this pointer. Then we check the validity of the pointer to the dynamic array for storing the results. We

received a link to the last array in the method parameters from an external program. If the pointer is

invalid, then we initiate the creation of a new instance of the data buffer class. After successfully

creating a new buffer, we copy the values from the output layer neurons into it and exit the method.

bool CNet::GetResults(CBufferType *&result)

  {

   int total = m_cLayers.Total();

   CNeuronBase *temp = m_cLayers.At(total - 1);

   if(!temp)

      return false;

   CBufferType *output = temp.GetOutputs();

   if(!output)

      return false;

   if(!result)

     {

      if(!(result = new CBufferType()))

         return false;

     }

   if(m_cOpenCL)

      if(!output.BufferRead())

         return false;

   result.m_mMatrix = output.m_mMatrix;

//---

   return true;

  }

It's important to note that depending on the complexity of the task, neural networks can vary

significantly in terms of architectural complexity and the number of synaptic connections. The training

time of the network heavily depends on its complexity. Retraining the neural network every time is

inefficient and is impossible in most cases. Therefore, the once-trained neural network must be saved

and, at the next start, all the coefficients should be loaded from the file. Only after that, if necessary,

you can retrain the neural network for the current realities.

The method responsible for saving the trained neural network is called Save. This virtual method is

created in the CObj ect base class and is overridden in every new class. I intentionally did not

immediately rewrite the method parameters from the parent class. The reason is that the parameters

there are designed to receive a file handle for writing the object. That is, the file must first be opened in

an external program, and after saving the data, the external program closes the file.

In other words, the control over opening and closing the file is removed from the class and placed onto

the calling program. This approach is convenient when the object is part of a larger project and allows

sequentially writing all project objects into a single shared file. And we will definitely use this when

saving the objects that make up our neural network.

However, when we're talking about the top level of our program, it would be desirable to have a single

method for saving the entire project. This method should handle the task of opening and closing the file,

iterating through and saving all the necessary information for reconstructing the entire neural network

from the file. At the same time, we cannot exclude the possibility that the neural network will be just a

part of something larger.
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Taking into consideration the ideas presented above, we will create two methods with the same name:

one will receive a file handle in its parameters similar to the parent class method, and the other will be

passed a file name for data writing.

Now, let's think about the minimum information we need to fully reconstruct a trained neural network.

Of course, we need the architecture of the network, the number of layers and the number of neurons in

them. Besides, we need all weights. To do this, we need to save the entire array of neural layers.

However, it's important to understand that a trained neural network will work correctly only within the

environment for which it was trained. Therefore, we will save information about the loss function and

position encoding.

I propose to write information about the symbol and timeframe in the name of the file. This will allow

the Expert Advisor to quickly determine the presence of a pre-trained network on the disk in the future.

Moreover, changing just the file name would be sufficient to transfer and test a pre-trained neural

network on a different tool or timeframe. In most cases, fine-tuning a neural network will be easier than

training it from random weights.

To gauge the extent of training for the neural network saved in the file, let's add the final average loss

value and the smoothing coefficient. For convenient continuation of training, we will save the training

and regularization parameters. To complete the picture, we will also add a flag indicating whether to

use OpenCL.

Let's look at the algorithm of the method with the file handle in the parameters. At the beginning of the

method, we will check the validity of the received file handle for data writing, as well as the pointers to

the instances of loss functions and the dynamic array of neural layers.

bool CNet::Save(const int file_handle)

  {

   if(file_handle == INVALID_HANDLE ||

      !m_cLayers)

      return false;

Next, we will save the above parameters.

//--- Storing constants

   if(!FileWriteInteger(file_handle, (int)m_bOpenCL) ||

      !FileWriteDouble(file_handle, m_dNNLoss) ||

      !FileWriteInteger(file_handle, m_iLossSmoothFactor) ||

      !FileWriteInteger(file_handle, (int)m_bPositionEncoder) ||

      !FileWriteDouble(file_handle, (double)m_dLearningRate) ||

      !FileWriteDouble(file_handle, (double)m_adBeta[0]) ||

      !FileWriteDouble(file_handle, (double)m_adBeta[1]) ||

      !FileWriteDouble(file_handle, (double)m_adLambda[0]) ||

      !FileWriteDouble(file_handle, (double)m_adLambda[1]) ||

      !FileWriteInteger(file_handle, (int)m_eLossFunction))

      return false;

Let's check the flag for using the positional encoding of the input sequence and, if necessary, call the

CPositionEncoder class instance saving method. At the end of the method, let's call the method that

saves a dynamic array of neural layers. We will get acquainted with the called methods in more detail

while analyzing the classes containing them.
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//--- Save the positional coding object if necessary

   if(m_bPositionEncoder)

     {

      if(!m_cPositionEncoder ||

         !m_cPositionEncoder.Save(file_handle))

         return false;

     }

//-- Call the method for saving the data of a dynamic array of neural layers

   return m_cLayers.Save(file_handle);

  }

The algorithm method with the file name in the parameters will be a bit simpler. We will not rewrite the

data saving algorithm in full. We will simply set up the file for writing information, and then pass the

obtained file handle to the method discussed above. After the method execution is complete, we will

close the file.

Please note that if an empty file name is provided in the parameters, we will replace it with the default

file name and then proceed to execute the method in the standard mode.

Also, after executing the file opening function, we should check the success of the operation by

checking the received handle. I deliberately omitted this step as it is the first operation in the Save

method discussed above, and doing the same operation twice will only slow things down.

bool CNet::Save(string file_name = NULL)

  {

   if(file_name == NULL || file_name == "")

      file_name = defFileName;

//---

   int handle = FileOpen(file_name, FILE_WRITE | FILE_BIN);

//---

   bool result = Save(handle);

   FileClose(handle);

//---

   return result;

  }

For the reverse operation of loading neural network data from a file, we will create two similar Load

methods with a handle and a file name in the parameters. While the algorithm for loading data with a

specified file name in the parameters is identical to the corresponding data saving method, the

algorithm for the second method becomes slightly more complex due to the initialization operations of

objects.

At the beginning of the method, just like during saving, we validate the validity of the received file

handle for loading data.

bool CNet::Load(const int file_handle)

  {

   if(file_handle == INVALID_HANDLE)

      return false;

Then we load all the previously saved parameters of the neural network. At the same time, we make

sure that the sequence of reading data strictly corresponds to the sequence of their recording.
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//--- Reading constants

   m_bOpenCL = (bool)FileReadInteger(file_handle);

   m_dNNLoss = FileReadDouble(file_handle);

   m_iLossSmoothFactor = FileReadInteger(file_handle);

   m_bPositionEncoder = (bool)FileReadInteger(file_handle);

   m_dLearningRate = (TYPE)FileReadDouble(file_handle);

   m_adBeta[0] = (TYPE)FileReadDouble(file_handle);

   m_adBeta[1] = (TYPE)FileReadDouble(file_handle);

   m_adLambda[0] = (TYPE)FileReadDouble(file_handle);

   m_adLambda[1] = (TYPE)FileReadDouble(file_handle);

   m_eLossFunction = (ENUM_LOSS_FUNCTION) FileReadInteger(file_handle);

Please note that when saving the data, we wrote the positional encoding object to the file only when

the function was enabled. Consequently, we first check if the function was enabled when saving the

data, and if necessary, initiate the process of reading the positional encoding method. We check the

existence of the corresponding created object. If it has not been created before, then before loading

the data, we initiate the creation of an instance of the object.

//--- Load the positional coding object

   if(m_bPositionEncoder)

     {

      if(!m_cPositionEncoder)

        {

         m_cPositionEncoder = new CPositionEncoder();

         if(!m_cPositionEncoder)

            return false;

        }

      if(!m_cPositionEncoder.Load(file_handle))

         return false;

     }

To initialize the OpenCL context object, we won't repeat the entire initialization code. Instead, we will

use the appropriate method. We just need to call it and control the result of the operations.

//--- Initialize the object for working with OpenCL

   if(m_bOpenCL)

     {

      if(!InitOpenCL())

         m_bOpenCL = false;

     }

   else

      if(!!m_cOpenCL)

        {

         m_cOpenCL.Shutdown();

         delete m_cOpenCL;

        }

Next, we need to load the neural layers of the model and their parameters directly. To load this

information, it would be sufficient to call the method for loading the dynamic array of neural layers. But

before accessing the class method, we need to ensure the validity of the pointer to the class instance.

Otherwise, we risk getting a critical program execution error. Therefore, we validate the pointer validity

and create a new instance of the dynamic array object if necessary. Here we pass a valid pointer to the
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object to work with the OpenCL context into the object. Only after the preparatory work is done, we

call the method that loads the dynamic array of neural layers.

//--- Initialize and load the data of a dynamic array of neural layers

   if(!m_cLayers)

     {

      m_cLayers = new CArrayLayers();

      if(!m_cLayers)

         return false;

     }

   if(m_bOpenCL)

      m_cLayers.SetOpencl(m_cOpenCL);

//---

   return m_cLayers.Load(file_handle);

  }

Perhaps, here we should explain why we're only loading the dynamic array instead of all the neural

layers. The reason is that our dynamic array of neural layers serves as a container containing pointers

to all the neural layer objects in the model. During saving, all the neural layers were sequentially stored

in the array. Now, when loading the data, objects will also be sequentially created while preserving the

pointers in the array. We will get acquainted with this mechanism in more detail when considering the

methods of this class.

So, we've covered the main methods of our neural network class. In conclusion, taking into account

everything mentioned above, its final structure will look as follows.
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class CNet  : public CObject

  {

protected:

   bool               m_bTrainMode;

   CArrayLayers*      m_cLayers;

   CMyOpenCL*         m_cOpenCL;

   bool               m_bOpenCL;

   TYPE               m_dNNLoss;

   int                m_iLossSmoothFactor;

   CPositionEncoder*  m_cPositionEncoder;

   bool               m_bPositionEncoder;

   ENUM_LOSS_FUNCTION m_eLossFunction;

   VECTOR             m_adLambda;

   TYPE               m_dLearningRate;

   VECTOR             m_adBeta;

public:

                      CNet(void);

                     ~CNet(void);

   //--- Methods for creating an object

   bool               Create(CArrayObj *descriptions);

   bool               Create(CArrayObj *descriptions, TYPE learning_rate,

                                                      TYPE beta1, TYPE beta2);

   bool               Create(CArrayObj *descriptions, 

                 ENUM_LOSS_FUNCTION loss_function, TYPE lambda1, TYPE lambda2);

   bool               Create(CArrayObj *descriptions, TYPE learning_rate, 

                             TYPE beta1, TYPE beta2,

                 ENUM_LOSS_FUNCTION loss_function, TYPE lambda1, TYPE lambda2);

   //--- Implement work with OpenCL

   void               UseOpenCL(bool value);

   bool               UseOpenCL(void)          const { return(m_bOpenCL);         }

   bool               InitOpenCL(void);

   //--- Methods for working with positional coding

   void               UsePositionEncoder(bool value);

   bool               UsePositionEncoder(void) const { return(m_bPositionEncoder);}

   //--- Implement the main algorithms of the model

   bool               FeedForward(const CBufferType *inputs);

   bool               Backpropagation(CBufferType *target);

   bool               UpdateWeights(uint batch_size = 1);

   bool               GetResults(CBufferType *&result);

   void               SetLearningRates(TYPE learning_rate, TYPE beta1 = defBeta1,

                                                           TYPE beta2 = defBeta2);

   //--- Loss Function Methods

   bool               LossFunction(ENUM_LOSS_FUNCTION loss_function,

                          TYPE lambda1 = defLambdaL1, TYPE lambda2 = defLambdaL2);

   ENUM_LOSS_FUNCTION LossFunction(void)       const { return(m_eLossFunction);    }

   ENUM_LOSS_FUNCTION LossFunction(TYPE &lambda1, TYPE &lambda2);
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   TYPE               GetRecentAverageLoss(void) const { return(m_dNNLoss);        }

   void               LossSmoothFactor(int value)    { m_iLossSmoothFactor = value;}

   int                LossSmoothFactor(void)   const { return(m_iLossSmoothFactor);}

   //--- Model operation mode control

   bool               TrainMode(void)          const { return m_bTrainMode;        }

   void               TrainMode(bool mode);

   //--- Methods for working with files

   virtual bool       Save(string file_name = NULL);

   virtual bool       Save(const int file_handle);

   virtual bool       Load(string file_name = NULL, bool common = false);

   virtual bool       Load(const int file_handle);

   //--- object identification method

   virtual int        Type(void)               const { return(defNeuronNet);      }

   //--- Retrieve pointers to internal objects

   virtual CBufferType* GetGradient(uint layer)     const;

   virtual CBufferType* GetWeights(uint layer)      const;

   virtual CBufferType* GetDeltaWeights(uint layer) const;

  };

3.4.4 Dynamic array of neural layer storage

It is worth mentioning a few words about the dynamic array CArrayLayers that stores neural layers. As

previously announced, it is based on the standard CArrayObj  object array class.

The functionality of the parent class almost entirely meets our requirements for a dynamic array. When

examining the source code of the parent class, you can find all the functionality related to the dynamic

array operations and accessing its elements. Additionally, methods for working with files (writing and

reading an array) are also implemented. For this, special thanks to the MetaQuotes team.

When examining the algorithm of the method that reads an array from the Load file in detail, pay

attention to the CreateElement method which creates a new element.

In the previous section, when discussing the method for reading a neural network from a file, prior to

reading the data, we instantiated an object of the corresponding class. The mentioned method

performs similar functionality, but it is not implemented in the parent class. This is quite

understandable and reasonable, as the creators of the class couldn't anticipate the specific objects

their array would store, and thus couldn't create a method generating an unknown class. Therefore,

they left a virtual method to be overridden in the user-defined class.

And as consumers of their product, we create our own dynamic array class by inheriting the core

functionality from the parent class. In this case, we override the method of creating a new array

element.

https://www.metaquotes.net/
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class CArrayLayers   :  public CArrayObj

  {

protected:

   CMyOpenCL*        m_cOpenCL;

   int               m_iFileHandle;

public:

                     CArrayLayers(void) : m_cOpenCL(NULL),

                                          m_iFileHandle(INVALID_HANDLE)

                     { }

                    ~CArrayLayers(void) { };

   //---

   virtual bool      SetOpencl(CMyOpenCL *opencl);

   virtual bool      Load(const int file_handle) override;

   //--- method creating an element of an array

   virtual bool      CreateElement(const int index) override;

   virtual bool      CreateElement(const int index,

                                   CLayerDescription* description);

   //--- method identifying the object

   virtual int       Type(void) override const { return(defArrayLayers); }

  };

One more point should be noted. In order for our overridden method to be called from the parent class

method, its definition must fully match the definition of the parent class method, including parameters

and return value. Of course, there is nothing complex in this, but we are faced with the same question

that the team of creators of the parent class had: what object to create?

We know it will be a neural layer object, but we don't know what type. We can save the type of the

required neural layer to a file before writing the contents of the object itself. However, how can we read

it from the file if the method doesn't receive a file handle for loading data?

At the same time, we pass the file handle when we call the data loading method Load. Evidently, we

need to override the load method as well. But I wouldn't want to rewrite the whole method. Therefore, I

added the variable m_iFileHandle, in which I save the file handle for loading data when the Load method

is called. Then I call a similar method of the parent class.

bool CArrayLayers::Load(const int file_handle)

  {

   m_iFileHandle = file_handle;

   return CArrayObj::Load(file_handle);

  }

Now let's look directly at the method of creating a new neural layer in a dynamic array. In the

parameters, the method receives the index of the element to be created. At the beginning of the

method, we check that the resulting index is not negative, because the index of an element of a

dynamic array cannot be less than zero. We will also check the saved file handle for loading – without

it, we won't be able to determine the type of the element being created.

Next, we reserve an element in our array, read the type of the element to be created from the file, and

create an instance of the type we need. Let's not forget to check the result of creating a new object,

pass a pointer to the OpenCL object into the new element, and save the pointer to the new neural layer

into our array. In conclusion, let's ensure that the index of the new element does not exceed the

maximum number of elements in the array.
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bool CArrayLayers::CreateElement(const int index)

  {

//--- source data verification block

   if(index < 0 || m_iFileHandle==INVALID_HANDLE)

      return false;

//--- reserving an array element for a new object

   if(!Reserve(index + 1))

      return false;

//--- read the type of the desired object from the file and create the corresponding neural layer

   CNeuronBase *temp = NULL;

   int type = FileReadInteger(m_iFileHandle);

   switch(type)

     {

      case defNeuronBase:

         temp = new CNeuronBase();

         break;

      case defNeuronConv:

         temp = new CNeuronConv();

         break;

      case defNeuronProof:

         temp = new CNeuronProof();

         break;

      case defNeuronLSTM:

         temp = new CNeuronLSTM();

         break;

      case defNeuronAttention:

         temp = new CNeuronAttention();

         break;

      case defNeuronMHAttention:

         temp = new CNeuronMHAttention();

         break;

      case defNeuronGPT:

         temp = new CNeuronGPT();

         break;

      case defNeuronDropout:

         temp = new CNeuronDropout();

         break;

      case defNeuronBatchNorm:

         temp = new CNeuronBatchNorm();

         break;

      default:

         return false;

     }

//--- control over the creation of a new object

   if(!temp)

      return false;
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//--- add a pointer to the created object to the array

   if(m_data[index])

      delete m_data[index];

   temp.SetOpenCL(m_cOpenCL);

   m_data[index] = temp;

//---

   return true;

  }

Since a new class has been created, I decided to add a couple more methods to it. The first thing I

added was a similar method for generating a new item. The difference is that the new method creates a

new layer based on the description obtained in the method parameters. The algorithm of the method is

almost completely the same as above, except for some details.



3. Building the first neural network model in MQL5

135

3.4 Creating the framework for the future MQL5 program

bool CArrayLayers::CreateElement(const int index, CLayerDescription *desc)

  {

//--- source data verification block

   if(index < 0 || !desc)

      return false;

//--- reserve an array element for a new object

   if(!Reserve(index + 1))

      return false;

//--- create the corresponding neural layer

   CNeuronBase *temp = NULL;

   switch(desc.type)

     {

      case defNeuronBase:

         temp = new CNeuronBase();

         break;

      case defNeuronConv:

         temp = new CNeuronConv();

         break;

      case defNeuronProof:

         temp = new CNeuronProof();

         break;

      case defNeuronLSTM:

         temp = new CNeuronLSTM();

         break;

      case defNeuronAttention:

         temp = new CNeuronAttention();

         break;

      case defNeuronMHAttention:

         temp = new CNeuronMHAttention();

         break;

      case defNeuronGPT:

         temp = new CNeuronGPT();

         break;

      case defNeuronDropout:

         temp = new CNeuronDropout();

         break;

      case defNeuronBatchNorm:

         temp = new CNeuronBatchNorm();

         break;

      default:

         return false;

     }

//--- control over the creation of a new object

   if(!temp)

      return false;
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//--- add a pointer to the created object to the array

   if(!temp.Init(desc))

      return false;

   if(m_data[index])

      delete m_data[index];

   temp.SetOpenCL(m_cOpenCL);

   m_data[index] = temp;

   m_data_total  = fmax(m_data_total, index + 1);

//---

   return true;

  }

The second added method is responsible for passing a pointer to the OpenCL object to all previously

created layers of our neural network, as the decision to use this technology can be made either before

or after the neural network is generated. For example, a neural network can be created and tested for

performance without using OpenCL technology. Further, the technology can be leveraged to accelerate

the learning process.

The algorithm of the method is quite simple. We first check if the pointer was previously set and delete

the old object if necessary. Then we save the new pointer and start the loop for enumerating the

elements of the dynamic array. In this case, we will pass a new pointer to an OpenCL object to each

element of the array. 

bool CArrayLayers::SetOpencl(CMyOpenCL *opencl)

  {

//--- source data verification block

   if(m_cOpenCL)

      delete m_cOpenCL;

   m_cOpenCL = opencl;

//--- passing a pointer to all array elements

   for(int i = 0; i < m_data_total; i++)

     {

      if(!m_data[i])

         return false;

      if(!((CNeuronBase *)m_data[i]).SetOpenCL(m_cOpenCL))

         return false;

     }

//--- 

   return(!!m_cOpenCL);

  }

3.5 Description of a Python script structure

Python is an interpreted programming language with a minimalistic syntax. Such syntax enables the

fast creation of small code blocks and the immediate testing of their functionality. Therefore, Python

allows you to focus on solving the problem rather than programming. Perhaps, it's precisely due to this

feature that Python has gained such popularity.

Despite the fact that interpreted programming languages run slower than compiled ones, Python has

currently become the most popular programming language for creating and conducting experiments

with neural networks. The issue of execution speed is solved by using various libraries written, among



3. Building the first neural network model in MQL5

137

3.5 Description of a Python script structure

others, in compiled programming languages. Fortunately, Python has the ability to easily expand and

incorporate libraries written in practically all available programming languages.

We, too, won't be constructing complex algorithms and will make use of ready-made solutions,

including libraries both for building neural networks and for trading. Let's start by familiarizing ourselves

with some of them.

The os module contains functions for working with the operating system. Using this library enables the

creation of cross-platform applications, as the functionality of this module operates independently of

the installed operating system. Here are just some of the functions of the os library:

· os.name returns the name of the operating system. The following options are possible as a result of

executing the function: 'posix', 'nt', 'mac', 'os2', 'ce', 'java'.

· os.environ is a function for working with environment variables, allowing you to modify, add and

delete environment variables.

· os.path contains a number of functions for working with file and directory paths.

The Pandas module is a library for processing and analyzing data. The library provides specialized data

structures and operations for processing numeric tables and time series. It enables data analysis and

modeling without using specialized programming languages for statistical processing, such as R or

Octave.

The package is designed for data cleaning and initial assessment based on general statistical indicators.

It can be used to calculate mean, quantiles, etc. At the same time, the package cannot be considered

purely statistical in nature. However, the datasets it creates, such as DataFrame and Series types, are

used as inputs in most data analysis and machine learning modules like SciPy, Scikit-Learn, and others.

The DataFrame object is created in the Pandas library. It is designed to work with indexed arrays of

two-dimensional data.

In addition, the library provides:

· Tools for data exchange between structures in memory and files of different formats;

· Built-in data matching tools and ways to handle missing information;

· Reformatting datasets, including creating pivot tables;

· Advanced indexing and sampling capabilities from large datasets;

· Grouping capabilities that enable performing three-step operations like “split, apply, combine”;

· Merging and combining different datasets.

The library provides the ability to create hierarchical indexing, allowing you to work with high-

dimensional data within structures of lower dimensions. Functions for working with time series allow you

to form time periods and change intervals. The library is optimized for high performance, with the most

important parts of the code written in Cython and C.

Another library for working with multidimensional arrays, NumPy , is an open-source library. The main

capabilities of this module include support for multidimensional arrays (including matrices) and high-

level mathematical functions designed for working with multidimensional arrays.

The NumPy library implements computational algorithms in the form of functions and operators that are

optimized for working with multidimensional arrays. The library offers the ability to perform vector

operations on data. All functions are written in C and optimized for maximum performance. As a result,

any algorithm that can be expressed as a sequence of operations on arrays (matrices) and

implemented using NumPy runs as fast as the equivalent code executed in MATLAB.
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At the same time, NumPy can be considered as an alternative to using MATLAB. Both languages are

interpreted and allow performing operations on arrays.

NumPy is often used as a base for working with multidimensional arrays in other libraries. The

aforementioned Pandas also uses the NumPy library for low-level array operations.

The Matplotlib module is a comprehensive library for creating static, animated, and interactive

visualizations. It can be used to visualize large volumes of data.

We will use the TensorFlow library to create neural network models. This is a comprehensive open-

source platform for machine learning. It has a flexible ecosystem of tools, libraries, and community

resources that allow researchers to advance the latest achievements in machine learning while enabling

developers to easily create and deploy machine learning-based applications.

The library enables the creation and training of machine learning models using intuitive high-level APIs

with eager execution, such as Keras. This provides immediate integration of the model and facilitates

debugging.

Of course, to integrate with the MetaTrader 5 terminal, we will use the MetaTrader5 library of the same

name. It provides a set of functions for data exchange with the terminal, including functions for

retrieving market information and executing trading operations.

For technical analysis of data, you can make use of the TA-lib library, which offers a wide range of

functions for technical indicators.

Before you can use the libraries, you must install them in the Python environment you are using. To do

this, in the command prompt or Windows PowerShell with administrator privileges, you need to execute

a series of commands:

· NumPy installation

pip install numpy

· installing Pandas

pip install pandas

· installing Matplotlib

pip install matplotlib

· installing TensorFlow

pip install tensorflow

· installing Keras

pip install keras

· installing MetaTrader 5 library

pip install MetaTrader5

Moving directly to the structure of our script, let's create a template template.py. The script will

consist of several blocks. First, we need to connect the necessary libraries to our script.
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# import libraries

import os

import pandas as pd

import numpy as np

import tensorflow as tf 

from tensorflow import keras 

import matplotlib as mp

import matplotlib.pyplot as plt

import matplotlib.font_manager as fm

import MetaTrader5 as mt5

After training the models, we will create visualization plots to depict the training process and compare

the performance of different models. To standardize the plots, we will define common parameters for

their construction.

# set parameters for results graphs

mp.rcParams.update({'font.family':'serif',

                    'font.serif':'Clear Sans',

                    'axes.labelsize':'medium',

                    'legend.fontsize':'small',

                    'figure.figsize':[6.0,4.0],

                    'xtick.labelsize':'small',

                    'ytick.labelsize':'small',

                    'axes.titlesize': 'x-large',

                    'axes.titlecolor': '#333333',

                    'axes.labelcolor': '#333333',

                    'axes.edgecolor': '#333333'

                   })

We will perform the training and testing of all models on a single dataset, which we will specifically

preload into a file on the local disk. This approach will allow us to eliminate the influence of disparate

data and assess the performance of different neural network models under consistent conditions.

Hence, in the next step, we will load the initial data from the file into the table. Please note the

following: since MetaTrader 5 restricts access to files from its programs within the sandboxed

environment, you need to provide the full path to the source data file. It will be stored in the MQL5\Files

directory of your terminal or its subdirectories if they were specified when saving the data file.

Instead of hardcoding the path to the terminal sandbox in our program code, we will retrieve it from

MetaTrader 5 using the provided API. To achieve this, we first establish a connection to the installed

terminal and verify the outcome of this operation.

# Connecting to the MetaTrader 5 terminal

if not mt5.initialize():

    print("initialize() failed, error code =",mt5.last_error())

    quit()

After successfully connecting to the terminal, we will request the sandbox path and then disconnect

from the terminal. Subsequent operations involving model creation and training will be conducted using

Python tools. We do not plan to perform any trading operations in this script.
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# Requesting a sandbox path

path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')

mt5.shutdown()

In the following short data loading block, you can observe the usage of functions from all three

aforementioned libraries simultaneously. Using the os.path.j oin function, we concatenate the path to

the working directory with the name of the training sample file. With the read_ table function from the

Pandas library, we read and convert the contents of the CSV file into a table. Then we convert the

obtained table into a two-dimensional array using the NumPy library function.

# Loading a training sample

filename = os.path.join(path,'study_data.csv')

data = np.asarray( pd.read_table(filename,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

The actual reading of the CSV file contents and the transformation of rows into a table are performed

using the read_ table function from the Pandas library. This function has quite a few parameters for

precise configuration of the methods to transform string data into the desired numerical data type.

Their full description can be found in the library documentation. We will only describe those we use:

· filename gives the name of the file to be read, specifying full or relative path;

· sep specifies the data separator used in the file;

· header provides row numbers to be used as column names and the beginning of the data, in the

absence of headers we specify the value None;

· skipinitialspace is a boolean parameter that specifies whether to skip spaces after the delimiter;

· encoding specifies the type of encoding used;

· float_ precision determines which converter should be used for floating point values;

· dtype specifies the final data type;

· low_ memory internally processes the file piecemeal, which will result in less memory usage during

parsing.

As a result of these operations, all training sample data were loaded into a two-dimensional array object

of type numpy.ndarray from the NumPy library. Among the loaded data, there are elements of the

source data and target values. However, for training a neural network, we need to separately feed the

source data as input to the network and then compare the obtained output with the target values after

the forward pass. It turns out that the input data and targets for the neural network are separated in

time and place of use.

Hence, we need to split this data into separate arrays. Let each data row represent an individual data

pattern, with the last two elements of the row containing the target points for that pattern. The shape

function will show the size of our array, which means we can use it to determine the dimensions of the

initial data and target values. Only by knowing these dimensions can we copy specific samples into new

arrays.

https://pandas.pydata.org/docs/reference/api/pandas.read_table.html
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In the block below, we will divide the training sample into 2 tables. In doing so, we are separating only

the columns while preserving the entire structure of rows. Thus, we get the initial data in one array and

the target values in the other array. The patterns can be mapped to the corresponding target values by

row number.

# Dividing the training sample into baseline data and targets

inputs=data.shape[1]-2

targerts=2

train_data=data[:,0:inputs]

train_target=data[:,inputs:]

Now that we have the training data, we can start building the neural network model. We will create

models using the function Sequential from the Keras library.

# Create a neural network model

model = keras.Sequential([....])

The Sequential model is a linear stack of layers. You can create a Sequential model by passing a list of

layers to the model's constructor, and you can also add layers using the add method.

First of all, our model needs to know what dimensionality of data to expect at the input. In this regard,

the first layer of the Sequential model must obtain information about the dimensionality of the input

data. All subsequent layers perform an automatic dimensionality calculation.

There are several ways to specify the dimensions of the raw data:

· Pass the input_ shape argument to the first layer.

· Some 2D layers support the specification of the dimensionality of the input data via the input_ dim

argument. Some 3D layers support input_ dim and input_ length arguments.

· Use a special type of neural layer for the original Input data with the shape parameter that

specifies the size of the layer.

# Create a neural network model

model = keras.Sequential([keras.Input(shape=inputs),

 # Fill the model with a description of the neural layers

                         ])

We will become familiar with the types of proposed neural layers as we study their architectures. Now

let's look at the general principles of building and organizing models.

Once the model is created, you need to prepare it for training and customize the process. This

functionality is performed in the compile method which has several parameters:

· optimizer – an optimizer, can be specified as a string identifier of an existing optimizer or as an

instance of the Optimizer class;

· loss – a loss function, can be specified by a string identifier of an existing loss function, or an

eigenfunction;

· metrics – a list of metrics that the model should evaluate during training and testing, for example,

'accuracy' could be used for the classification task;

· loss_ weights – an optional list or dictionary that defines scalar coefficients for weighting the loss

contributions of various model outputs;

· weighted_metrics – a list of metrics that will be evaluated and weighted during training and testing.

https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
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For each parameter, the Keras library offers a different list of possible values, but it does not limit the

user to the proposed options. For each parameter, there is a possibility to add custom classes and

algorithms.

model.compile(optimizer='Adam', 

              loss='mean_squared_error', 

              metrics=['accuracy'])

Next, we can start training the created model using the fit method, which allows training a model with a

fixed number of epochs. This method has parameters to customize the learning process.

· x – an array of initial data;

· y – an array of target results;

· batch_ size – an optional parameter, specifies the number of sets of "source data - target values"

pairs before updating the weights matrix;

· epochs – a number of epochs of training;

· verbose – an optional parameter, specifies the level of detail of training logging: 0 - no messages, 1

- progress bar, 2 - one line per epoch, auto - automatic selection;

· callbacks – a list of callbacks to apply during training;

· validation_ split – carries out allocation of a part of the training sample for validation, specified in

fractions from 1.0;

· validation_ data – a separate sample for validating the learning process;

· shuffle – a logical value that indicates the need to shuffle the training sample data before the next

epoch;

· class_ weight – an optional dictionary mapping class indices to a weight value used to weight the

loss function (only during training);

· sample_ weight – an optional array of NumPy weights for the training sample used to weight the loss

function (only during training);

· initial_ epoch – a training start epoch, can be useful for resuming a previous training cycle;

· steps_ per_ epoch – a total number of packets before declaring one epoch completed and starting

the next, by default equal to the training sample size;

· validation_ steps – the total number of packets from the validation sample before stopping when

performing validation at the end of each epoch, defaults to the validation sample size;

· validation_ batch_ size – a number of samples per validation batch;

· validation_ freq – an integer, specifies the number of training periods before performing a new

validation run.

Of course, we will not use the full set of parameters in the first model. I propose to stop at the

parameter callbacks which sets a callback list. This option provides methods for interacting with the

learning process in an interactive way.

Its usage allows configuring the retrieval of real-time information about the training process and

managing the process itself. In particular, you can accumulate the average values of indicators for an

epoch or save the results of each epoch to a CSV file. You can also monitor training metrics and adjust

the learning rate or even stop the training process when the monitored metric stops improving. At the

same time, it is possible to add your own callback classes.

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Callback
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I suggest using early stopping in the training procedure if there is no improvement in the error function

metric over five epochs.

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5)

history = model.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.2,

                      shuffle=true)

After training is complete, save the trained model to a file on the local disk. To do this, let's use the

methods of the Keras and os libraries.

# Saving the learned model

model.save(os.path.join(path,'model.h5'))

For clarity and understanding of the training process, let's plot the dynamics of metric changes during

training and validation. Here we will use the methods of the Matplotlib library.

# Drawing model learning results

plt.plot(history.history['loss'], label='Train')

plt.plot(history.history['val_loss'], label='Validation')

plt.ylabel('$MSE$ $Loss$')

plt.xlabel('$Epochs$')

plt.title('Dynamic of Models train')

plt.legend(loc='upper right')

plt.figure()

plt.plot(history.history['accuracy'], label='Train')

plt.plot(history.history['val_accuracy'], label='Validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Dynamic of Models train')

plt.legend(loc='lower right')

After training, it's necessary to evaluate our model's performance on the test dataset, as before

deploying the model in real conditions, we need to understand how it will perform on new data. To do

this, we will load a test sample. The data loading procedure is entirely analogous to loading the training

dataset, with the only difference being the filename.

# Loading a test sample

test_filename = os.path.join(path,'test_data.csv')

test = np.asarray( pd.read_table(test_filename,

                   sep=',',

                   header=None,

                   skipinitialspace=true,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=false))

After loading the data, we will split the obtained table into source data and target labels, just as we did

with the training dataset.
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# Dividing the test sample into raw data and targets

test_data=test[:,0:inputs]

test_target=test[:,inputs:]

We will check the quality of the trained model on the test sample using the evaluate method from the

Keras library. As a result of calling the specified method, we obtain the loss value and metrics on the

test dataset. The method has a number of parameters to customize the testing process:

· x – an array of initial data of the test sample;

· y – an array of test sample targets;

· batch_ size – a size of the test batch;

· verbose – a mode of process logging detailing (0 - no logging, 1 - progress indication);

· sample_ weight – an optional parameter used to weight the loss function;

· steps – a total number of steps to declare the testing process complete;

· callbacks – a list of callbacks used in the training process;

· return_ dict – a boolean variable that defines the format of the method output (True = as a "metric-

value" dictionary, False = as a list).

Most of the above parameters are optional and also have default values. To initiate the testing process,

in most cases, it's sufficient to simply provide the data arrays.

# Validation of model results on test sample

ltest_loss, test_acc = model.evaluate(test_data, test_target) 

Finally, let's output the test results to the log and display the previously plotted graphs.

# Logging test results

print('Model in test')

print('Test accuracy:', test_acc)

print('Test loss:', test_loss)

# Output of created charts

plt.show()

At this point, the basic script template can be considered complete. It's worth noting that attempting

to run this script will result in an error. It has nothing to do with errors in template construction.

Indeed, we haven't provided a description of our model yet and left the block empty. During the

process of exploring various neural network solutions, we will fill in the model architecture description

block, allowing us to fully assess the performance of our template.

3.6 Fully connected neural layer

In the previous sections, we established the fundamental logic of organizing and operating a neural

network. Now we are moving on to its specific content. We begin the construction of actual working

elements – neural layers and their constituent neurons. We will start with constructing a fully

connected neural layer.

It was precisely the fully connected neural layers that formed the Perceptron, created by Frank

Rosenblatt in 1957. In this architecture, each neuron of the layer has connections with all neurons of

the previous layer. Each link has its own weight factor. The figure below shows a perceptron with two

hidden fully connected layers. The output neuron can also be represented as a fully connected layer

https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate
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with one neuron. Almost always, at the output of a neural network, we will use at least one fully

connected layer.

It can be said that each neuron assesses the overall picture of the input vector and responds to the

emergence of a certain pattern. Through the adjustment of various weights, a model is constructed in

which each neuron responds to its specific pattern in the input signal. It is this property that makes it

possible to use a fully connected neural layer at the output of classifier models.

Perceptron has two hidden fully connected layers.

If we consider a fully connected neural layer from the perspective of vector mathematics, in the

framework of which the input values vector represents a certain point in the N-dimensional space

(where N is the number of elements in the input vector), then each neuron builds a projection of this

point on its own vector. In this case, the activation function decides whether to transmit the signal

further, or not.

Here, it's important to pay attention to the displacement of the obtained projection relative to the

origin of the coordinates. While the activation function is designed to make decisions within a strict

range of input data, this displacement is, for us, a systematic error. To compensate for this bias, an

additional constant called bias is introduced on each neuron. In practice, this constant is tuned during

the training process along with the weights. For this, another element with a constant value of 1 is

added to the input signal vector, and the selected weight for this element will play the role of bias.

3.6.1 Architecture and principles of implementation of a fully connected layer

When constructing the base class for the neural network and the dynamic array to store pointers to

neuron layers, we defined the main methods and interfaces for data exchange between the neural

network manager and its components. This is what defines the basic public methods of all our neural

layer classes. I suggest summarizing the mentioned sections briefly now. Let's highlight the key class

methods we have yet to write and their functionality.
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Please note that all neural layer objects must be descendants of the CObj ect base class. This is the

fundamental requirement for placing pointers to instances of these objects into the dynamically created

array we've designed.

Adhering to the general principles of object organization, in the class constructor, we initialize internal

variables and constants. In the destructor, we will perform memory cleanup: deleting all internal

instances of various classes and clearing arrays.

In parameters, the Init method receives an instance of the CLayerDescription class containing the

description of the neural layer to be created. Therefore, this method should be organized to create the

entire internal architecture for the proper functioning of our neural layer. We will need to create several

arrays to store the data.

It is an array for recording the states at the output of neurons. This array will have a size equal to the

number of neurons in our layer.

We will also need an array to store the weights. This will be a matrix, where the size of the first

dimension is equal to the number of neurons in our layer, and the size of the second dimension is one

more than the size of the input data array. For a fully connected neural layer, the array of input data

consists of the output values of the neurons from the previous layer. Consequently, the size of the

second dimension will be one element larger than the size of the previous layer. The added element will

serve to adjust the bias.

For the backward pass, we will need an array to store gradients (deviations of calculated values from

reference values at the output of neurons). Its size will correspond to the number of neurons in our

layer.

Additionally, depending on the training method, we might need one or two matrices to store

accumulated moments. The sizes of these matrices will be equal to the size of the weight matrix.

We will not always update the weights after every iteration of the backward pass. It is possible to

update the weights after a full pass of the training sample or based on some batch. We will not store

the intermediate states of all neurons and their inputs. On the contrary, after each iteration of the

backward pass, we will calculate the necessary change for each weight as if we were updating the

weights at every iteration. But instead of changing the weights, we will summarize the resulting deltas

into a separate array. If updating is necessary, we will simply take the average delta value over the

period and adjust the weights accordingly. For this purpose, we will need another matrix with a size

equal to the weight matrix.

For all arrays, we will create a special class called CBufferType. It will inherit from the base class

CObj ect with the addition of the necessary functionality to organize the operation of the data buffer.

In addition to creating arrays and matrices, we need to fill them with initial values. We will fill all arrays,

except the weights, with zeros, and initialize the weight matrix with random values.

In addition to data arrays, our class will also use local variables. We will need to save the activation and

optimization parameters of the neurons. We will store the type of optimization method in a variable, and

for activation functions, we will create a whole structure of separate classes inheriting from a common

base class.

Let me remind you that we are building a universal platform for creating neural networks and their

operation in the MetaTrader 5 terminal. We plan to provide users with the ability to utilize multi-

threaded computations using the OpenCL technology. All objects in our neural network will operate in

the same context. This will reduce the time spent on unnecessary data overload. The actual instance of

https://www.mql5.com/en/docs/standardlibrary/cobject
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the class for working with the OpenCL technology will be created in the base neural network class, and

a pointer to the created object will be passed to all elements of the neural network. Therefore, all

objects that make up the neural network, including our neural layer, should have a method for obtaining

the SetOpenCL pointer and a variable for storing it.

The forward pass will be organized in the FeedForward method. The only parameter of this method will

be a pointer to the CNeuronBase object of the previous layer of the neural network. We will need the

output states of the neurons from the previous layer, which will form the incoming data stream. To

access them, let's create the GetOutputs method.

The backward pass, unlike the forward pass, will be divided into several methods:

· CalcOutputGradient calculates the error gradient at the output layer of the neural network by

reference values.

· CalcHiddenGradient skips the error gradient through the hidden layer from output to input. As a

result, we will pass the error gradients to the previous layer. To access the array of gradients from

the previous layer, we will need a method to access them – GetGradients.

· CalcDeltaWeights calculates the necessary changes in weights based on the analysis of the last

iteration.

· UpdateWeights is a method to directly update the weights.

Let's not forget the common for all objects methods of working with files and identification, namely

Save, Load, and Type.

In our object detailing, we will focus on the neural layer class and will not create separate objects for

each neuron. In fact, there are a number of reasons for this. From what lies on the surface:

· Using the Softmax activation function involves working with the entire neural layer.

· Using the Dropout and Layer Normalization methods requires the processing of the entire neural

layer data.

· This approach allows us to efficiently organize multi-threaded computations based on matrix

operations.

Let's delve more into matrix operations and see how they allow us to distribute operations across

multiple parallel threads. Consider a small example of three elements in the input (vector Inputs) and

two neurons in the layer. Both neurons have their weight vectors W
1
 and W

2
. In this case, each vector

of weights contains three elements.

According to the mathematical model of the neuron, we need to element-wise multiply the input data

vector with the weight vector, sum up the obtained values, and apply the activation function to them.

Essentially, the same process, except for the activation function, is achieved through matrix

multiplication.

Matrix multiplication is an operation resulting in a matrix. The elements of the new matrix are obtained

by summing the element-wise products of rows from the first matrix with columns from the second

matrix.
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Thus, to obtain the sum of element-wise products of the input data vector and the weight vector of one

of the neurons, it is necessary to multiply the input data row vector by the weight column vector.

This rule is applicable to any matrices. The only condition is that the number of columns in the first

matrix must be equal to the number of rows in the second matrix. Therefore, we can assemble the

weight vectors of all neurons in the layer into a single matrix W, where each column will represent the

weight vector of an individual neuron.

You can see that the computation of any element in vector Z is independent of the other elements of

the same vector. Accordingly, we can load the matrices of input data and weights into memory and

then concurrently compute the values of all elements in the output vector.

We can go even further and load not just a single vector of input data, but a matrix where the rows

represent individual states of the system. When working with time series data, each row represents a

snapshot of the system's state at a certain moment in time. As a result, we will increase the number of

parallel threads of operations and potentially reduce the time to process data.

Naturally, we can also use multi-threading to calculate the activation function values for each

independent element of matrix Z. An exception might be the use of the Softmax activation function due

to the peculiarities of its computation. However, even in this case, parallelization of computations at

different stages of the function calculation is possible.

3.6.2 Creating a neural layer using MQL5 tools

When starting to implement a fully connected neural layer, it should be taken into account that this will

be the base class for all subsequent architectural solutions of neural layers. Therefore, we must make it

as versatile as possible while also allowing for a potential expansion of functions. At the same time, we

should provide the possibility to easily integrate extensions into the existing solution.

Let's start by creating our neural layer base class CNeuronBase inherited from the CObj ect class. We

define the internal variables of the class:

· m_ cOpenCL – a pointer to an instance of the class for working with OpenCL technology

· m_ cActivation – a pointer to an activation function object

· m_ eOptimization – the type of neuron optimization method during training

· m_ cOutputs – an array of values at the output of neurons
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· m_ cWeights – an array of weights

· m_ cDeltaWeights – an array for accumulating outstanding weight updates (cumulative error

gradient for each weight since the last update)

· m_ cGradients – the error gradient at the output of the neural layer as a result of the last iteration

of the backward pass

· m_ cMomenum – unlike other variables, this will be an array of two elements for recording pointers

to arrays of accumulated moments

To facilitate access to variables from derived classes, all variables will be declared in a block called

protected.

In the class constructor, we initialize the above variables with default parameters. I have specified

Adam and Swish optimization method as an activation function but you can choose your preferred

optimization method and activation function. We will leave the pointer to the class working with OpenCL

empty and create instances for all other classes used.

CNeuronBase::CNeuronBase(void)   : m_eOptimization(Adam)

  {

   m_cOpenCL = NULL;

   m_cActivation = new CActivationSwish();

   m_cOutputs = new CBufferType();

   m_cWeights = new CBufferType();

   m_cDeltaWeights = new CBufferType();

   m_cGradients = new CBufferType();

   m_cMomenum[0] = new CBufferType();

   m_cMomenum[1] = new CBufferType();

  }

We immediately create a class destructor so we don't forget about memory cleanup after the class

finishes its work.

CNeuronBase::~CNeuronBase(void)

  {

   if(!!m_cActivation)

      delete m_cActivation;

   if(!!m_cOutputs)

      delete m_cOutputs;

   if(!!m_cWeights)

      delete m_cWeights;

   if(!!m_cDeltaWeights)

      delete m_cDeltaWeights;

   if(!!m_cGradients)

      delete m_cGradients;

   if(!!m_cMomenum[0])

      delete m_cMomenum[0];

   if(!!m_cMomenum[1])

      delete m_cMomenum[1];

  }

Next, we create a neural layer initialization method. In the parameters, the method receives an

instance of the CLayerDescription class with a description of the layer to be created. To avoid getting

lost in the intricacies of the method algorithm, I suggest breaking it down into separate logical blocks
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The method starts with a block in which we check input parameters. First, we check the validity of the

pointer to the object. Then we check the type of the layer being created and the number of neurons in

the layer: each layer should have at least one neuron, because from the logical perspective of

constructing a neural network, a layer without neurons blocks the passage of the signal and paralyzes

the entire network. Note that when checking the type of the created layer, we use the virtual method

Type and not the constant defNeuronBase which it returns. This is a very important point for future

class inheritance. The fact is that when using a constant, calling such a method for descendant classes

would always return false when trying to create a layer other than the base one. Using a virtual method

allows us to obtain a constant identifier of the final derived class, and the check will yield a true

comparison result between the specified type of neural layer and the object being created.

bool CNeuronBase::Init(const CLayerDescription *desc)

  {

//--- source data control block

   if(!desc || desc.type != Type() || desc.count <= 0)

      return false;

In the next block, we will verify the validity of previously created buffers for recording the data flow

coming out of the neural layer and the gradient to them (if necessary, we create new instances of the

class). We initialize arrays with zero values.

//--- creating a results buffer

   if(!m_cOutputs)

      if(!(m_cOutputs = new CBufferType()))

         return false;

   if(!m_cOutputs.BufferInit(1, desc.count, 0))

      return false;

//--- creating error gradient buffer

   if(!m_cGradients)

      if(!(m_cGradients = new CBufferType()))

         return false;

   if(!m_cGradients.BufferInit(1, desc.count, 0))

      return false;

After that, we check the number of elements of the input signal. In the case of using the neural layer

as an array of incoming signals, we will not have preceding neural layers, and other data buffers will not

be required. We can remove them without any problem and clear the memory. Then we check the

validity of the pointer to the object in m_ cOpenCL and, if the result is positive, we create a copy of the

data buffer in the OpenCL context.



3. Building the first neural network model in MQL5

151

3.6 Fully connected neural layer

//--- removing unused features for the source data layer

   if(desc.window <= 0)

     {

      if(m_cActivation)

         delete m_cActivation;

      if(m_cWeights)

         delete m_cWeights;

      if(m_cDeltaWeights)

         delete m_cDeltaWeights;

      if(m_cMomenum[0])

         delete m_cMomenum[0];

      if(m_cMomenum[1])

         delete m_cMomenum[1];

      if(m_cOpenCL)

         if(!m_cOutputs.BufferCreate(m_cOpenCL))

            return false;

      m_eOptimization = desc.optimization;

      return true;

     }

Further method code is executed only if there are previous neural layers. Let's create and initialize an

instance of the activation function method. We have moved this process to a separate method,

SetActivation, which we are now simply calling. We will examine the algorithm of the SetActivation

method a bit later.

//--- initializing an activation function object

   VECTOR ar_temp = desc.activation_params;

   if(!SetActivation(desc.activation, ar_temp))

      return false;

The next step is to initialize the matrix of weights. We determine the number of elements in the matrix

and initialize it with random values using the Xavier method. In the case of using LReLU as an activation

function, we will use the He method.

//--- initializing a weight matrix object

   if(!m_cWeights)

      if(!(m_cWeights = new CBufferType()))

         return false;

   if(!m_cWeights.BufferInit(desc.count, desc.window + 1, 0))

      return false;

   double weights[];

   double sigma = (desc.activation == AF_LRELU ?

                  2.0 / (double)(MathPow(1 + desc.activation_params[0], 2)

                                                           * desc.window) :

                  1.0 / (double)desc.window);

   if(!MathRandomNormal(0, MathSqrt(sigma), m_cWeights.Total(), weights))

      return false;

   for(uint i = 0; i < m_cWeights.Total(); i++)

      if(!m_cWeights.m_mMatrix.Flat(i, (TYPE)weights[i]))

         return false;

We still need to initialize the buffers for deltas and moments. The size of the buffers will be equal to the

size of the weight matrix, and we will initialize them with zero values. Remember that not all
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optimization methods use the moment matrices in the same way. Therefore, we will initialize the

matrices of moments depending on the optimization method. We will clear and delete unnecessary

arrays to free up memory for productive use.
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//--- initialization of the gradient accumulation object at the weight matrix level

   if(!m_cDeltaWeights)

      if(!(m_cDeltaWeights = new CBufferType()))

         return false;

   if(!m_cDeltaWeights.BufferInit(desc.count, desc.window + 1, 0))

      return false;

//--- initializing moment objects

   switch(desc.optimization)

     {

      case None:

      case SGD:

         for(int i = 0; i < 2; i++)

            if(m_cMomenum[i])

               delete m_cMomenum[i];

         break;

      case MOMENTUM:

      case AdaGrad:

      case RMSProp:

         if(!m_cMomenum[0])

            if(!(m_cMomenum[0] = new CBufferType()))

               return false;

         if(!m_cMomenum[0].BufferInit(desc.count, desc.window + 1, 0))

            return false;

         if(m_cMomenum[1])

            delete m_cMomenum[1];

         break;

      case AdaDelta:

      case Adam:

         for(int i = 0; i < 2; i++)

           {

            if(!m_cMomenum[i])

               if(!(m_cMomenum[i] = new CBufferType()))

                  return(false);

            if(!m_cMomenum[i].BufferInit(desc.count, desc.window + 1, 0))

               return false;

           }

         break;

      default:

         return false;

         break;

     }

//--- saving parameter optimization method

   m_eOptimization = desc.optimization;

   return true;

  }

At the end of the method we save the specified weight optimization method.

The SetOpenCL method is used to save a pointer to the object of work with the OpenCL context and

looks simpler than the initialization method. However, unlike all previously considered methods, we do
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not terminate the method operation upon receiving an invalid pointer to the object. This is because we

do not introduce a flag for the use of OpenCL technology in every neural layer class. Instead, we use a

single flag in the base class of the neural network. In turn, to check the use of the technology inside

the class, we can verify the validity of the pointer in the m_ cOpenCL variable.

It should be noted that all objects of the neural network operate within a single OpenCL context. All

objects are provided with a pointer to the same object of the CMyOpenCL class. With such an approach,

deleting an instance of the class in one of the neural network objects will invalidate the pointer in all

objects that use it. The flag may not correspond to the current state of the pointer. Additionally, in the

case of disabling the use of technology, we leave the possibility of specifying an empty value of the

pointer to the object.

Therefore, the code of our method can be conditionally divided into two parts. The first part of the code

will be executed when receiving an invalid pointer to the object. In this case, we need to clear all

previously created data buffers in the OpenCL context.

bool CNeuronBase::SetOpenCL(CMyOpenCL *opencl)

  {

   if(!opencl)

     {

      if(m_cOutputs)

         m_cOutputs.BufferFree();

      if(m_cGradients)

         m_cGradients.BufferFree();

      if(m_cWeights)

         m_cWeights.BufferFree();

      if(m_cDeltaWeights)

         m_cDeltaWeights.BufferFree();

      for(int i = 0; i < 2; i++)

        {

         if(m_cMomenum[i])

            m_cMomenum[i].BufferFree();

        }

      if(m_cActivation)

         m_cActivation.SetOpenCL(m_cOpenCL, Rows(), Cols());

      m_cOpenCL = opencl;

      return true;

     }

The second part of the method will be executed when receiving a valid pointer to the object working

with the OpenCL context. Here, we organize the creation of new data buffers in the specified OpenCL

context for all objects of the current class.
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   if(m_cOpenCL)

      delete m_cOpenCL;

   m_cOpenCL = opencl;

   if(m_cOutputs)

      m_cOutputs.BufferCreate(opencl);

   if(m_cGradients)

      m_cGradients.BufferCreate(opencl);

   if(m_cWeights)

      m_cWeights.BufferCreate(opencl);

   if(m_cDeltaWeights)

      m_cDeltaWeights.BufferCreate(opencl);

   for(int i = 0; i < 2; i++)

     {

      if(m_cMomenum[i])

         m_cMomenum[i].BufferCreate(opencl);

     }

   if(m_cActivation)

      m_cActivation.SetOpenCL(m_cOpenCL, Rows(), Cols());

//---

   return(!!m_cOpenCL);

  }

Earlier, we talked about isolating the activation function initialization procedure into a separate method.

I suggest examining this method to complete the description of the new object initialization process.

This is one of the few methods where we don't organize a block for data verification. Verification of the

activation function parameters is not feasible due to the variance in the range of permissible values

when using different functions. In most cases, the range of their values is limited only by common

sense and the architectural requirements of the model.

As for the choice of the activation function, it exists implicitly, in the form of a list of allowable values.

But even if the user inserts a value not from the enumeration, we will create activation function objects

within the body of the switch statement. This means that we will have implicit control over the type of

the activation function, and if the specified value is absent in the selection function, we will create a

base class without an activation function.

The need to create a base class is due to maintaining the functionality of the class without using an

activation function in standard mode. As you will see a little later, in some cases we will use neural

layers without activation functions.
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bool CNeuronBase::SetActivation(ENUM_ACTIVATION_FUNCTION function, VECTOR &params)

  {

   if(m_cActivation)

      delete m_cActivation;

   switch(function)

     {

      case AF_LINEAR:

         if(!(m_cActivation = new CActivationLine()))

            return false;

         break;

      case AF_SIGMOID:

         if(!(m_cActivation = new CActivationSigmoid()))

            return false;

         break;

      case AF_LRELU:

         if(!(m_cActivation = new CActivationLReLU()))

            return false;

         break;

      case AF_TANH:

         if(!(m_cActivation = new CActivationTANH()))

            return false;

         break;

      case AF_SOFTMAX:

         if(!(m_cActivation = new CActivationSoftMAX()))

            return false;

         break;

      case AF_SWISH:

         if(!(m_cActivation = new CActivationSwish()))

            return false;

         break;

      default:

         if(!(m_cActivation = new CActivation()))

            return false;

         break;

     }

After creating an instance of the required activation function object, we pass the function parameters

and a pointer to the OpenCL context object to the new object.

   if(!m_cActivation.Init(params[0], params[1]))

      return false;

   m_cActivation.SetOpenCL(m_cOpenCL, m_cOutputs.Rows(), m_cOutputs.Cols());

   return true;

  }

Feed-forward operations will be implemented in the FeedForward method. In the parameters, the

method receives a pointer to the object of the previous layer. Since we are planning to build the classes

of all neural layers based on one base class, we can use the class of the base neural layer in the
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method parameters to get a pointer to the previous layer of any type. The use of virtual access

methods to the internal objects of the class allows you to build a universal interface without being tied

to a specific type of neural layer.

At the beginning of the method, we check the validity of pointers to all objects used in the method. This

is our initial data: the pointer to the previous layer received in the parameters, as well as the buffer of

the neurons' output states contained in it. Together with them, we will check the pointers to the weight

matrix and the buffer for recording the results of the forward pass of the current layer, that is, the

buffer of the output states of the neurons of the current layer. Again, it's a good practice to check the

pointer to the instance of the class for calculating the values of the activation function.

bool CNeuronBase::FeedForward(CNeuronBase * prevLayer)

  {

//--- control block

   if(!prevLayer || !m_cOutputs || !m_cWeights ||

      !prevLayer.GetOutputs() || !m_cActivation)

      return false;

   CBufferType* input_data = prevLayer.GetOutputs();

Then we check the pointer to the object working with OpenCL. If the pointer is valid, we move on to the

block that is using this technology. We will talk about it a little later when considering the organization

of the process of parallel computing. In case of an invalid pointer to an object or its absence, we move

on to the block of calculations using standard MQL5 tools. Here, we will first check the consistency of

matrix sizes and reformat the source data matrix into a vector, adding a unit element for the bias. We

will perform the operation of matrix multiplication by the weight matrix. The result will be written to the

outgoing stream buffer. Before exiting the method, do not forget to compute the values of the

activation function at the output of the neural layer.

//---branching of the algorithm depending on the device for performing operations

   if(!m_cOpenCL)

     {

      if(m_cWeights.Cols() != (input_data.Total() + 1))

         return false;

      //---

      MATRIX m = input_data.m_mMatrix;

      if(!m.Reshape(1, input_data.Total() + 1))

         return false;

         m[0, m.Cols() - 1] = 1;

         m_cOutputs.m_mMatrix = m.MatMul(m_cWeights.m_mMatrix.Transpose());

        }

   else

     {

      //--- Here is the code for accessing the OpenCL program

      return false;

     }

//---

   return m_cActivation.Activation(m_cOutputs);

  }

The forward pass is followed by the backpropagation pass. We break down this neural network training

procedure into component parts and create four methods:

· CalcOutputGradient for calculating the error gradient at the output of the neural network,
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· CalcHiddenGradient to enable the gradient propagation through the hidden layer,

· CalcDeltaWeights for calculating the necessary weight adjustments,

· UpdateWeights for updating the weight matrix.

We will move along the data flow path and consider the algorithm of each method.

In the process of supervised learning, after the forward pass, the calculated output values of the neural

network are compared with the target values. The deviation on each neuron of the output layer is

determined at this moment. We perform this operation in the CalcOutputGradient method. The

algorithm of this method is quite simple: the method receives an array of target values and the type of

the loss function used as parameters. At the beginning of the method, we will validate the pointers to

the used objects as well as ensure the compatibility of the array sizes.

bool CNeuronBase::CalcOutputGradient(CBufferType * target, ENUM_LOSS_FUNCTION loss)

  {

//--- control block

   if(!target || !m_cOutputs || !m_cGradients ||

      target.Total() < m_cOutputs.Total() ||

      m_cGradients.Total() < m_cOutputs.Total())

      return false;

Next, similar to the feed-forward method, we will create a branching in the algorithm depending on the

device used for calculations. The algorithm using the OpenCL technology will be discussed in the next

chapter, and now let's look at the process construction using MQL5.

Let's take a look at the process of computing the error gradient at the output of the neural network. At

first glance, we should move in the direction of minimizing the error for each neuron. In other words,

calculate the difference between the reference and calculated values and minimize this difference. In

this case, we get a linear dependence of the error and the gradient. This is true when using mean

absolute error as a loss function, with all the resulting advantages and disadvantages.

When we were talking about the loss function, we considered other options and discussed their

advantages and disadvantages. But how can we take advantage of them? The answer here is pretty

simple. One should consider the loss function and the trainable model as a single complex function. In

this case, we should minimize not the deviation for each neuron of the output layer, but directly the

value of the loss function. Just as when propagating the error gradient through the neural network, we

calculate the derivative of the loss function and multiply it by the deviation of the loss function value

from zero. Moreover, for MAE and MSE we can consider only the derivative of the loss function as the

error and disregard multiplying it by the value of the loss function since this linear scaling will be

compensated by the learning rate, while when using cross-entropy, we are compelled to multiply it by

the value of the loss function. The reason is that if the target and calculated values are equal, the loss

function will give 0, and its derivative will be equal to −1. If we don't multiply the derivative by the

error, we will continue adjusting the model parameters in the absence of an error.

In this case, it is not at all necessary to fully calculate the value of the loss function. Cross-entropy is

commonly used as the loss function in classification tasks. Therefore, as target values, we expect to

obtain a vector in which only one element will be set to one, while all others will be zero. For zero

values, the derivative will also be zero, and multiplication by 1 doesn't change the result. Therefore, it

is enough for us to multiply the derivative by the logarithm of the calculated value. It is the logarithm of

1 that will give 0, indicating that there is no error.

Taking into account the above, to calculate the corresponding error gradient at the model's output, we

will use a switch statement to create a branching process based on the employed loss function. In case
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the specified loss function is not present, we will calculate the simple deviation of the calculated results

from the target values.

//---branching of the algorithm depending on the device for performing operations

   if(!m_cOpenCL)

     {

      switch(loss)

        {

         case LOSS_MAE:

            m_cGradients.m_mMatrix = target.m_mMatrix - m_cOutputs.m_mMatrix;

            break;

         case LOSS_MSE:

            m_cGradients.m_mMatrix = (target.m_mMatrix - m_cOutputs.m_mMatrix) * 2;

            break;

         case LOSS_CCE:

            m_cGradients.m_mMatrix = target.m_mMatrix / 

           (m_cOutputs.m_mMatrix + FLT_MIN) * MathLog(m_cOutputs.m_mMatrix) * (-1);

            break;

         case LOSS_BCE:

            m_cGradients.m_mMatrix = (target.m_mMatrix-m_cOutputs.m_mMatrix) /

               (MathPow(m_cOutputs.m_mMatrix, 2) - m_cOutputs.m_mMatrix + FLT_MIN);

            break;

         default:

            m_cGradients.m_mMatrix = target.m_mMatrix - m_cOutputs.m_mMatrix;

            break;

        }

     }

   else

      return false;

//---

   return true;

  }

After obtaining the error at the neural network output, it's necessary to determine the influence of

each neuron in our network on this error. To achieve this, we need to propagate the error gradient

layer by layer, reaching every neuron. The responsibility for organizing the loop that iterates through

the layers of the neural network lies with the network manager, that is, the neural network base class

CNet. Now we will examine the organization of the process within a single neural layer.

In the parameters, the CalcHiddenGradient method receives a pointer to the previous layer of the

neural network. We will need it to write the transmitted error gradient. In the previous method, we

determined the error at the neuron output, but the neuron output value depends on the activation

function. To determine the influence of each element of the input data on the final result, it's necessary

to exclude the influence of the activation function on the error. To achieve this, we will adjust the error

gradient using the derivative of the activation function. This operation, like the computation of the

activation function itself, is implemented in a separate class. 
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bool CNeuronBase::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- adjusting the incoming gradient to the derivative of the activation function

   if(!m_cActivation.Derivative(m_cGradients))

      return false;

Next comes the block in which we check pointers of used objects. First, we validate the received

pointer to the previous layer. Then, we extract and validate the pointers to the buffers of results and

gradients from the previous layer. We also verify the consistency of the number of elements in the

specified buffers. Additionally, we check the presence of a sufficient number of elements in the weight

matrix. Such a number of preventive checks are necessary for the stable operation of the method and

to prevent potential errors when accessing data arrays.

//--- checking the buffers of the previous layer

   if(!prevLayer)

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   CBufferType *input_gradient = prevLayer.GetGradients();

   if(!input_data || !input_gradient ||

      input_data.Total() != input_gradient.Total())

      return false;

//--- checking the correspondence between the size of the source data buffer and the weight matrix

   if(!m_cWeights || m_cWeights.Cols() != (input_data.Total() + 1))

      return false;

After successfully passing all the checks, we proceed directly to the computational part. Let me remind

you that the derivative of the product of a variable and a constant is a constant. In this case, the

derivative with respect to the neuron is the corresponding weight. Consequently, the neuron influence

on the result is the product of the error gradient at the output of the function and the corresponding

weight. We will calculate the sum of such products for each neuron in the previous layer. We will write

the obtained values into the corresponding cell of the gradient buffer of the previous layer.

As in the methods described above, we carry out the separation of the algorithm depending on the

computing device used. We will get acquainted with the algorithm for implementing multi-threaded

calculations a little later. Let's now consider the implementation of the algorithm using MQL5 tools. As

mentioned earlier, we need to calculate the sum of products of error gradients from neurons dependent

on a given neuron and their corresponding weights. Performing this operation is easily accomplished

using matrix multiplication. In this case, it suffices to multiply the error gradient matrix by the matrix of

weights. We will store the result of the operation in a local matrix.

We cannot immediately write the result of the operation to the error gradient matrix of the previous

layer. If you look at the forward pass method, you will see how we added the bias element. Accordingly,

when multiplying matrices, we will get the result, taking into account the error on the bias element.

However, the previous layer does not expect this value, and the size of the matrix of gradients is

smaller. Therefore, we will first resize the matrix obtained from the multiplication operation to the

required dimensions, and then transfer its values to the gradient matrix of the previous layer.

Note that in this method, we do not adjust the gradient obtained at the output of the previous layer by

the derivative of the activation function of neurons in the previous layer, as we did with a similar

operation at the beginning of this method. Therefore, if the previous layer is the hidden layer of our

network, then the first thing that will be done when calling the considered method on the lower layer is

to adjust the gradient for the derivative of the activation function. Doubling the operation will lead to

errors.
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//--- branching of the algorithm depending on the device for performing operations

   if(!m_cOpenCL)

     {

      MATRIX grad = m_cGradients.m_mMatrix.MatMul(m_cWeights.m_mMatrix);

      if(!grad.Reshape(input_data.Rows(), input_data.Cols()))

         return false;

      input_gradient.m_mMatrix = grad;

     }

   else

      return false;

//---

   return true;

  }

We now have a calculated error gradient on each neuron in our network. There is enough data to

update the weights. However, as we know, the weights are not always updated after each iteration of

the backpropagation pass. Therefore, we separated the process of updating the weight matrix into two

methods. In the first one, we will calculate the error gradient for each weight similarly to how we

calculated the error gradient for the neuron in the previous layer. In the second one, we will adjust the

weight matrix.

We will calculate the value of the error gradient for the weight matrix in the CalcDeltaWeights method.

In the parameters of the method, similar to the previous one, there will be a pointer to the preceding

layer of the neural network, but now we will use not the gradient buffer from it, but the array of output

values.

Similar to the previously discussed methods, this method starts with a block of checks. It is followed by

a block of calculations.

bool CNeuronBase::CalcDeltaWeights(CNeuronBase *prevLayer, bool read);

  {

//--- control block

   if(!prevLayer || !m_cDeltaWeights || !m_cGradients)

      return false;

   CBufferType *Inputs = prevLayer.GetOutputs();

   if(!Inputs)

      return false;

In the previous method, we have already adjusted the gradient for the derivative of the activation

function. Therefore, we will skip this iteration and proceed directly to the calculation of the gradient on

the weights. Here, as in other methods, there is a branching of the algorithm based on the computation

device. In the MQL5 block, similarly to the previous method, we will employ matrix multiplication,

because, in essence, both methods perform a similar operation only for different matrices. But there

are a few differences here.

First, in the previous method, we removed the bias element. However, in this case, we need to add a

unitary element to the vector of the previous layer results in order to determine the error gradient on

the corresponding weight.

Second, earlier we multiplied the matrix of gradients by the matrix of weights. Now we multiply the

transposed matrix of error gradients by the vector of the previous layer results with the bias element.
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In addition, we were overwriting the error gradient of the previous layer, but for the weight gradient, we

will sum them up, thereby accumulating the error gradient over the entire period between weight

update operations. 

//--- branching of the algorithm depending on the device for performing operations

   if(!m_cOpenCL)

     {

      MATRIX m = Inputs.m_mMatrix;

      if(!m.Reshape(1, Inputs.Total() + 1))

         return false;

      m[0, Inputs.Total()] = 1;

      m = m_cGradients.m_mMatrix.Transpose().MatMul(m);

      m_cDeltaWeights.m_mMatrix += m;

     }

   else

      return false;

//---

   return true;

  }

At the conclusion of the backpropagation process, we need to adjust the weight matrix. To perform this

functionality, our class provides the UpdateWeights method. However, let's not forget that we have

different options available for choosing the optimization method. The question was resolved using a

simple and intuitive approach. The public method for updating the weights provides a dispatcher

function to select the optimization method based on the user's choice. The actual process of adjusting

the weight matrix is implemented in separate methods, with one method for each optimization method

version.
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bool CNeuronBase::UpdateWeights(int batch_size, TYPE learningRate,

                                VECTOR &Beta, VECTOR &Lambda)

  {

//--- control block

   if(!m_cDeltaWeights || !m_cWeights ||

       m_cWeights.Total() < m_cDeltaWeights.Total() || batch_size <= 0)

      return false;

//---

   bool result = false;

   switch(m_eOptimization)

     {

      case None:

         result = true;

         break;

      case SGD:

         result = SGDUpdate(batch_size, learningRate, Lambda);

         break;

      case MOMENTUM:

         result = MomentumUpdate(batch_size, learningRate, Beta, Lambda);

         break;

      case AdaGrad:

         result = AdaGradUpdate(batch_size, learningRate, Lambda);

         break;

      case RMSProp:

         result = RMSPropUpdate(batch_size, learningRate, Beta, Lambda);

         break;

      case AdaDelta:

         result = AdaDeltaUpdate(batch_size, Beta, Lambda);

         break;

      case Adam:

         result = AdamUpdate(batch_size, learningRate, Beta, Lambda);

         break;

     }

//---

   return result;

  }

Algorithms for each of the weight optimization methods have already been presented earlier, while we

considered their features. We will not duplicate them here, but we will implement them in the protected

block in our base class of the neural layer.

We have already discussed the implementation of feed-forward and backpropagation operations in a

fully connected neural layer. However, we will not re-train the neural network at each launch.

Therefore, we need methods for working with files: writing and reading data from the state of the neural

layer. We should be resource-efficient, so let's consider which information we need to save. The general

rule is to save a minimum amount of information, but it should be sufficient for a quick startup and the

functioning of the class without interrupting the process. Let's take a look at internal class variables

and critically evaluate the need to save their contents to a file.

· m_ cOpenCL – a pointer to an instance of the class for working with OpenCL technology, which is

responsible for a separate functionality, but does not contain additional information. Not to be

written to file.
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· m_ cActivation – a pointer to an activation function object. The activation function type is set by the

user when constructing a neural network. Using a different activation function can lead to distortion

of the results across the entire network. Save.

· m_ eOptimization – a type of neuron optimization method during training, which is specified by the

user when constructing a neural network. Influences the learning process. Save.

· m_ cOutputs – an array of neuron output values. The number of elements is set by the neural

network architect. The content is overwritten on every forward pass. It's sufficient to save the

number of neurons in the layer and not save the entire array.

· m_ cWeights – a weight matrix. The value of the elements is formed in the process of training the

neural network. Save.

· m_ cDeltaWeights – a matrix for accumulating failed weight updates (cumulative error gradient for

each weight since the last update). Values   are accumulated between weights matrix updates and

reset to zero after weights adjustments. The size of the array is equal to the weight matrix. Not to

be written to a file.

· m_ cGradients – the error gradient at the output of the neural layer as a result of the last iteration

of the backward pass. The content is overwritten on every backward pass. The size of the array is

equal to the buffer of the output signal. Not to be written to a file.

· m_ cMomenum — unlike other variables, this will be an array of two elements for writing pointers to

moment accumulation arrays. The use of buffers depends on the optimization method. The content

is accumulated during the training of the neural network. Save.

After determining the data to be written to the file, let's proceed to create the file writing method

Save. This virtual method exists in all descendant classes of the CObj ect class. In the parameters, the

method receives the handle of the file to be written.

In the body of the method, we first check the received handle and the validity of the pointer to the

result buffer of the neural layer. As we remember, a neural layer can be used with both full functionality

and not. When using an object as a layer of input data, we deleted all buffers except for the input data

buffer. Therefore, the presence of this buffer is mandatory for the neural layer. If any of the checks

fail, we exit the method with a result of false.

Next, we write the type of the neural layer and the size of the result buffer to the file. At the same

time, do not forget to check the results of the operations.

bool CNeuronBase::Save(const int file_handle)

  {

//--- control block

   if(file_handle == INVALID_HANDLE)

      return false;

//--- writing result buffer data

   if(!m_cOutputs)

      return false;

   if(FileWriteInteger(file_handle, Type()) <= 0 ||

      FileWriteInteger(file_handle, m_cOutputs.Total()) <= 0)

      return false;

After successfully writing the size of the result buffer, we check the validity of the pointers to the

activation function objects and the weight matrices. In the absence of at least one object, we consider

the current neural layer to be the initial data layer. To confirm this, we write 1 as a flag to indicate the

preservation of the input data layer in the file. Otherwise, we save 0, which will indicate the

preservation of the full-functionality neural layer.
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//--- checking and writing the source data layer flag

   if(!m_cActivation || !m_cWeights)

     {

      if(FileWriteInteger(file_handle, 1) <= 0)

         return false;

      return true;

     }

   if(FileWriteInteger(file_handle, 0) <= 0)

      return false;

Then, using the optimization method, we determine the number of moments required for recording to

the buffer.

   int momentums = 0;

   switch(m_eOptimization)

     {

      case SGD:

         momentums = 0;

         break;

      case MOMENTUM:

      case AdaGrad:

      case RMSProp:

         momentums = 1;

         break;

      case AdaDelta:

      case Adam:

         momentums = 2;

         break;

      default:

         return false;

         break;

     }

Immediately, we organize a loop to validate the pointers to the momentum buffers.

   for(int i = 0; i < momentums; i++)

      if(!m_cMomenum[i])

         return false;

After the block of checks, there are operations for directly writing data to the file. First, we save the

values of variables, and then we call the file writing methods for the objects that need to be saved.

//--- saving a matrix of weighting coefficients, moments, and activation functions

   if(FileWriteInteger(file_handle, (int)m_eOptimization) <= 0 ||

      FileWriteInteger(file_handle, momentums) <= 0)

      return false;

   if(!m_cWeights.Save(file_handle) || !m_cActivation.Save(file_handle))

      return false;

   for(int i = 0; i < momentums; i++)

      if(!m_cMomenum[i].Save(file_handle))

         return false;

//---

   return true;
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  }

As seen from the provided code, we simply skip objects that do not need to be saved. However, this

approach is not applicable when loading data from a file, as even skipped objects are necessary for the

normal functioning of the neural layer. Therefore, the data loading method Load must be supplemented

with a missing object initialization block. Let's see how it is implemented.

Just like when writing to a file, the method also receives a file handle for data in its parameters.

Therefore, at the beginning of the method, we validate the received file handle.

bool CNeuronBase::Load(const int file_handle)

  {

//--- control block

   if(file_handle == INVALID_HANDLE)

      return false;

Reading data from the file should be done in precise accordance with the sequence of data writing.

First, we saved the type of neural layer and the number of elements in the buffer in the results buffer.

The type of the neural layer will be read by the method of the top-level object (dynamic array of neural

layers) to create the required neural layer. In the body of this method, we will read the number of

elements in the result buffer and initialize a buffer of the corresponding size.

//--- loading result buffer

   if(!m_cOutputs)

      if(!(m_cOutputs = new CBufferType()))

         return false;

   int outputs = FileReadInteger(file_handle);

   if(!m_cOutputs.BufferInit(1, outputs, 0))

      return false;

Immediately create a gradient buffer of the same size.

//--- creating error gradient buffer

   if(!m_cGradients)

      if(!(m_cGradients = new CBufferType()))

         return false;

   if(!m_cGradients.BufferInit(1, outputs, 0))

      return false;

Next, we check the flag for loading the input data neural layer. In the case of loading it, we delete

unused objects and exit the method with a positive result.
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//--- checking the source data layer flag

   int input_layer = FileReadInteger(file_handle);

   if(input_layer == 1)

     {

      if(m_cActivation)

         delete m_cActivation;

      if(m_cWeights)

         delete m_cWeights;

      if(m_cDeltaWeights)

         delete m_cDeltaWeights;

      if(m_cMomenum[0])

         delete m_cMomenum[0];

      if(m_cMomenum[1])

         delete m_cMomenum[1];

      if(m_cOpenCL)

         if(!m_cOutputs.BufferCreate(m_cOpenCL))

            return false;

      m_eOptimization = None;

      return true;

     }

Further code is executed only when loading a fully functional neural layer. At the beginning of this

block, we read the optimization method from the file and the number of used momentum buffers.

   m_eOptimization = (ENUM_OPTIMIZATION)FileReadInteger(file_handle);

   int momentums = FileReadInteger(file_handle);

After that, we check the pointer to the weights matrix object. If necessary, we will create a new

instance of the object and immediately call the data buffer loading method.

//--- creating objects before loading data

   if(!m_cWeights)

      if(!(m_cWeights = new CBufferType()))

         return false;

//--- loading data from file

   if(!m_cWeights.Load(file_handle))

      return false;

Then, we read the type of the activation function from the file and initialize an instance of the

corresponding class using the SetActivation method. The activation function parameters will be loaded

by calling the method with the same name for loading data from the activation function object.

//--- activation function

   if(FileReadInteger(file_handle) != defActivation)

      return false;

   ENUM_ACTIVATION_FUNCTION activation = 

                         (ENUM_ACTIVATION_FUNCTION)FileReadInteger(file_handle);

   if(!SetActivation(activation,VECTOR::Zeros(2)))

      return false;

   if(!m_cActivation.Load(file_handle))

      return false;

Similarly, we will load the data of the momentum buffers.
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//---

   for(int i = 0; i < momentums; i++)

     {

      if(!m_cMomenum[i])

         if(!(m_cMomenum[i] = new CBufferType()))

            return false;

      if(!m_cMomenum[i].Load(file_handle))

         return false;

     }

After loading the data, we initialize the m_ cDeltaWeights buffer. The buffer will be initialized with zero

values. In this case, the buffer size is equal to the number of elements in the weights matrix.

First, check the pointer to the object and create a new one if necessary. Then, we will write 0 into all

elements of the buffer.

//--- initializing remaining buffers

   if(!m_cDeltaWeights)

      if(!(m_cDeltaWeights = new CBufferType()))

         return false;

   if(!m_cDeltaWeights.BufferInit(m_cWeights.m_mMatrix.Rows(),

                                  m_cWeights.m_mMatrix.Cols(), 0))

      return false;

At the end of the method, we pass the current pointer m_cOpenCL to all internal objects. Here, we are

not adding a check for the validity of the pointer. Since all objects of the neural network work within

the same OpenCL context, we pass even an invalid pointer to the objects.

//--- passing a pointer to the OpenCL context to objects

   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

As a result of implementing all the methods described above, the final structure of our class has taken

the following form.
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class CNeuronBase    :  public CObject

  {

protected:

   bool              m_bTrain;

   CMyOpenCL*        m_cOpenCL;

   CActivation*      m_cActivation;

   ENUM_OPTIMIZATION m_eOptimization;

   CBufferType*      m_cOutputs;

   CBufferType*      m_cWeights;

   CBufferType*      m_cDeltaWeights;

   CBufferType*      m_cGradients;

   CBufferType*      m_cMomenum[2];

   //---

   virtual bool      SGDUpdate(int batch_size, TYPE learningRate,

                                                    VECTOR &Lambda);

   virtual bool      MomentumUpdate(int batch_size, TYPE learningRate,

                                                    VECTOR &Beta, VECTOR &Lambda);

   virtual bool      AdaGradUpdate(int batch_size, TYPE learningRate,

                                                    VECTOR &Lambda);

   virtual bool      RMSPropUpdate(int batch_size, TYPE learningRate,

                                                    VECTOR &Beta, VECTOR &Lambda);

   virtual bool      AdaDeltaUpdate(int batch_size,

                                                    VECTOR &Beta, VECTOR &Lambda);

   virtual bool      AdamUpdate(int batch_size, TYPE learningRate,

                                                    VECTOR &Beta, VECTOR &Lambda);

   virtual bool      SetActivation(ENUM_ACTIVATION_FUNCTION function,

                                                    VECTOR &params);

public:

                     CNeuronBase(void);

                    ~CNeuronBase(void);

   //---

   virtual bool      Init(const CLayerDescription *description);

   virtual bool      SetOpenCL(CMyOpenCL *opencl);

   virtual bool      FeedForward(CNeuronBase *prevLayer);

   virtual bool      CalcOutputGradient(CBufferType *target,

                                                    ENUM_LOSS_FUNCTION loss);

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer);

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer);

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                                    VECTOR &Beta, VECTOR &Lambda);

   virtual void      TrainMode(bool flag)         {  m_bTrain = flag;            }

   virtual bool      TrainMode(void)        const {  return m_bTrain;            }

   //---

   CBufferType       *GetOutputs(void)      const {  return(m_cOutputs);         }

   CBufferType       *GetGradients(void)    const {  return(m_cGradients);       }

   CBufferType       *GetWeights(void)      const {  return(m_cWeights);         }

   CBufferType       *GetDeltaWeights(void) const {  return(m_cDeltaWeights);    }
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   virtual bool      SetOutputs(CBufferType* buffer, bool delete_prevoius = true);

   //--- methods for working with files

   virtual bool      Save(const int file_handle);

   virtual bool      Load(const int file_handle);

   //--- method of identifying the object

   virtual int       Type(void)             const { return(defNeuronBase);       }

   virtual ulong     Rows(void)             const { return(m_cOutputs.Rows());   }

   virtual ulong     Cols(void)             const { return(m_cOutputs.Cols());   }

   virtual ulong     Total(void)            const { return(m_cOutputs.Total());  }

  };

3.6.3 Activation function class

We still have some open questions regarding the implementation of the neural layer base class. One of

them is the neuron activation function class.

The activation function class will contain the operations for calculating the activation function and its

derivative. There are various types of activation functions, and the book does not provide the full list of

such functions, while it only covers the more commonly used ones. New, well-performing activation

functions can emerge. So, if you need to add a new activation function to this library, the easiest way

would be to do so by creating a new class that inherits from a certain base class. In this way, by

overriding a couple of methods responsible for the direct calculation of the function and its derivative,

the changes will be propagated to all neural network objects, including those created earlier.

Following this logic, I decided to create not a single activation function class that would cover all the

functions discussed earlier, but a class structure in which each class would contain an algorithm for

only one activation function. In this structure, there would be one base class at the top, which would

define the interfaces for interaction with other objects and serve as an object for accessing methods

from other objects without being tied to a specific activation function.

By creating a single branching point in the algorithm during the initialization of a specific activation

function class, we move away from checking the used function at each iteration of the forward and

backward passes. 

The parent class for all activation functions CActivation is inherited from the CObj ect class, which is

the base class for all objects in MQL5.

The CActivation class only contains methods for organizing the interface and does not describe any of

the activation functions. In turn, to organize the activation function classes, I defined the following

methods:

· CActivation – a class constructor;

· ~CActivation – a class destructor;

· Init – passing parameters to calculate the activation function;

· GetFunction – getting the used activation function and its parameters;

· Activation – performs calculation of the activation function value based on the reference value;

· Derivative – derivative from the activation function;

· SetOpenCL – writing a pointer to an OpenCL object;

· Save and Load – virtual methods for working with files;

· Type – a virtual method for class identification.
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In general, the class looks much simpler than those discussed previously. In the constructor of the

class, we will set the default activation function parameters.

CActivation::CActivation(void) : m_iRows(0),

                                 m_iCols(0),

                                 m_cOpenCL(NULL)

  {

   m_adParams = VECTOR::Ones(2);

   m_adParams[1] = 0;

  }

Note that to calculate the derivative of certain activation functions, we only need the value of the

activation function itself. In other cases, we will need values before the activation function. Therefore,

let's introduce two pointers to the corresponding data buffers:

· m_cInputs

· m_cOutputs

In the body of this class, we will create only one instance of a buffer, and in another variable, we will

save a pointer to the buffer that calls the neural layer. Due to this, in the destructor of the class, we

will only delete one object.

CActivation::~CActivation(void) 

  {

   if(!!m_cInputs)

      delete m_cInputs;

  }

In the class initialization method, we store the resulting activation function parameters and create a

data buffer object. It's important to note that at this stage, we are merely creating an instance of the

class; we are initializing the buffer itself because we don't yet know the required buffer data sizes.

bool CActivation::Init(VECTOR &params)

  {

   m_adParams = params;

//---

   m_cInputs = new CBufferType();

   if(!m_cInputs)

      return false;

//---

   return true;

  }

The activation parameter reading method is straightforward. We only return the value of the variables.

ENUM_ACTIVATION_FUNCTION CActivation::GetFunction(VECTOR &params)

  {

   params = m_adParams;

   return GetFunction();

  }

The Activation method that calculates the values of the activation function, in the parameters receives

a pointer to the neural layer result buffer. This buffer contains neuron performance data prior to the

activation function. We need to activate the obtained values and overwrite them into the specified

buffer. However, as we know, the obtained values might be needed when calculating derivatives of
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certain functions. Therefore, we "play" with the pointers to the buffer objects, saving the obtained

pointer in the variable m_ cInputs. In the variable received in parameters and in the m_ cOutputs

variable, we save the buffer from the m_ cInputs variable. The current class corresponds to the absence

of an activation function, so we don't perform any operations on the obtained data.

However, there is one nuance. Since we don't perform any operations on the obtained data, we need to

return them to the calling program. At this point, we have already replaced the buffer that we will

return. Therefore, we check the used activation function, and if no further actions are required on the

obtained data, we will return the pointer to the buffer back and delete the unnecessary object.

It might seem like there are many unnecessary actions in the method that didn't alter the data in any

way. However, these are our small investments in the functionality of the inheriting classes.

bool CActivation::Activation(CBufferType *&output)

  {

   if(!output || output.Total() <= 0)

      return false;

   m_cOutputs = m_cInputs;

   m_cInputs = output;

   output = m_cOutputs;

   if(GetFunction() == AF_NONE && output != m_cInputs)

     {

      delete output;

      output = m_cInputs;

     }

//---

   return true;

  }

At the same time, the method for calculating the derivative of the activation function in this class will

remain nominal. In all cases it will return a positive value.

The SetOpenCL method for activating multi-threaded computation functionality receives in the

parameters a pointer to an object for working with the OpenCL context object and the size of the result

buffer for the calling neural layer. We will need these buffer sizes for initialization and creation of the

buffer in the context.

In the body of the method, we store the resulting dimensions and pointer, then initialize the data buffer

of the specified size with null values and create a buffer in the OpenCL context.
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bool CActivation::SetOpenCL(CMyOpenCL *opencl, const ulong rows, const ulong cols)

  {

   m_iRows = rows;

   m_iCols = cols;

   if(m_cOpenCL != opencl)

     {

      if(m_cOpenCL)

         delete m_cOpenCL;

      m_cOpenCL = opencl;

     }

//---

   if(!!m_cInputs)

     {

      if(!m_cInputs.BufferInit(m_iRows, m_iCols, 0))

         return false;

      m_cInputs.BufferCreate(m_cOpenCL);

     }//---

   return(!!m_cOpenCL);

  }

As you can see, the methods of the class are quite simple. All we have to do is look at file-handling

techniques. Their algorithm is also simple. In the body of the Save method, as usual, we check the file

handle for writing the data we receive in the parameters and store the activation function type and

parameter value.

bool CActivation::Save(const int file_handle)

  {

   if(file_handle == INVALID_HANDLE)

      return false;

   if(FileWriteInteger(file_handle, Type()) <= 0 ||

      FileWriteInteger(file_handle, (int)GetFunction()) <= 0 ||

      FileWriteInteger(file_handle, (int)m_iRows) <= 0 ||

      FileWriteInteger(file_handle, (int)m_iCols) <= 0 ||

      FileWriteDouble(file_handle, (double)m_adParams[0]) <= 0 ||

      FileWriteDouble(file_handle, (double)m_adParams[1]) <= 0)

      return false;

//---

   return true;

  }

The data loading method Load also receives a file handle in parameters. In the method body, we check

the validity of the received handle and read the values of the constants. After that, we initialize one

data buffer. At the same time, we do not forget to control the operation process.
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bool CActivation::Load(const int file_handle)

  {

   if(file_handle == INVALID_HANDLE)

      return false;

   m_iRows = (uint)FileReadInteger(file_handle);

   m_iCols = (uint)FileReadInteger(file_handle);

   m_adParams.Init(2);

   m_adParams[0] = (TYPE)FileReadDouble(file_handle);

   m_adParams[1] = (TYPE)FileReadDouble(file_handle);

//---

   if(!m_cInputs)

     {

      m_cInputs = new CBufferType();

      if(!m_cInputs)

         return false;

     }

   if(!m_cInputs.BufferInit(m_iRows, m_iCols, 0))

      return false;

//---

   return true;

  }

We have reviewed all the methods of the base class of the CActivation activation function. So, we have

the following class structure.
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class CActivation : protected CObject

  {

protected:

   ulong             m_iRows;

   ulong             m_iCols;

   VECTOR            m_adParams;

   CMyOpenCL*        m_cOpenCL;

   //---

   CBufferType*      m_cInputs;

   CBufferType*      m_cOutputs;

public:

                     CActivation(void);

                    ~CActivation(void) {if(!!m_cInputs) delete m_cInputs; }

   //---

   virtual bool      Init(VECTOR &params);

   virtual ENUM_ACTIVATION_FUNCTION  GetFunction(VECTOR &params);

   virtual ENUM_ACTIVATION_FUNCTION   GetFunction(void) { return AF_NONE; }

   virtual bool      Activation(CBufferType*& output);

   virtual bool      Derivative(CBufferType*& gradient) { return true;    }

   //---

   virtual bool      SetOpenCL(CMyOpenCL *opencl, const ulong rows, 

                                                  const ulong cols);

   //--- methods for working with files

   virtual bool      Save(const int file_handle);

   virtual bool      Load(const int file_handle);

   //--- object identification method

   virtual int       Type(void)             const { return defActivation; }

  };

However, as we discussed earlier, this class only lays the groundwork for future classes of various

activation functions. To add the actual activation function algorithm, you need to create a new class by

overriding several methods. For example, let's create a class of a linear activation function. The

structure of this class is given below.

class CActivationLine   :  public CActivation

  {

public:

                     CActivationLine(void) {};

                    ~CActivationLine(void) {};

   //---

   virtual ENUM_ACTIVATION_FUNCTION   GetFunction(void) override

                                              { return AF_LINEAR; }

   virtual bool      Activation(CBufferType*& output) override;

   virtual bool      Derivative(CBufferType*& gradient) override;

  };

The new CActivationLine class is publicly inherited from the created above base class of the CActivation

activation function. The constructor and destructor of the class are empty. All we have to do is redefine

three methods:

· GetFunction – gets the used activation function and its parameters;
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· Activation – performs calculation of the activation function value based on the reference value;

· Derivative – a derivative of the activation function.

In the GetFunction method, we only change the return type of the activation function to the

corresponding class.

The Activation method in the parameters receives a pointer to the initial data buffer similar to the

method of the parent class. In the body of the method, we don't check the received pointer; we

simply call the method of the parent class, where we check the received pointer and "play" with the

pointers to data buffers. After this, the algorithm is split into two threads: one using the OpenCL

technology and the other without it. We will learn about multi-threaded operations a little later. In the

block of operations without using multi-threading, we simply invoke the activation function for the

matrix of obtained values, specifying the activation function type as AF_ LINEAR and the function

parameters.

bool CActivationLine::Activation(CBufferType*& output)

  {

   if(!CActivation::Activation(output))

      return false;

//---

   if(!m_cOpenCL)

     {

      if(!m_cInputs.m_mMatrix.Activation(output.m_mMatrix, AF_LINEAR,

                                          m_adParams[0], m_adParams[1]))

         return false;

     }

   else // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

The method that calculates the derivative is even more straightforward. In the parameters, the method

receives a pointer to the error gradient object. The obtained values must be corrected for the

derivative of the activation function. As you know, the derivative of a linear function is its coefficient at

the variable. So, the only thing we have to do is multiply the resulting gradient vector by the parameter

of the activation function with the index of 0. 
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bool CActivationLine::Derivative(CBufferType*& gradient)

  {

   if(!m_cInputs || !m_cOutputs ||

      !gradient || gradient.Total() < m_cOutputs.Total())

      return false;

//---

   if(!m_cOpenCL)

     {

      gradient.m_mMatrix = gradient.m_mMatrix * m_adParams[0];

     }

   else // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

As you can see, the mechanism for describing the new activation function is quite simple. Let's create

a class for using ReLU as the activation function in a similar manner. 

class CActivationLReLU : public CActivation

  {

public:

                     CActivationLReLU(void) { m_adParams[0] = (TYPE)0.3; };

                    ~CActivationLReLU(void) {};

   //---

   virtual ENUM_ACTIVATION_FUNCTION   GetFunction(void) override { return AF_LRELU; }

   virtual bool      Activation(CBufferType*& output) override;

   virtual bool      Derivative(CBufferType*& gradient) override;

  };

In the activation function of the new class, we will also use a matrix activation function call specifying

the corresponding function type, AF_LRELU.
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bool CActivationLReLU::Activation(CBufferType*& output)

  {

   if(!CActivation::Activation(output))

      return false;

//---

   if(!m_cOpenCL)

     {

      if(!m_cInputs.m_mMatrix.Activation(output.m_mMatrix, AF_LRELU,m_adParams[0]))

         return false;

     }

   else // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

We'll use a similar approach in the derivative method of the activation function.

bool CActivationLReLU::Derivative(CBufferType*& gradient)

  {

   if(!m_cOutputs || !gradient ||

      m_cOutputs.Total() <= 0 || gradient.Total() < m_cOutputs.Total())

      return false;

//---

   if(!m_cOpenCL)

     {

      MATRIX temp;

      if(!m_cInputs.m_mMatrix.Derivative(temp, AF_LRELU,m_adParams[0]))

         return false;

      gradient.m_mMatrix *= temp;

     }

   else // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

The reader may have a reasonable question as to why we should create new classes if we use the

activation matrix functions embedded in the MQL5 language. This is done more to ensure a unified

approach with and without OpenCL multi-threaded technologies. These methods will incorporate code

for organizing multi-threaded computations in the OpenCL context. The use of the described classes

enables a unified call to activation function algorithms using both MQL5 tools and multi-threaded

computations in the OpenCL context.
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In the previous chapters, we have already become acquainted with the organization of the operation of

a fully connected neural layer using MQL5. I would like to remind you that in our implementation, we

used matrix operations to multiply the input data vector by the weight matrix. From one neural layer to

another, the signal flows sequentially, and we cannot initiate operations on the subsequent neural layer

until the operations on the previous one are fully completed. In contrast to this, the results of

operations within one neuron in a layer do not depend on the operations being carried out with other

neurons within the same neural layer. Consequently, we can reduce the time cost of processing a single

neural layer if we can organize parallel computation. The more neurons we process simultaneously, the

less time we spend on processing one signal and training the neural network as a whole.

As we have already discussed earlier, OpenCL technology will help us in organizing parallel

computations. Of course, this will require extra work to customize the process. Let's consider which

processes we will transfer to OpenCL to make it as efficient as possible. Let me remind you that due to

the overhead time for data transfer between devices, we can achieve real performance improvement

only with a large number of concurrent operation threads.

The first thing that can be carried over is the computation of forward pass operations. We can move

the execution of operations on each individual neuron into the realm of parallel computing. First, we

calculate the weighted sum of the input signal for each neuron and then calculate the activation

function for each neuron.

We can also move the operations of the backward pass into the realm of parallel computations. Let's

break down the steps of the backward pass.

Deviation of calculated values from the reference values at the output layer of the neural network can

be easily divided into separate threads for each neuron.

Furthermore, we can also adjust the obtained deviation for each neuron based on the derivative of the

activation function. As a result of such an operation, we obtain the error gradient before the neuron

activation function.

Following the backpropagation process, in the next step we need to distribute the resulting error

gradient to the neurons of the previous layer. In a fully connected neural layer, all neurons from the

previous layer are connected to all neurons in the subsequent layer. In each element of the error

gradient vector, there is a component from every neuron in the previous layer. There are two seemingly

equivalent approaches here:

· We can create threads for each element of the error gradient vector, and within each thread,

iterate through all neurons of the previous layer and add the value of its gradient error component.

· Conversely, we can divide the threads for each neuron in the previous layer and assemble the

gradient error components from the previous layer.

Despite their apparent equivalence, the first approach has several drawbacks. Since we will be summing

up the gradient error components from different neurons of the subsequent layer, it's necessary to

initialize the value of the current vector to zero before starting the operations. This means additional

costs in time and resources. In addition, there are also technical nuances. Working with global memory

is slower than working with a thread's private memory. Therefore, it's preferable to assemble values in

fast memory and transfer them to global memory once. The most challenging aspect of this approach

is that there's a significant likelihood of multiple threads attempting to write values to a single neuron in

the previous layer simultaneously. And that is highly undesirable for us.
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Based on the combination of the above factors, the second option becomes more attractive for

implementation.

Splitting the following two processes into threads (calculating deltas for weight adjustment and directly

updating the weight matrix) doesn't raise any questions, as each weight is involved in only one

connection between two neurons and doesn't affect the others.

3.7.1 Creating an OpenCL program

We will start porting calculations by creating an OpenCL program. The choice of this approach is very

obvious. We have already organized the process using MQL5 tools. Therefore, the whole process of

operations is clear and transparent. Computation operations will be performed in the OpenCL program.

In the main program, we have to organize the process of transferring data and calling the OpenCL

program. The latter process is easier to organize when we already know what data and to which kernel

we need to transfer.

The program code will be written to a separate file opencl_ program.cl. The file name and extensions can

be anything, as we will later load it in the main program code as a resource. I use the *.cl extension as

a common extension to denote OpenCL programs. In general, the use of standard extensions makes it

easier to read projects with complex file structures. 

For a feed-forward pass, similar to the MQL5 implementation, we will create kernel

PerceptronFeedForward. To carry out operations, we need the result vector of the previous layer

(inputs) and the weight matrix (weights) as the initial data. The result of the operations will be written

to the result vector (outputs). In addition to the data sets, we need to know the number of neurons in

the previous layer to ensure control over potential output exceeding the array limits.

As we discussed earlier, the number of threads will correspond to the number of neurons in the layer.

Therefore, at the beginning of the kernel, we need to call the get_ global_ id function, which will return

the thread identifier to us. Let's use this value as the ordinal number of the neuron being processed.

The weight matrix in our buffer is represented as a vector in which N weights of the first neuron go

sequentially, followed by N weights of the second neuron, and so on. The value of N is one element

greater than the number of neurons in the previous layer since we are using the bias element. We

already have the neuron's ordinal number and the number of neurons in the previous layer, so we can

determine the offset in the weight vector to the first weight of our neuron.

Next, we will create a local variable to accumulate the sum of products and initialize it with the bias

offset coefficient. After that, we organize a loop and calculate the sum of products of the original signal

by the weights for a specific neuron in our stream. OpenCL supports vector operations which allow the

microprocessor to perform one operation simultaneously on multiple values in a single cycle. In the

proposed implementation, I used vectors of type double4. This is a vector of four elements of type

double. To convert data from an array of discrete values to a vector, I created a function called

ToVect4, which we will discuss a bit later. To obtain the sum of products, I used the built-in dot

function. It belongs to vector operations and allows obtaining the discrete value of the product of two

vectors. This allowed us to use a step of 4 in the loop and thereby reduce the number of iterations by 4

times.

It should be noted that double4 is not the only vector data type supported by OpenCL. The ability to

use them depends on the technical specifications of the hardware being used. The double4 type, in my

personal opinion, is the most versatile for use on a wide range of available equipment. When creating

your own libraries, you can use a different type of data that is most optimal for your equipment.
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After completing the iterations of the loop, we will save the accumulated sum of the vector product to

the corresponding element of the result buffer.

The full kernel code is presented below.

__kernel void PerceptronFeedForward(__global TYPE *inputs,

                                    __global TYPE *weights,

                                    __global TYPE *outputs,

                                    int inputs_total)

  {

   const int n = get_global_id(0);

   const int weights_total = get_global_size(0) * (inputs_total + 1);

   int shift = n * (inputs_total + 1);

   TYPE s = weights[shift + inputs_total];

   for(int i = 0; i < inputs_total; i += 4)

      s += dot(ToVect4(inputs, i, 1, inputs_total, 0),

               ToVect4(weights, i, 1, weights_total, shift));

   outputs[n] = s;

  }

Let's examine the algorithm of the ToVect4 function. In parameters, the function receives a pointer to

a vector of discrete values, the position of the first element to copy, the step between two elements to

copy, the size of the data array, and the offset in the array to the first copied element. The parameters

of the position of the first element and the offset serve a similar purpose but differ in the context of

operations. The offset determines the displacement in the data vector from the element with index 0.

For the feed-forward function, this offset is to the first weight of the processed neuron. The position of

the first element to copy specifies the element without considering the step between elements. In the

example given, this is the number of neurons in the preceding layer. When considering an example with

a step of one element, one parameter can be easily expressed in terms of the other. The difference in

using parameters will be more noticeable when discussing the backpropagation pass, where the weight

copying step will be equal to the size of the weight vector for one neuron.

At the beginning of the function, we initialize the result vector with zero values and ensure that the step

is at least one element. Then, we check how many elements we can take from the original data array

starting from the initial position, considering the offset and step. This operation is necessary to prevent

accessing data beyond the array boundaries. Next, we fill the result vectors with the available values,

leaving the missing elements as zero. Thus, the size of the original array becomes a multiple of four.

Meanwhile, the final value for calling functions remains unchanged, and the use of vector operations

overall helps reduce time costs for operations.
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TYPE4 ToVect4(__global TYPE *array, int start, int step, int size, int shift)

  {

   TYPE4 result = (TYPE4)(0, 0, 0, 0);

m   step = max(1, step);

   int st = start * step + shift;

   if(st < size)

     {

      int k = (size - shift + step - 1)  /  step;

      switch(k)

        {

         case 0:

            break;

         case  1:

            result = (TYPE4)(array[st], 0, 0, 0);

            break;

         case  2:

            result = (TYPE4)(array[st], array[st + step], 0, 0);

            break;

         case  3:

            result = (TYPE4)(array[st], array[st + step], array[st + 2 * step], 0);

            break;

         default:

         result = (TYPE4)(array[st], array[st + step], array[st + 2 * step], array[st + 3 * step]);

               break;

        }

     }

   return result;

  }

To fully understand the forward pass, let's explore the activation functions. In general, they repeat the

relevant implementations in MQL5, except for the kernel design. For example, below is the code for the

implementation of a sigmoid. The kernel parameters include pointers to the input data buffers, output

buffers, and activation function parameters. In the kernel body, we first determine the thread identifier,

which indicates the ordinal number of the processed element in the data buffer, and then organize the

process of calculating the activation function. As you can see, the code for calculating the value of the

function is very similar to the relevant MQL5 code presented in the activation function description

section.

__kernel void SigmoidActivation(__global TYPE* inputs,

                                __global TYPE* outputs,

                                const TYPE a, const TYPE b)

  {

   size_t i = get_global_id(0);

   outputs[i] = a / (1 + exp(-inputs[i])) - b;

  }

The same can be said about the implementation of the Swish activation function.
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__kernel void SwishActivation(__global TYPE* inputs,

                              __global TYPE* outputs,

                              const TYPE b)

  {

   size_t i = get_global_id(0);

   TYPE value = inputs[i];

   outputs[i] = value / (1 + exp(-b * value));

  }

However, there are some difficulties in implementing the Softmax function. This is due to the difficulty

of transferring data between threads to calculate the sum of all the values of the exponent vector in the

neural layer. To resolve the issue, I decided to divide the process into several stages. In addition, we'll

take advantage of the Work-group's ability to use shared arrays in local memory.

In the kernel parameters, we pass pointers to the buffers of input data and results, as well as the size

of the input data buffer. In the kernel body, we first get all the necessary identifiers. These are the

global IDs in two dimensions, and the thread ID in the local group. We will talk about the use of two

dimensions in the global task space later. 

__kernel void SoftMaxActivation(__global TYPE* inputs,

                                __global TYPE* outputs,

                                const ulong total)

  {

   uint i = (uint)get_global_id(0);

   uint l = (uint)get_local_id(0);

   uint h = (uint)get_global_id(1);

   uint ls = min((uint)get_local_size(0), (uint)LOCAL_SIZE);

Then we will create a local array in which we allocate one element for each thread to sum up

exponential values.

Note that OpenCL does not allow the creation of dynamic arrays. Therefore, the size of the local array

must be determined before the program is compiled. So, we need to look for some kind of compromise.

Excessive size leads to inefficient memory utilization. On the other hand, if the array size is too small,

this limits the number of active parallel threads. Of course, solving such a task is much easier when you

know the parameters of the device you are using and the architecture of the model. Therefore, we

need a mechanism that allows us to easily and quickly change this parameter before compiling the

program. The best solution for this is to use macro substitution, just like we did for the data type. In

the code, we specify the LOCAL_ SIZE constant, the value of which we assign in our constant file

defines.mqh.

Next, we organize a loop in which each thread sums its part of the exponential values. The resulting

value is written to the corresponding element of the local array.
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   __local TYPE temp[LOCAL_SIZE];

   uint count = 0;

   for(count = l; (count < total && l < ls); count += ls)

     {

      uint shift = h * total + count;

      temp[l] = (count > l ? temp[l] : 0) + exp(inputs[shift]);

     }

   barrier(CLK_LOCAL_MEM_FENCE);

After the loop operations are complete, we set a barrier that allows all the threads of the local group to

be synchronized. This operation suspends the execution of each thread, waiting for all threads within

the local group to complete their loop iterations.

After obtaining several individual sums computed by each separate thread, it is necessary to combine

them into a single sum. To do this, we will organize another cycle. In its body, we will sum the values of

the local array in pairs. The trick is that we will divide the entire local array into two equal parts. The

first half of the active threads will add the value from the second half to its value in the local array. In

the next iteration of the loop, we will halve the number of active threads and sum the values obtained in

the previous iteration of the loop. The loop repeats until the sum of all elements is collected in the first

element of the array.

Here we insert a barrier in the body of the loop because before the start of each subsequent iteration,

all threads must finish the previous iteration.

   count = ls;

   do

     {

      count = (count + 1) / 2;

      temp[l] += (l < count && (l + count) < ls ? temp[l + count] : 0);

      barrier(CLK_LOCAL_MEM_FENCE);

     }

   while(count > 1);

After obtaining the sum of the exponents of all the values in the buffer, we can calculate the value of

each element after the activation function. This is what we will do in the next cycle.

//---

   TYPE sum=temp[0];

   for(count = l; count < total; count += ls)

     {

      uint shift = h * total + count;

      outputs[shift] = exp(inputs[shift]) / (sum + 1e-37f);

     }

  }

A forward pass is followed by a backward pass. It begins with the definition of error gradients at the

output of the neural layer. This function is performed by the CalcOutputGradient kernel. In the kernel

parameters, it receives pointers to three vectors: the first two vectors of target values and forward

pass results are the input data for the function, while the third one is used to store the calculation

results. The parameters also specify the loss function to be used. The kernel code completely repeats

the algorithm of the previously considered relevant method written using MQL5 tools. It also shows the

branching of the algorithm depending on the loss function used.
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__kernel void CalcOutputGradient(__global TYPE *target,

                                 __global TYPE *outputs,

                                 __global TYPE *gradients,

                                 int loss_function)

  {

   const int n = get_global_id(0);

   switch(loss_function)

     {

      case 0:

         gradients[n] = target[n] - outputs[n];

         break;

      case 1:

         gradients[n] = 2 * (target[n] - outputs[n]);

         break;

      case 2:

         gradients[n] = -target[n] /

                        (outputs[n] + 1e-37f) * log(outputs[n] + 1e-37f);

         break;

      case 3:

         gradients[n] = (target[n] - outputs[n]) /

                        (outputs[n] * (outputs[n] - 1) + 1e-37f);

         break;

      default:

         gradients[n] = target[n] - outputs[n];

         break;

     }

  }

The next step in our backpropagation process is to adjust the error gradient based on the derivative of

the activation function. Recall that we have moved the activation function and all related processes to a

separate class. Furthermore, each activation function has its own class. We will create a separate

kernel for each activation function. Similarly, we will create a separate kernel for determining the

derivative of each activation function.

When creating kernels for calculating derivative functions, we take into account the specific features of

each of them. For example, the derivative of a linear activation function will always be its parameter a,

and I see no reason to put this in a separate kernel. To adjust the error gradient to the derivative of

this function, we can use the forward pass kernel by specifying 0 instead of the b parameter.

A similar situation arises when using LReLU. A linear relationship is also used here, but the linearity

factor varies from the value to the activation function. Therefore, we need to create a new kernel that,

in its parameters, will receive pointers to three data buffers and a leakage coefficient, whereas the

forward pass kernel only received pointers to two buffers and the coefficient.

In the kernel body, we define the global thread identifier, which will identify the element to be

processed in the data buffers. Then we check the value of the corresponding element before the

function. If the number is greater than 0, we use the coefficient of 1. Otherwise, we will use the

leakage factor. The error gradient obtained from the subsequent neural layer will be multiplied by the

selected coefficient. The value of the operation will be written to the corresponding element of the

result buffer.
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__kernel void LReLUDerivative(__global TYPE* outputs,

                              __global TYPE* output_gr,

                              __global TYPE* input_gr,

                              const TYPE a)

  {

   size_t i = get_global_id(0);

   input_gr[i] = (outputs[i] > 0 ? (TYPE)1 : a) * output_gr[i];

  }

The value of derivatives of S-shaped functions, such as the sigmoid and the hyperbolic tangent, can be

easily calculated through the result of the activation function.

It is this approach that we will embed into the kernel algorithm for calculating the derivatives of these

functions. The general approaches to the organization of kernel work remain the same.

__kernel void SigmoidDerivative(__global TYPE* outputs,

                                __global TYPE* output_gr,

                                __global TYPE* input_gr,

                                const TYPE a, const TYPE b

                               )

  {

   size_t i = get_global_id(0);

   if(a == 0)

      input_gr[i] = 0;

   else

     {

      TYPE z = clamp(outputs[i] + b, (TYPE)0, a);

      input_gr[i] = z * (1 - z / a) * output_gr[i];

     }

  }

__kernel void TanhDerivative(__global TYPE* outputs, __global TYPE* output_gr,

                             __global TYPE* input_gr)

  {

   size_t i = get_global_id(0);

   input_gr[i] = (1 - pow(outputs[i], 2)) * output_gr[i];

  }

To calculate the derivative of the Swish function, we will need the values both before and after

activation. The mathematical formula of the derivative is presented below. 

As you can see, the derivative of the function is expressed in terms of the activation function value,

sigmoid values, and the activation function's parameter β. Substituting the sigmoid formula, we get the

following expression.
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To implement the formula mentioned, you need to pass pointers to four data buffers to the kernel: the

corresponding values before and after activation, the error gradient from the subsequent layer, and the

results buffer.

In the kernel body, calculate the derivative value using the provided formula and then multiply this

value by the error gradient obtained from the subsequent layer. The result of the operation will be

written to the corresponding element of the results buffer.

__kernel void SwishDerivative(__global TYPE* outputs,

                              __global TYPE* output_gr,

                              __global TYPE* input_gr,

                              const TYPE b,

                              __global TYPE* inputs)

  {

   size_t i = get_global_id(0);

   TYPE by = b * outputs[i];

   input_gr[i] = (by + (1 - by) / (1 + exp(-b * inputs[i]))) * output_gr[i];

  }

The kernel of calculating the derivative of the function Softmax is the most difficult. As in the case of

the S-shaped functions, the values of the activation function itself are sufficient to calculate the

derivative of the Softmax function. To compute the value of one element in the vector during the feed-

forward pass, we used the values of all elements in the vector before the activation function

(calculating the total sum of exponents). Therefore, the value of each element after activation depends

on all elements of the vector before activation. This means that each element must receive its share of

the error from each element at the output of the neural layer before activation. In general, the

derivative of the Softmax function is calculated using the formula below.

In the parameters of the SoftMaxDerivative kernel, we will pass pointers to three data buffers: the

values of the activation function, the error gradient from the next layer, and the result buffer.

In the kernel body, we define the global thread ID, which this time only points to an element in the

results buffer. The global thread identifier in the second dimension is used when working with a matrix

in which the Softmax function was applied row-by-row. In this case, this identifier will help us determine

the offset to the analyzed data.

Next, we prepare two private variables: one to store the value of the corresponding element after

activation, and the other to accumulate the total gradient error value.

After that, we organize a loop for collecting error gradients from all elements at the output of the

neural layer. Each specific gradient is calculated using the above formula.

After completing the loop iterations, we will save the accumulated sum of gradients in the

corresponding element of the results buffer.
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__kernel void SoftMaxDerivative(__global TYPE* outputs,

                                __global TYPE* output_gr,

                                __global TYPE* input_gr)

  {

   size_t i = get_global_id(0);

   size_t outputs_total = get_global_size(0);

   size_t shift = get_global_id(1) * outputs_total;

   TYPE output = outputs[shift + i];

   TYPE result = 0;

   for(int j = 0; j < outputs_total; j++)

      result += outputs[shift + j] * output_gr[shift + j] *

                                    ((TYPE)(i == j ? 1 : 0) - output);

   input_gr[shift + i] = result;

  }

After adjusting the error gradient for the activation function derivative, we need to distribute the

obtained values to the neurons of the previous neural layer. As it was mentioned above, here we will

divide the threads by the number of neurons in the lower neural layer. For each neuron, we will collect

gradients from all neurons dependent on it.

The distribution of the error gradient through the neural layer will be carried out in the

CalcHiddenGradient kernel. Pointers to 3 arrays are input into the kennel:

· weights: a matrix of weights;

· gradients: an array of gradients adjusted for the derivative of the activation function;

· gradient_ inputs: an array for recording the gradients of the preceding layer.

In addition, the parameters indicate the number of neurons in the top layer (the size of the gradients

array). The kernel construction algorithm is very similar to the forward pass method, as we also use the

dot and ToVect4 functions. The difference lies in the arrays being used: during the forward pass, we

took the input signal and multiplied it by the weights, whereas now we multiply the error gradient by

the weights. There is one more point in using the ToVect4 function for the matrix of weights. When we

considered this function for the feed-forward pass, we talked about a similar function of the parameters

of the first element for copying start and for shifting shift. Then we used step of 1 element. Now, by

iterating over the array of gradients, we will select the appropriate weights. However, in the feed-

forward pass, neurons and weights followed in order, while in the backward pass, we take the weights

across the weight matrix. In the vector expression of the weight matrix, we will use the step between

the two elements to copy 1 element more than the number of neurons in the previous layer (the bias

element). At the same time, the shift will be equal to the ordinal number of the processed neuron of the

lower layer.

We do not specify the number of neurons in the lower neural layer in the parameters but use this value

as a step to read values from the weight matrix. The get_ global_ size function allows us to get the

specified value, which returns the total number of running kennel threads. Since we launched one

thread for each neuron of the previous layer, the number of threads in this case will correspond to the

number of neurons in the layer. Here, we calculate the number of elements in the weight matrix by

multiplying the number of neurons in the layer by the number of neurons in the previous layer plus the

bias element.

In other respects, we also use vector operations that allow us to utilize a loop in steps of 4 elements.
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__kernel void CalcHiddenGradient(__global TYPE *gradient_inputs,

                                 __global TYPE *weights,

                                 __global TYPE *gradients,

                                 int outputs_total)

  {

   const int n = get_global_id(0);

   const int inputs_total = get_global_size(0);

   int weights_total = (inputs_total + 1) * outputs_total;

//---

   TYPE grad = 0;

   for(int o = 0; o < outputs_total; o += 4)

      grad += dot(ToVect4(gradients, o, 1, outputs_total, 0), 

                  ToVect4(weights, o, (inputs_total + 1), weights_total, n));

   gradient_inputs[n] = grad;

  }

If you look at the error backpropagation algorithm, we have already reached the finish line. After

propagating the error gradient, all we have to do is update the weight matrix. However, we remember

from the MQL5 implementation that the weight matrix will not be updated after each iteration. Again,

the process of updating the weight matrix will be divided into 2 stages:

1. Accumulating error gradients over a certain interval.

2. Averaging of the accumulated gradient and adjustment of the weight matrix.

We will collect error gradients for each weight in the CalcDeltaWeights kernel. In the kernel

parameters, pointers to the array of data from the output of the previous layer, the gradient array, and

an array for accumulating deltas needed for weight adjustments are passed.

All weights are calculated independently, so we can run the error calculation for each weighting factor

in a separate thread. To make the structure of the threads more visual and understandable, we will

create a task space in two dimensions. The first dimension will be equal to the number of neurons in the

current layer, and the second will be equal to the number of neurons in the previous layer.

In the kernel body, we will determine the dimension of the weight matrix over the problem space and

the position of the analyzed element in this matrix. After that, we will determine the offset of the

element in the result buffer.

Let's not forget that we accumulate the error gradient until the moment of direct updating of the

weights. Therefore, we will add to the previously accumulated sum the product of the corresponding

error gradient by the result element of the previous layer.

Note that we are using an additional bias element. For this element, a constant value of the incoming

element equal to one is used. We didn't take it into account when creating the task space, but we must

also accumulate an error gradient for it. From a mathematical point of view, the derivative of

multiplication by 1 is equal to 1. This means that the error gradient for a given element is equal to the

error gradient before the activation function of the corresponding neuron. To avoid duplicating the

iteration for writing the bias weight error gradient, we will perform this iteration only for the thread with

index 0 in the second dimension.
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__kernel void CalcDeltaWeights(__global TYPE *inputs,

                               __global TYPE *delta_weights,

                               __global TYPE *gradients)

  {

   const int n = get_global_id(0);

   const int outputs_total = get_global_size(0);

   const int i = get_global_id(1);

   const int inputs_total = get_global_size(1);

//---

   TYPE grad = gradients[n];

   int shift = n * (inputs_total + 1);

   delta_weights[shift + i] = inputs[i] * grad + delta_weights[shift + i];

   if(i == 0)

      delta_weights[shift + inputs_total] += grad;

  }

Now, we need to organize the process of updating the matrix of weights. We have studied and already

implemented several methods for updating weights in the main program. When implementing this

process in MQL5, we created a dispatch method that redirected the logical chain of operations to the

method corresponding to the selected method for updating the weights. Then, within these methods,

we defined the device to perform the operations. To maintain the integrity of this approach, we have to

create several kernels by analogy with the main program, implementing all the methods used to

optimize the weight matrix.

All kernels were created using a single approach and therefore have many features in common.

However, there are differences due to the specific features of each method. Let's start exploring

kernels with the stochastic gradient descent method.

In the kernel parameters, we pass pointers to the matrix of accumulated gradients and the matrix of

weights. In addition to pointers to matrices, the kernel parameters include the total number of

elements in the weight matrix, the batch size for averaging, the learning rate, and regularization

parameters.

As before, we will use vector operations, so the number of threads will be four times smaller than the

size of the weight matrix. In the kernel body, we first define the offset in the array for the working

elements of our stream and load them into vector variables. When reading the accumulated deltas, we

immediately divide the obtained values by the batch size, which will give us the average value of the

gradient. After that, we adjust the weights for the regularization coefficients and the average value of

the accumulated deltas, taking into account the learning rate.

In conclusion, we return the obtained values to the weight matrix and reset the array of accumulated

deltas.
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__kernel void SGDUpdate(__global TYPE *delta_weights,

                        __global TYPE *weights,

                        int total,

                        int batch_size,

                        TYPE learningRate,

                        TYPE Lambda1,

                        TYPE Lambda2

                       )

  {

   int start = 4 * get_global_id(0);

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE lr = learningRate / ((TYPE)batch_size);

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   weights4 += (TYPE4)(lr) * delta4;

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

Next, we studied the accumulated momentum method. In the same sequence, we will create kernels

for the implementation of methods. The MomentumUpdate kernel algorithm is very similar to the

stochastic gradient descent kernel discussed above. The main differences are the introduction of an

additional array for storing the accumulated pulse, updating the weights, and the pulse smoothing

parameter.

In the kernel body, as in the previous method, we read the corresponding array values into vector

variables. At the same time, we average the accumulated gradient. Then we adjust the weights for the

regularization parameters. After this, we first update the momentum of the weight change, taking into

account the average gradient and the previously accumulated momentum. Only after this step, we

adjust the weights based on the updated momentum. Before exiting the kernel, transfer the values of

the vector variables to the corresponding elements of the weights and moments matrices. The

cumulative array of deltas will be zeroed.
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__kernel void MomentumUpdate(__global TYPE* delta_weights,

                             __global TYPE* weights,

                             __global TYPE* momentum,

                             int total, int batch_size,

                             TYPE learningRate,

                             TYPE beta,

                             TYPE Lambda1, TYPE Lambda2)

  {

   int start = 4 * get_global_id(0);

//---

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0) /

                                                      ((TYPE4)batch_size);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE4 momentum4 = ToVect4(momentum, start, 1, total, 0);

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   momentum4 = (TYPE4)(learningRate) * delta4 + (TYPE4)(beta) * momentum4;

   weights4 += momentum4;

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(momentum, momentum4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

The AdaGrad optimization method, like the accumulated momentum method, uses a single array to

accumulate moments. But unlike the previous method, we will sum up the squares of the gradients and

there is no smoothing coefficient.

 

The approach to the use of the accumulated moment has also changed. In the previous method, we

used accumulated momentum to reduce the randomness of updates and maintain smooth movements

in the direction of the anti-gradient. Now, in the adaptive gradient method, the accumulated square of

gradients is used to decrease the learning rate with each iteration. This is reflected in the kernel code

below.
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__kernel void AdaGradUpdate(__global TYPE* delta_weights,

                            __global TYPE* weights,

                            __global TYPE* momentum,

                            int total, int batch_size,

                            TYPE learningRate,

                            TYPE Lambda1, TYPE Lambda2)

  {

   int start = 4 * get_global_id(0);

//---

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0) /

                                                      ((TYPE4)batch_size);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE4 momentum4 = ToVect4(momentum, start, 1, total, 0);

//---

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   momentum4 = momentum4 + pow(delta4, 2);

   weights4 += learningRate / sqrt(momentum4 + 1.0e-37f);

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(momentum, momentum4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

The main problem of the adaptive gradient method is the constant accumulation of the gradient square.

With long-term training, this can lead to a decrease in the learning rate to zero and a practical stop in

the training of the neural network. This problem is solved in RMSProp by introducing a smoothing factor

for accumulating gradient squares. This allows us to limit the growth of the accumulated sum of

squares of gradients and thereby limit the decrease in the learning rate.

Otherwise, the kernel algorithm repeats the previously considered methods for updating weights.
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__kernel void RMSPropUpdate(__global TYPE* delta_weights,

                            __global TYPE* weights,

                            __global TYPE* momentum,

                            int total, int batch_size,

                            TYPE learningRate,

                            TYPE beta,

                            TYPE Lambda1, TYPE Lambda2)

  {

   int start = 4 * get_global_id(0);

//---

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0) /

                                                      ((TYPE4)batch_size);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE4 momentum4 = ToVect4(momentum, start, 1, total, 0);

//---

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   momentum4 = beta * momentum4 + (1 - beta) * pow(delta4, 2);

   weights4 += delta4 * learningRate / (sqrt(momentum4) + 1.0e-37f);

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(momentum, momentum4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

In the AdaDelta optimization update method, the authors tried to exclude the learning rate. But the

price for this was the introduction of an additional momentum buffer and a second smoothing factor. 

The method uses two exponential averages. The first one averages the square values of the

corresponding weight, while the second one, like in the two previous methods, calculates the square of

gradients on this weight. Instead of the learning rate, the ratio of the square roots of the two specified

averages is used. As a result, we obtain a method in which, with an increase in the absolute value of the

weight, the learning rate also increases. At the same time, an increase in the absolute value of the

error gradient leads to a decrease in the learning rate.

Let's consider the implementation of this method in the AdaDeltaUpdate kernel. In the parameters,

pointers to four data arrays are passed to the kernel:

· delta_ weights: an array of accumulated error gradients;

· weights: a matrix of weights;

· momentumW: a matrix of exponential mean squares of the weights;

· momentumG: a matrix of exponential squares of error gradients.

In addition to the pointers to arrays, the kernel parameters include the size of the arrays, batch size,

two exponential smoothing coefficients, and regularization parameters.
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In the kernel body, we define the shift to the elements to be processed in this thread and read the

necessary elements from the arrays into vector variables for further processing. The next step is to

adjust the weights based on regularization parameters and update the weight moments and gradients.

After that, we will update the weights themselves. Finally, write the new values to the data arrays and

reset the array of accumulated gradients.

__kernel void AdaDeltaUpdate(__global TYPE* delta_weights,

                             __global TYPE* weights,

                             __global TYPE* momentumW,

                             __global TYPE* momentumG,

                             int total, int batch_size,

                             TYPE beta1, TYPE beta2,

                             TYPE Lambda1, TYPE Lambda2)

  {

   int start = 4 * get_global_id(0);

//---

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0) /

                                                      ((TYPE4)batch_size);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE4 momentumW4 = ToVect4(momentumW, start, 1, total, 0);

   TYPE4 momentumG4 = ToVect4(momentumG, start, 1, total, 0);

//---

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   momentumW4 = beta1 * momentumW4 + (1 - beta1) * pow(weights4, 2);

   momentumG4 = beta2 * momentumG4 + (1 - beta2) * pow(delta4, 2);

   weights4 += delta4 * sqrt(momentumW4) / (sqrt(momentumG4) + 1.0e-37f);

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(momentumW, momentumW4, start, 1, total, 0);

   D4ToArray(momentumG, momentumG4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

The last method we studied was the Adam adaptive moment estimation method. Below are the

mathematical formulas of this method.

Compared to the methods discussed earlier, the formulas may appear more complex, but there's

nothing daunting about them, and this method is implementable. Like AdaDelta, the method uses two

buffers to accumulate moments. We accumulate the momentum of the gradients in the first buffer and
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the momentum of the gradient squares in the second one. Both buffers use exponential smoothing, but

each uses a different smoothing factor. In addition, the learning rate is returned to the method.

Let's consider the implementation of the method in the AdamUpdate kernel. In the kernel parameters,

we will pass pointers to the data arrays:

· delta_ weights: accumulated gradient deltas;

· weights: a matrix of weights;

· momentumM: a matrix of accumulated gradients;

· momentumV: a matrix of accumulated gradient squares.

We will also pass the size of the arrays, batch size, learning rate, smoothing coefficients, and

regularization parameters in the kernel parameters.

At the beginning of the kernel, as in the implementation of the previous optimization methods, we

define the shift to the processed elements in the arrays. To avoid unnecessary confusion, we will

synchronously use the elements of the arrays, that is, the size of the arrays and the shift to the

corresponding elements will be identical.

Let's copy the processed array elements into vector variables. As always, we will immediately divide

the accumulated deltas by the batch size and store the arithmetic mean of the error gradient.

Next, we calculate the updated values of the accumulated pulses and adjust them, as proposed by the

authors of the method.

After the preparatory work, we will adjust our weights. As before, we will first adjust for regularization

parameters, and then move towards the anti-gradient direction according to the optimization method

rules. In other words, we will subtract the product of the learning rate and the ratio of the first moment

of the gradient to the square root of its second moment from the current weight.

At the end of the kernel, we will save the obtained values to the corresponding arrays. Do not forget to

reset the array of accumulated deltas.
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__kernel void AdamUpdate(__global TYPE* delta_weights,

                         __global TYPE* weights,

                         __global TYPE* momentumM,

                         __global TYPE* momentumV,

                         int total, int batch_size,

                         TYPE learningRate,

                         TYPE beta1, TYPE beta2,

                         TYPE Lambda1, TYPE Lambda2)

  {

   int start = 4 * get_global_id(0);

//---

   TYPE4 delta4 = ToVect4(delta_weights, start, 1, total, 0) /

                                                      ((TYPE4)batch_size);

   TYPE4 weights4 = ToVect4(weights, start, 1, total, 0);

   TYPE4 momentumM4 = ToVect4(momentumM, start, 1, total, 0);

   TYPE4 momentumV4 = ToVect4(momentumV, start, 1, total, 0);

//---

   momentumM4 = beta1 * momentumM4 + (1 - beta1) * delta4;

   momentumV4 = beta2 * momentumV4 + (1 - beta2) * pow(delta4, 2);

   TYPE4 m = momentumM4 / (1 - beta1);

   TYPE4 v = momentumV4 / (1 - beta2);

   weights4 -= (TYPE4)(Lambda1) + Lambda2 * weights4;

   weights4 += learningRate * m / (sqrt(v) + 1.0e-37f);

   D4ToArray(weights, weights4, start, 1, total, 0);

   D4ToArray(momentumM, momentumM4, start, 1, total, 0);

   D4ToArray(momentumV, momentumV4, start, 1, total, 0);

   D4ToArray(delta_weights, (TYPE4)(0), start, 1, total, 0);

  }

At this stage, we have completed the work on writing the OpenCL program. Of course, we will return to

this work when implementing other architectural solutions for neural layers. However, in terms of a fully

connected neural layer, this work can be considered complete. We save the code we've written and

move on to implementing the processes of data exchange between the main program and the OpenCL

kernels, as well as the functions for invoking the kernels. We have to do this work on the side of the

main program.

3.7.2 Implementing functionality on the main program side

The implementation of the functionality on the main program side will require some knowledge of

process organization and effort. Let's start with the preparatory work. First, in our file of definitions, we

need to add the loading of the OpenCL program written above as a resource and assign its contents to

a string variable. Here, we will also add predefined macro substitutions for data types and the size of

the local array to the program.
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#resource "opencl_program.cl" as string OCLprogram

//---

#define TYPE                         float

#define LOCAL_SIZE                   256

const string ExtType = StringFormat("#define TYPE %s\r\n"

                                    "#define TYPE4 %s4\r\n"

                                    "#define LOCAL_SIZE %d\r\n",

                                     typename(TYPE),typename(TYPE),LOCAL_SIZE);

#define cl_program                   ExtType+OCLprogram

When declaring kernels in the main program, the CLKernelCreate function returns a handle. To work

with OpenCL technology, we will use the CMyOpenCL class, which is derived from the standard COpenCL

class. The aforementioned classes implement arrays for storing handles. A specific kernel is accessed

by an index in the array. To simplify working with these indices and make the program code more

readable, let's add constants for the indices of all the kernels created above. To explicitly identify the

kernel index in the program code, we will start all named kernel constants with def_ k.

//+------------------------------------------------------------------+

//| OpenCL Kernels                                                   |

//+------------------------------------------------------------------+

#define def_k_PerceptronFeedForward    0

#define def_k_LineActivation           1

#define def_k_SigmoidActivation        2

#define def_k_SigmoidDerivative        3

#define def_k_TANHActivation           4

#define def_k_TANHDerivative           5

#define def_k_LReLuActivation          6

#define def_k_LReLuDerivative          7

#define def_k_SoftMAXActivation        8

#define def_k_SoftMAXDerivative        9

#define def_k_SwishActivation          10

#define def_k_SwishDerivative          11

#define def_k_CalcOutputGradient       12

#define def_k_CalcHiddenGradient       13

#define def_k_CalcDeltaWeights         14

#define def_k_SGDUpdate                15

#define def_k_MomentumUpdate           16

#define def_k_AdaGradUpdate            17

#define def_k_RMSPropUpdate            18

#define def_k_AdaDeltaUpdate           19

#define def_k_AdamUpdate               20

To specify parameters when calling kernels, we can also use indices. However, now they are not

specified explicitly. Instead, the serial number in the list of OpenCL kernel parameters is used. All

kernels use their own set of parameters, so we will define named constants for all created kernels. To

avoid confusion between identical parameters of different kernels, we will include a pointer to the

respective kernel in the constant name. For example, the parameter constants for the forward pass

kernel of the basic fully connected layer will start with def_ pff.

https://www.mql5.com/en/docs/opencl/clkernelcreate


3. Building the first neural network model in MQL5

199

3.7 Organizing parallel computing using OpenCL

//--- perceptron feed forward pass

#define def_pff_inputs                 0

#define def_pff_weights                1

#define def_pff_outputs                2

#define def_pff_inputs_total           3

We will declare constants for all written kernels in a similar way.
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//--- calculating the error gradient of the result layer

#define def_outgr_target               0

#define def_outgr_outputs              1

#define def_outgr_gradients            2

#define def_outgr_loss_function        3

//--- calculating the error gradient of the hidden layer

#define def_hidgr_gradient_inputs      0

#define def_hidgr_weights              1

#define def_hidgr_gradients            2

#define def_hidgr_outputs_total        3

//--- calculating the error gradient at the level of the weight matrix

#define def_delt_inputs                0

#define def_delt_delta_weights         1

#define def_delt_gradients             2

//--- parameter optimization by stochastic gradient descent

#define def_sgd_delta_weights          0

#define def_sgd_weights                1

#define def_sgd_total                  2

#define def_sgd_batch_size             3

#define def_sgd_learningRate           4

#define def_sgd_Lambda1                5

#define def_sgd_Lambda2                6

//--- parameter optimization using the moment method

#define def_moment_delta_weights       0

#define def_moment_weights             1

#define def_moment_momentum            2

#define def_moment_total               3

#define def_moment_batch_size          4

#define def_moment_learningRate        5

#define def_moment_beta                6

#define def_moment_Lambda1             7

#define def_moment_Lambda2             8

//--- parameter optimization using the AdaGrad method

#define def_adagrad_delta_weights      0

#define def_adagrad_weights            1

#define def_adagrad_momentum           2

#define def_adagrad_total              3

#define def_adagrad_batch_size         4

#define def_adagrad_learningRate       5

#define def_adagrad_Lambda1            6

#define def_adagrad_Lambda2            7
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//--- parameter optimization using the RMSProp method

#define def_rms_delta_weights          0

#define def_rms_weights                1

#define def_rms_momentum               2

#define def_rms_total                  3

#define def_rms_batch_size             4

#define def_rms_learningRate           5

#define def_rms_beta                   6

#define def_rms_Lambda1                7

#define def_rms_Lambda2                8

//--- parameter optimization using the AdaDelta method

#define def_adadelt_delta_weights      0

#define def_adadelt_weights            1

#define def_adadelt_momentumW          2

#define def_adadelt_momentumG          3

#define def_adadelt_total              4

#define def_adadelt_batch_size         5

#define def_adadelt_beta1              6

#define def_adadelt_beta2              7

#define def_adadelt_Lambda1            8

#define def_adadelt_Lambda2            9

//--- parameter optimization using the Adam method

#define def_adam_delta_weights         0

#define def_adam_weights               1

#define def_adam_momentumM             2

#define def_adam_momentumV             3

#define def_adam_total                 4

#define def_adam_batch_size            5

#define def_adam_learningRate          6

#define def_adam_beta1                 7

#define def_adam_beta2                 8

#define def_adam_Lambda1               9

#define def_adam_Lambda2               10

//--- activation functions

#define def_activ_inputs               0

#define def_activ_outputs              1

#define def_activ_param_a              2

#define def_activ_param_b              3

//--- adjusting the gradient to the derivative of the activation function

#define def_deactgr_outputs            0

#define def_deactgr_gradients          1

#define def_deactgr_deact_gradient     2

#define def_deactgr_act_param_a        3

#define def_deactgr_act_param_b        4

I intentionally provided a complete set of constants above to offer you a reference guide. It will assist

in reading and understanding the code for our next steps in implementing OpenCL technology into the

project.
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After describing the constants, we will move on to creating classes that will be responsible for servicing

OpenCL tools. We have already mentioned them multiple times. It's time to learn more about their

features.

First, this is the CMyOpenCL class. It inherits from the COpenCL class from the MQL5 standard libraries.

The standard library is well-written and has sufficient functionality to organize work. However, I found

one aspect inconvenient personally: when working with buffers for data exchange between the main

program and the OpenCL context, a similar approach is used as with other process objects. When

creating a buffer, we have to specify its index in the general array of buffers. This is a perfectly

workable option when we know all the buffers and their quantity in advance. However, our case is a

little more complicated.

class CMyOpenCL   :  public COpenCL

  {

public:

                     CMyOpenCL(void)   {};

                    ~CMyOpenCL(void)   {};

   //--- initialization and shutdown

   virtual bool      Initialize(const string program, const bool show_log = true);

   //---

   template<typename T>

   int               AddBufferFromArray(T &data[], const uint data_array_offset,

                                   const uint data_array_count, const uint flags);

   int               AddBufferFromArray(MATRIX &data,

                                  const uint data_array_offset, const uint flags);

   int               AddBuffer(const uint size_in_bytes, const uint flags);

   bool              CheckBuffer(const int index);

   //---

   bool              BufferFromMatrix(const int buffer_index, MATRIX &data,

                                  const uint data_array_offset, const uint flags);

   bool              BufferRead(const int buffer_index, MATRIX &data,

                                                     const uint cl_buffer_offset);

   bool              BufferWrite(const int buffer_index, MATRIX &data,

                                                     const uint cl_buffer_offset);

  };

Earlier, we discussed that the number of used buffers for accumulating moments can vary depending on

the chosen method for updating weights. In addition, we cannot know in advance how many neural

layers the user will use to solve their tasks. Hence, I needed a dynamic array to store handles of data

buffers. This problem was solved by adding a small AddBufferFromArray method. The parameters of this

method are similar to those of the BufferFromArray method of the parent class except for the buffer

index. The body of the method body a loop to search for empty cells in the buffer handle storage array.

The first empty cell is used to create the buffer. When there are no free elements in the array, the

method expands the array. The buffer is directly created by calling the above parent class method.

As a result of the operations, the method returns the index of the created buffer. If errors occur during

operations, the method will return the INVALID_ HANDLE constant.

I'd like to point out another aspect, which is that the method is created using the function template

pattern. This allows you to use one method to create buffers of different types of data.

https://www.mql5.com/en/docs/standardlibrary/copencl/copenclbufferfromarray
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template<typename T>

int CMyOpenCL::AddBufferFromArray(T &data[], const uint data_array_offset,

                                  const uint data_array_count, const uint flags

                                 )

  {

   int result=INVALID_HANDLE;

   for(int i=0; i<m_buffers_total; i++)

     {

      if(m_buffers[i]!=INVALID_HANDLE)

         continue;

      result=i;

      break;

     }

//---

   if(result<0)

     {

      if(ArrayResize(m_buffers,m_buffers_total+1)>0)

        {

         m_buffers_total=ArraySize(m_buffers);

         result=m_buffers_total-1;

         m_buffers[result]=INVALID_HANDLE;

        }

      else

         return result;

     }

//---

   if(!BufferFromArray(result,data,data_array_offset,data_array_count,flags))

      return INVALID_HANDLE;

//---

   return result;

  }

The method created above allows the creation of buffers from arrays of any data types but it is not

applicable when working with matrices. Therefore, the method was overloaded. The method algorithm

remains unchanged.
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int CMyOpenCL::AddBufferFromArray(MATRIX &data,

                                  const uint data_array_offset,

                                  const uint flags

                                 )

  {

//--- Search for a free element in a dynamic array of pointers

   int result = -1;

   for(int i = 0; i < m_buffers_total; i++)

     {

      if(m_buffers[i] != INVALID_HANDLE)

         continue;

      result = i;

      break;

     }

//--- If a free item is not found, add a new item to the array

   if(result < 0)

     {

      if(ArrayResize(m_buffers, m_buffers_total + 1) > 0)

        {

         m_buffers_total = ArraySize(m_buffers);

         result = m_buffers_total - 1;

         m_buffers[result] = INVALID_HANDLE;

  }

      else

         return result;

     }

//--- Create a buffer in the OpenCL context

   if(!BufferFromMatrix(result, data, data_array_offset, flags))

      return -1;

   return result;

  }

Anticipating a bit, I want to mention that we won't always be creating buffers based on ready-made

arrays. Sometimes, we just need to create a buffer in the OpenCL context without duplicating it in the

main memory. Or, for example, a specific buffer is only used to obtain results, and there is no need to

load its data into the context before performing operations. As we've mentioned before, the data

copying process is an expensive operation, and we would like to minimize such operations. Therefore, it

would be easier for us to simply create a data buffer in the context of a certain size without copying the

data. For such cases, we will create the AddBuffer method. As you can notice, the algorithm of the

method is almost identical to the methods of the previous class. The only difference is that this method

receives the buffer size in bytes as a parameter instead of an array. At the end of the method, we call

the BufferCreate method, which will create a buffer of the specified size in the OpenCL context.
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int CMyOpenCL::AddBuffer(const uint size_in_bytes, const uint flags)

  {

//--- Search for a free element in a dynamic array of pointers

   int result = -1;

   for(int i = 0; i < m_buffers_total; i++)

     {

      if(m_buffers[i] != INVALID_HANDLE)

         continue;

      result = i;

      break;

     }

//--- If a free item is not found, add a new item to the array

   if(result < 0)

     {

      if(ArrayResize(m_buffers, m_buffers_total + 1) > 0)

        {

         m_buffers_total = ArraySize(m_buffers);

         result = m_buffers_total - 1;

         m_buffers[result] = INVALID_HANDLE;

  }

      else

         return result;

     }

//--- Create a buffer in the OpenCL context

   if(!BufferCreate(result, size_in_bytes, flags))

      return -1;

   return result;

  }

We also created methods for reading (BufferRead) and writing (BufferWrite) data of the OpenCL context

buffer to the main memory matrix. The method algorithm is completely identical. Let's consider the

data reading method as an example. In the method parameters, it receives the buffer identifier in the

dynamic array of our class, a matrix for writing data, and an offset in the context buffer.

Please do not confuse the buffer identifier in the dynamic class array and the buffer handle in the

OpenCL context. The class operation is structured in such a way that we only pass the ordinal number

of an element in the dynamic array of our class to the external program, which contains the handle of

that buffer. As a result, when creating a buffer in the context using the class, the external program

does not have direct access to the created buffer in the context. All work with the buffer should be

done using class methods.

In the method body, we first check the received buffer ID for the size of our dynamic array. We then

check the validity of the specified buffer handle. In addition, we will check the validity of the OpenCL

context and program handles. Only after successfully passing all the controls, we call the function for

reading data from the buffer. Don't forget to check the results of the operations at every step. At the

end of the method, we will return the logical result of the operations.
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bool CMyOpenCL::BufferRead(const int buffer_index, MATRIX &data,

                                     const uint cl_buffer_offset)

  {

//--- checking parameters

   if(buffer_index < 0 || buffer_index >= m_buffers_total || data.Rows() <= 0)

      return(false);

   if(m_buffers[buffer_index] == INVALID_HANDLE)

      return(false);

   if(m_context == INVALID_HANDLE || m_program == INVALID_HANDLE)

      return(false);

//--- reading buffer data from the OpenCL context

   if(!CLBufferRead(m_buffers[buffer_index], cl_buffer_offset, data))

      return(false);

//---

   return(true);

  }

The second class that we will create and use to transfer data between the main program and the

OpenCL context is the CBufferType data buffer class. The class was created as a descendant of the

CObj ect base class. Since the parent class is the base class, we need to recreate all the necessary

functionality.

In addition to creating new methods in the new class, two new variables have appeared:

· m_ cOpenCL – a pointer to an object of the CMyOpenCL class

· m_ myIndex – the index of the current buffer in the dynamic array for storing buffer handles in the

CMyOpenCL class.

The m_ mMatrix matrix for storing data has also been introduced. Here we have slightly deviated from

the generally accepted rules for creating classes. It is usually customary to restrict access to internal

variables, and all interactions with them are built through class methods. Each such method restricts

the degree of freedom to internal variables and requires additional time for executing the method's

additional operations. Of course, this approach allows for complete control over changes in variable

states. However, in building neural models, we aim to minimize the time spent on each iteration, as

milliseconds per iteration can result in significant time overhead due to repeated calls. That is why we

announced the m_ mMatrix data matrix in public space. Of course, the fact that the class will be used to

store and transmit data within our global project and that all buffers will be private or protected objects

of other classes, minimizes our risks.
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class CBufferType: public CObject

  {

protected:

   CMyOpenCL*        m_cOpenCL;     // OpenCL context object

   int               m_myIndex;     // data buffer index in context

public:

                     CBufferType(void);

                    ~CBufferType(void);

   //--- data matrix

   MATRIX            m_mMatrix;

   //--- method of initializing the buffer with initial values

   virtual bool      BufferInit(const ulong rows, const ulong columns,

                                                          const TYPE value = 0);

   //--- create a new buffer in the OpenCL context

   virtual bool      BufferCreate(CMyOpenCL *opencl);

   //--- delete the buffer in the context of OpenCL

   virtual bool      BufferFree(void);

   //--- read buffer data from the OpenCL context

   virtual bool      BufferRead(void);

   //--- write buffer data to the OpenCL context

   virtual bool      BufferWrite(void);

   //--- get the buffer index

   virtual int       GetIndex(void);

   //--- change the buffer index

   virtual bool      SetIndex(int index)

                       {

                        if(!m_cOpenCL.BufferFree(m_myIndex))

                           return false;

                        m_myIndex = index;

                        return true;

                       }

   //--- copy buffer data to an array

   virtual int       GetData(TYPE &values[], bool load = true);

   virtual int       GetData(MATRIX &values, bool load = true);

   virtual int       GetData(CBufferType* values, bool load = true);

   //--- calculate the average value of the data buffer

   virtual TYPE      MathMean(void);

   //--- vector operations

   virtual bool      SumArray(CBufferType* src);

   virtual int       Scaling(TYPE value);

   virtual bool      Split(CBufferType* target1, CBufferType* target2,

                                                            const int position);

   virtual bool      Concatenate(CBufferType* target1, CBufferType* target2,

                                    const int positions1, const int positions2);

   //--- methods for working with files

   virtual bool      Save(const int file_handle);

   virtual bool      Load(const int file_handle);

   //--- class identifier

   virtual int       Type(void)              const { return defBuffer;              }

   //--- methods for working with the data matrix

   ulong             Rows(void)              const { return m_mMatrix.Rows();       }
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   ulong             Cols(void)              const { return m_mMatrix.Cols();       }

   uint              Total(void)             const { return (uint)(m_mMatrix.Rows() * 

                                                                 m_mMatrix.Cols()); }

   TYPE              At(uint index)          const { return m_mMatrix.Flat(index);  }

   TYPE              operator[](ulong index) const { return m_mMatrix.Flat(index);  }

   VECTOR            Row(ulong row)                { return m_mMatrix.Row(row);     }

   VECTOR            Col(ulong col)                { return m_mMatrix.Col(col);     }

   bool              Row(VECTOR& vec,  ulong row)  { return m_mMatrix.Row(vec, row);}

   bool              Col(VECTOR& vec,  ulong col)  { return m_mMatrix.Col(vec, col);}

   bool              Activation(MATRIX& mat_out, ENUM_ACTIVATION_FUNCTION func)

                                      { return m_mMatrix.Activation(mat_out, func); }

   bool              Derivative(MATRIX& mat_out, ENUM_ACTIVATION_FUNCTION func)

                                      { return m_mMatrix.Derivative(mat_out, func); }

   bool              Reshape(ulong rows, ulong cols)

                                      { return m_mMatrix.Reshape(rows, cols);       }

//---

   bool              Update(uint index, TYPE value)

                       {

                        if(index >= Total())

                           return false;

                        m_mMatrix.Flat(index, value);

                        return true;

                       }

   bool              Update(uint row, uint col, TYPE value)

                       {

                        if(row >= Rows() || col >= Cols())

                           return false;

                        m_mMatrix[row, col] = value;

                        return true;

                       }

  };

The structure of the class methods is quite diverse. Some of them are similar to matrix functions and

perform the same functionality – designed to work with a data matrix. Others carry out the

functionality of interacting with the OpenCL context. Let's take a closer look at some of them.

In the class constructor, we will only set the initial values of the new variables. They are filled with

empty values.

CBufferType::CBufferType(void)  : m_myIndex(-1)

  {

   m_cOpenCL = NULL;

  }

In the class destructor, we will perform memory cleaning operations. Here we'll clear the buffer in the

context of OpenCL.
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CBufferType::~CBufferType(void)

  {

   if(m_cOpenCL && m_myIndex >= 0 && m_cOpenCL.BufferFree(m_myIndex))

        {

         m_myIndex = -1;

         m_cOpenCL = NULL;

  }

  }

We have already used the BufferInit buffer initialization method in the neural layer class constructor.

The main functionality of this method is to create a matrix of a specified size and populate it with initial

values. The buffer size and initial values are specified in the method parameters. As part of this project,

we will fill arrays with zero values during the initialization of the neural network and reset the buffers of

accumulated deltas after updating the weight matrix.

bool CBufferType::BufferInit(ulong rows, ulong columns, TYPE value)

  {

   if(rows <= 0 || columns <= 0)

      return false;

   m_mMatrix = MATRIX::Full(rows, columns, value);

   if(m_cOpenCL)

     {

      CMyOpenCL *opencl=m_cOpenCL;

      BufferFree();

      return BufferCreate(opencl);

     }

//---

   return true;

  }

The next method is to create a buffer in the OpenCL context. In parameters, the method receives a

pointer to an instance of the CMyOpenCL class in the context of which the buffer should be created.

The method starts with a control block. First, we check the validity of the obtained pointer - in case of

receiving an invalid pointer, we delete the buffer previously created in the OpenCL context and exit the

method.

bool CBufferType::BufferCreate(CMyOpenCL *opencl)

  {

//--- initial data validation block

   if(!opencl)

     {

      BufferFree();

      return false;

     }

Then we check that it matches the previously saved pointer. If the pointers are identical and the buffer

index is already saved, we won't create a new buffer in the OpenCL context but will simply copy the

data from the matrix to the data exchange buffer again. To do this, we call the BufferWrite method.

This method has its own set of checks, which we will become familiar with a bit later, and it returns a

logical result of the operation. We exit the method with the result of the method of writing data to the

OpenCL context.
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//--- if the received pointer matches the one previously saved,

//--- simply copy the buffer contents into the context memory

   if(opencl == m_cOpenCL && m_myIndex >= 0)

      return BufferWrite();

The subsequent code of the method will be executed only if we have not exited the method during the

preceding operations. Here, we check the validity of the previously saved pointer to an instance of the

CMyOpenCL class and the presence of an index in the dynamic array storing handles of data buffers. If

this condition is met, we must clear the memory and delete the existing buffer using the BufferFree

method before continuing operations. Only after successfully deleting the old buffer do we have the

right to open a new one. Otherwise, uncontrolled use of memory resources will lead to memory

shortages and corresponding consequences.

//--- checking for a previously saved pointer to the OpenCL context

//--- if available, remove the buffer from the unused context

   if(m_cOpenCL && m_myIndex >= 0)

     {

      if(m_cOpenCL.BufferFree(m_myIndex))

        {

         m_myIndex = -1;

         m_cOpenCL = NULL;

  }

      else

         return false;

     }

At the end of the method, we initiate the creation of a new data buffer in the specified context. To do

this, we call the AddBufferFromArray method discussed above. The index obtained in response to the

call will be stored in the m_myIndex variable. If the buffer opening operation is successful, we will save

the CMyOpenCL instance pointer received as input to the method before exiting.

//--- create a new buffer in the specified OpenCL context

   if((m_myIndex = opencl.AddBufferFromArray(m_mMatrix, 0, CL_MEM_READ_WRITE)) < 0)

      return false;

   m_cOpenCL = opencl;

//---

   return true;

  }

In this method, we used two new methods: one for clearing the buffer and the other for writing data.

The BufferFree method is responsible for clearing the buffer. The method algorithm is quite simple.

First, we check for the presence of a stored pointer to an instance of the CMyOpenCL class and an

index in the dynamic buffer array. If they are available, call the CMyOpenCL class buffer cleaning

method and specify the buffer index to delete. If the buffer is successfully removed from the context,

clear the pointer to the CMyOpenCL class instance and the buffer index variable.

It should be noted that calling this method clears memory and deletes the buffer only in the context of

OpenCL. At the same time, the data matrix itself and its contents remain in RAM. We will be able to

exploit this property to use OpenCL context memory more efficiently a little later.
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bool CBufferType::BufferFree(void)

  {

//--- checking for a previously saved pointer to the OpenCL context

//--- if available, remove the buffer from the unused context

   if(m_cOpenCL && m_myIndex >= 0)

      if(m_cOpenCL.BufferFree(m_myIndex))

        {

         m_myIndex = -1;

         m_cOpenCL = NULL;

         return true;

  }

   if(m_myIndex >= 0)

      m_myIndex = -1;

//---

   return false;

  }

Next, I suggest considering methods for transferring information between the main program and the

OpenCL context. This work is done in two similar methods: BufferRead and BufferWrite. Despite the

differences in the operation directions, the algorithm of the methods is identical. At the beginning of the

methods, a control block is organized that checks the validity of the pointer to an instance of the

CMyOpenCL class and the presence of an index in the dynamic buffer array. And only after the control

block has been successfully passed, the OpenCL context class method of the same name is called,

specifying the buffer index, matrix, and offset in the OpenCL buffer.

bool CBufferType::BufferRead(void)

  {

   if(!m_cOpenCL || m_myIndex < 0)

      return false;

//---

   return m_cOpenCL.BufferRead(m_myIndex, m_mMatrix, 0);

  }

bool CBufferType::BufferWrite(void)

  {

   if(!m_cOpenCL || m_myIndex < 0)

      return false;

//---

   return m_cOpenCL.BufferWrite(m_myIndex, m_mMatrix, 0);

  }

We have separately created methods for obtaining and directly specifying the buffer index in the

dynamic array of GetIndex and SetIndex buffer handles. Their code is straightforward, so I don't even

move them outside the class declaration block.

We've added three GetData methods of the same name to the class. They all perform the same

function which is copying matrix data into a given structure. The difference is in the data receiver. This

can be a dynamic array, matrix, or another instance of the CBufferType class.

In the first case, the method parameters contain a reference to the array and a flag that indicates the

need to read data from the OpenCL context before copying the data. The introduction of the flag is a

necessary measure. As you may have noticed when considering a method for reading data from the

context, if there is no pointer to the CMyOpenCL object or index in the dynamic buffer array, the
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method will return false. This will block receiving data from an array without a buffer created in the

OpenCL context. The introduction of a flag allows you to control this process.

At the beginning of the method, we check the flag and read data from the context, if necessary. Only

then do we change the size of the receiver array and create a data copying cycle. Finally, the method

returns the number of copied items.

int CBufferType::GetData(TYPE &values[], bool load = true)

  {

   if(load && !BufferRead())

      return -1;

   if(ArraySize(values) != Total() &&

      ArrayResize(values, Total()) <= 0)

      return false;

//---

   for(uint i = 0; i < Total(); i++)

      values[i] = m_mMatrix.Flat(i);

   return (int)Total();

  }

The other two methods are built on the basis of a similar algorithm but they take into account the

specifics of the receiver object.

int CBufferType::GetData(MATRIX &values, bool load = true)

  {

   if(load && !BufferRead())

      return -1;

//---

   values = m_mMatrix;

   return (int)Total();

  }

int CBufferType::GetData(CBufferType *values, bool load = true)

  {

   if(!values)

      return -1;

   if(load && !BufferRead())

      return -1;

   values.m_mMatrix.Copy(m_mMatrix);

   return (int)values.Total();

  }

Now that we have prepared constants and classes for working with the OpenCL context, we can

continue to work on organizing the process directly in our neural network classes.

When creating methods for our neural network base class, we did not add two methods, UseOpenCL and

InitOpenCL. As can be seen from the names of the methods, they are designed to initialize and control

the process of working with OpenCL. The first one is used to switch the operating mode and enables

and disables the use of OpenCL. The second one initializes the operation of an instance of the

CMyOpenCL class.

Let's take a step back and fill these gaps. In the parameters of the UseOpenCL method, we will specify

the new state as a logical value. Using a logical value to convey a binary state to enable/disable a
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function seems intuitive to me. It is quite logical to use true to enable the functionality and false to turn

it off.

In the method body, we will organize the algorithm to branch out depending on the state being set.

When we receive a command to disable the functionality, we will check the current pointer to an

instance of the CMyOpenCL class that is stored in the m_ Copencl variable. If the pointer is invalid, the

functionality has not been initialized before, and we have nothing to disable. In this case, we will just

update the state of the technology usage flag and exit the method.

If the functionality was previously activated and a signal to deactivate it has now been received, we will

initiate the process of cleaning up the object and deleting it. After that, we will distribute a new (empty)

pointer to neural network objects, save the flag, and exit the method.

void CNet::UseOpenCL(bool value)

  {

   if(!value)

     {

      if(!m_cOpenCL)

        {

         m_bOpenCL = value;

         return;

  }

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      if(!!m_cLayers)

         m_cLayers.SetOpencl(m_cOpenCL);

      m_bOpenCL = value;

      return;

     }

Further operations will be performed only when the OpenCL functionality is enabled. When we receive a

signal to enable the use of OpenCL, we start the process of creating and initializing a new instance of

the CMyOpenCL class, which is placed in a separate InitOpenCL method.

Before exiting the method, save the new flag for using OpenCL and distribute the pointer to the new

object across all objects of the neural network. To do this, we will pass a new pointer into the dynamic

array object storing the layers of the neural network, and from there, the pointer will be passed down

the hierarchical chain to each object in the neural network.

//---

   if(!!m_cOpenCL)

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

     }

   m_bOpenCL = InitOpenCL();

   if(!!m_cLayers)

      m_cLayers.SetOpencl(m_cOpenCL);

   return;

  }

The actual process of creating a new instance of the CMyOpenCL class and initializing it is placed in a

separate InitOpenCL method.
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At the beginning of the method, we check for the existence of a previously saved pointer to an object of

the CMyOpenCL class. At this point, the question arises about what we want to do next if there is a

previously instantiated object. We can continue using a previously initialized instance of the class or

create a new one. Using an existing facility seems less labor-intensive at this stage. However, in this

case, we may need an additional method to restart the functionality in the event of an error of some

kind. This is an additional effort that is likely to require developing an additional control system for the

entire project code. 

We chose the forced restart option. Therefore, if we have a valid pointer to a previously created

instance of the CMyOpenCL class, we start the process of deleting its contents from memory, and then

the object itself. Only after clearing the memory, we start the process of creating and initializing a new

object. The process of creating an OpenCL context and program is implemented in the

COpenCL::Initialize method. As parameters to this method, we will pass a text variable containing our

program. Remember, we wrote our program code from a file resource into it?

bool CNet::InitOpenCL(void)

  {

//--- Delete previously created OpenCL objects

   if(!!m_cOpenCL)

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

     }

//--- Create a new object to work with OpenCL

   m_cOpenCL = new CMyOpenCL();

   if(!m_cOpenCL)

      return false;

//--- Initialize the object for working with OpenCL

   if(!m_cOpenCL.Initialize(cl_program, true))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Next, let's specify the number of kernels and buffers used. Above, we have declared constants for 20

kernels, each using no more than 4 data buffers. I intentionally don't specify a large number of buffers

at this stage, as thanks to our new method, the array will automatically expand when a new data buffer

is created. However, the number of kernels in the program is static and does not depend on the neural

network architecture.
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   if(!m_cOpenCL.SetKernelsCount(20))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.SetBuffersCount(4))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

After that, we will initialize all program kernels and save the handles for calling them into an array

within the CMyOpenCL class object.

We are not creating all the data buffers one by one at this stage for one simple reason: their quantity

depends on the architecture of the neural network and may exceed the available OpenCL context

memory capacity. If it is insufficient, dynamic memory allocation can be used. This implies loading

buffers as needed and subsequently freeing memory when a specific data buffer is not planned to be

used. However, this approach leads to an increase in the overhead of copying data between the main

memory and the OpenCL context. Therefore, its use is justified only if there is a lack of GPU memory.

The kernel creation algorithm is identical. Here are just a few examples.
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   if(!m_cOpenCL.KernelCreate(def_k_PerceptronFeedForward, "PerceptronFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_CalcOutputGradient, "CalcOutputGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_CalcHiddenGradient, "CalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_CalcDeltaWeights, "CalcDeltaWeights"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

So we have come to the stage of organizing work with the OpenCL context directly in the neural layer

class. When creating many class methods, we branched the method algorithm depending on the device

for performing operations. Then we created the process organization code using MQL5 and left gaps in

the process organization on the OpenCL side. Let's go back and fill in these gaps.

We will start with the direct pass method. We have previously discussed the organization of operations

using MQL5. Now let's look at the implementation of working with the OpenCL context.
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bool CNeuronBase::FeedForward(CNeuronBase * prevLayer)

  {

//--- control block

   if(!prevLayer || !m_cOutputs || !m_cWeights ||

      !prevLayer.GetOutputs() || !m_cActivation)

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      if(m_cWeights.Cols() != (input_data.Total() + 1))

         return false;

      //---

      MATRIX m = input_data.m_mMatrix;

      if(!m.Reshape(1, input_data.Total() + 1))

         return false;

      m[0, m.Cols() - 1] = 1;

      m_cOutputs.m_mMatrix = m.MatMul(m_cWeights.m_mMatrix.Transpose());

     }

First, we'll check that the initial data array, the weight matrix, and the result buffer have a buffer index.

The logic here is simple. If we receive a pointer to a data array with an existing buffer in the method's

parameters, we assume that the data is already loaded into the OpenCL context. Above, when creating

a data buffer in the CBufferType class, we immediately created a buffer in the OpenCL context.

Therefore, the absence of a buffer index may indicate an error. Because of this, in such a case, we end

the method with a false result. If you use dynamic memory allocation, then at this point you will need

to create copies of all data buffers used in this kernel and copy the contents of the source data buffers

into the OpenCL context.

   else // OpenCL block

     {

      //--- checking data buffers

      if(input_data.GetIndex() < 0)

         return false;

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

Then we will specify the parameters for the feed-forward kernel. Here we will specify their indices for

buffers and specific values for discrete parameters.
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      //--- passing arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_PerceptronFeedForward, def_pff_inputs,

                                                           input_data.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_PerceptronFeedForward, def_pff_weights,

                                                            m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_PerceptronFeedForward, def_pff_outputs,

                                                            m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_PerceptronFeedForward, def_pff_inputs_total,

                                                               input_data.Total()))

         return false;

In the NDRange array, we will specify the number of parallel threads required by the number of neurons

in the current layer and launch the kernel for execution. Note that the Execute method does not

literally start kernel execution, but only queues it for execution. The kernel is launched directly when

you try to read the results of its operation. However, we will not download the results of each kernel's

operations. Instead, we'll queue up a forward pass through the entire section and download only the

result of the model's work from the last layer. This will take up the entire queue of operations. Thus, we

will reduce the amount of data transferred and the time it takes to download it.

In the case of dynamic memory allocation, after queuing the kernel, it will be necessary to load all

changes from the OpenCL context into the data matrices and delete unused buffers from the context.

Note that you need to download the contents of all buffers whose data changes during the kernel

operation.

      //--- putting the kernel in the execution queue

      uint off_set[] = {0};

      uint NDRange[] = {m_cOutputs.Total()};

      if(!m_cOpenCL.Execute(def_k_PerceptronFeedForward, 1, off_set, NDRange))

         return false;

     }

//---

   return m_cActivation.Activation(m_cOutputs);

  }

After performing the above-described operations, we call the activation method of the required

activation function class and exit the method.

It is also necessary to supplement the code for backpropagation methods. In the gradient computation

kernel at the output of the neural network, three buffers are used: for target values, for the results of

the last feed-forward pass, and for writing the obtained gradients. We'll check them at the beginning of

the OpenCL block.
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bool CNeuronBase::CalcOutputGradient(CBufferType* target, ENUM_LOSS_FUNCTION loss)

  {

//--- control block

   if(!target || !m_cOutputs || !m_cGradients ||

      target.Total() < m_cOutputs.Total() ||

      m_cGradients.Total() < m_cOutputs.Total())

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      switch(loss)

        {

         case LOSS_MAE:

            m_cGradients.m_mMatrix = target.m_mMatrix - m_cOutputs.m_mMatrix;

            break;

         case LOSS_MSE:

            m_cGradients.m_mMatrix = (target.m_mMatrix - m_cOutputs.m_mMatrix) * 2;

            break;

         case LOSS_CCE:

            m_cGradients.m_mMatrix=target.m_mMatrix/(m_cOutputs.m_mMatrix+FLT_MIN)*

                                     log(m_cOutputs.m_mMatrix) * (-1);

            break;

         case LOSS_BCE:

            m_cGradients.m_mMatrix = (target.m_mMatrix-m_cOutputs.m_mMatrix)/

                                     (MathPow(m_cOutputs.m_mMatrix,2) -

                                      m_cOutputs.m_mMatrix+FLT_MIN);

            break;

         default:

            m_cGradients.m_mMatrix = target.m_mMatrix - m_cOutputs.m_mMatrix;

            break;

  }

     }

   else // OpenCL block

     {

      //--- checking data buffers

      if(target.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

Next, we will specify their indices in our kernel parameters. We will also specify the loss function used in

the kernel parameters.
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcOutputGradient, def_outgr_target, 

                                                                target.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcOutputGradient, def_outgr_outputs,

                                                            m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcOutputGradient,def_outgr_gradients,

                                                          m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_CalcOutputGradient, def_outgr_loss_function,

                                                                        (int)loss))

         return false;

The number of independent operation threads launched equals the number of neurons at the output of

our model.

Start the kernel execution and complete the method.

      //--- put the kernel in the execution queue

      uint NDRange[] = { m_cOutputs.Total() };

      uint off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_CalcOutputGradient, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

The process of distributing the gradient through the hidden layer to the neurons of the previous layer is

divided into two sub-processes. In the first buffer, we will adjust the error gradient based on the

derivative of the activation function, and in the second one, we will distribute the error gradient values

to the neurons of the previous layer according to their influence on the final result. We have created a

separate kernel for each sub-process. We placed the correction of the error gradient for the derivative

of the activation function into a separate class of the activation function. Therefore, in the

CalcHiddenGradient method, we will only have to launch the error gradient distribution kernel in the

OpenCL program.
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bool CNeuronBase::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- adjust the incoming gradient by the derivative of the activation function.

   if(!m_cActivation.Derivative(m_cGradients))

      return false;

//--- check the buffers of the previous layer

   if(!prevLayer)

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   CBufferType *input_gradient = prevLayer.GetGradients();

   if(!input_data || !input_gradient ||

      input_data.Total() != input_gradient.Total())

      return false;

//--- check the match between the size of the input data buffer and the weight matrix

   if(!m_cWeights || m_cWeights.Cols() != (input_data.Total() + 1))

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      MATRIX grad = m_cGradients.m_mMatrix.MatMul(m_cWeights.m_mMatrix);

      grad.Reshape(input_data.Rows(), input_data.Cols());

      input_gradient.m_mMatrix = grad;

     }

Again, at the beginning of the OpenCL block, we check for the availability of previously created buffers

in the OpenCL context for the current kernel to work.

  else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(input_gradient.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

After successfully passing the control block, we will pass the buffer handles and the number of neurons

in the layer to the kernel. 
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcHiddenGradient,

                             def_hidgr_gradient_inputs, input_gradient.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcHiddenGradient, def_hidgr_weights,

                                                             m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcHiddenGradient,def_hidgr_gradients, 

                                                          m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_CalcHiddenGradient, def_hidgr_outputs_total,

                                                             m_cGradients.Total()))

         return false;

The number of threads in this case will be equal to the number of neurons in the previous layer. We will

write their value to the first element of the NDRange array. Let's start kernel operations.

      //--- put the kernel in the execution queue

      uint NDRange[] = {input_data.Total()};

      uint off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_CalcHiddenGradient, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

After propagating the error gradient across all neurons in our network based on their influence on the

final result, the next step is to organize the process of updating the weight matrix. We have divided this

process into two sub-processes. The weight matrix will not always be updated after every iteration.

Therefore, at each iteration, we calculate the error gradient for each weight and add it to a separate

buffer. Upon receiving a command from the main program, we adjust the weight matrix by the size of

the batch, which gives us the average value from the accumulated error gradient.

Error gradients are accumulated in the CalcDeltaWeights method. To perform the kernel operations of

this method, we need three buffers:

· the buffer of the results of the last direct pass of the previous layer,

· the current layer's gradient buffer,

· the buffer for accumulating weight gradients.
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bool CNeuronBase::CalcDeltaWeights(CNeuronBase *prevLayer, bool read);

  {

//--- control block

   if(!prevLayer || !m_cDeltaWeights || !m_cGradients)

      return false;

   CBufferType *Inputs = prevLayer.GetOutputs();

   if(!Inputs)

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      MATRIX m = Inputs.m_mMatrix;

      m.Resize(1, Inputs.Total() + 1);

      m[0, Inputs.Total()] = 1;

      m = m_cGradients.m_mMatrix.Transpose().MatMul(m);

      m_cDeltaWeights.m_mMatrix += m;

     }

First, as usual, we check the availability of used buffers in the OpenCL context.

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cGradients.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(Inputs.GetIndex() < 0)

         return false;

We pass the pointers to them to the kernel parameters.

      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcDeltaWeights,

                              def_delt_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcDeltaWeights, def_delt_inputs,

                                                               Inputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_CalcDeltaWeights, def_delt_gradients,

                                                         m_cGradients.GetIndex()))

         return false;

In this case, we will use a two-dimensional task space to launch the kernel. In one dimension, we

specify the number of neurons in the current layer, and in the other dimension, the number of neurons

in the previous layer.

After the preparatory work is completed, we will start the kernel execution.

Then we will check the data reading flag and, if necessary, load the result of operations from the

context.

And of course, do not forget to monitor the process of performing operations at every step.
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      //--- put the kernel in the execution queue

      uint NDRange[] = {m_cGradients.Total(), Inputs.Total()};

      uint off_set[] = {0, 0};

      if(!m_cOpenCL.Execute(def_k_CalcDeltaWeights, 2, off_set, NDRange))

         return false;

      if(read && !m_cDeltaWeights.BufferRead())

         return false;

     }

//---

   return true;

  }

We are successfully moving forward in the process of creating our project. To complete the work on the

fully connected neuron, we need to describe the sub-process of updating the weight matrix. In our

project, we decided to implement several algorithms for updating the weights. We have created our own

kernel for each algorithm for updating the weight matrix. Let's add calls to these kernels to the

corresponding methods of our class.

We will start with the stochastic gradient descent method. The implementation of this method requires

only two buffers: accumulated deltas and the weight matrix. We check the availability of these buffers

in the OpenCL context.

bool CNeuronBase::SGDUpdate(int batch_size, TYPE learningRate, VECTOR &Lambda)

  {

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      TYPE lr = learningRate / ((TYPE)batch_size);

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      m_cWeights.m_mMatrix += m_cDeltaWeights.m_mMatrix * lr;

      m_cDeltaWeights.m_mMatrix.Fill(0);

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

Then we will pass pointers to them to the kernel parameters. In addition, we need to transfer training

parameters to the kernel:

· batch_ size

· learningRate

· Lambda vector (regularization parameters) 
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_SGDUpdate, def_sgd_delta_weights,

                                                     m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_SGDUpdate, def_sgd_weights,

                                                          m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_SGDUpdate, def_sgd_total,

                                                        (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_SGDUpdate, def_sgd_batch_size, batch_size))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_SGDUpdate, def_sgd_learningRate,

                                                                   learningRate))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_SGDUpdate, def_sgd_Lambda1, Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_SGDUpdate, def_sgd_Lambda2, Lambda[1]))

         return false;

Let's determine the number of threads to be launched. There will be four times fewer elements in these

buffers than in the weight matrix. This effect is achieved through the use of vector operations.

Please note the following while working with the algorithm for determining the number of threads. We

can't just divide the number of neurons by four because we can't be sure that the number of neurons

will always be a multiple of four. But we must be sure that the number of threads covers all neurons in

our layer. So we need a function similar to rounding up to an integer. Instead, we will use the property

of integer division to discard the fractional part, in other words, rounding down. To get the result we

want, before dividing by the vector size, we'll increase the number of neurons by a value one greater

than the vector size. After such a small mathematical trick, the result of integer division will be the

required number of threads. When using this trick, you should be particularly careful with the data type

used because the desired effect can only be achieved when all variables in the operation are integers.

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_SGDUpdate, 1, off_set, NDRange))

         return false;

     }

   return true;

  }

After the preparatory work, we will request the kernel to be completed.

In the description of the weight matrix update process using the accumulated momentum method, we

have an additional buffer for storing moments and a momentum averaging coefficient. For the rest, the

principles of constructing the algorithm laid down in the previous method are preserved.
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bool CNeuronBase::MomentumUpdate(int batch_size, TYPE learningRate,

                                 VECTOR &Beta, VECTOR &Lambda)

  {

   if(Beta[0] == 0)

      return SGDUpdate(batch_size, learningRate, Lambda);

//--- control block

   if(!m_cMomenum[0])

      return false;

   if(m_cMomenum[0].Total() < m_cWeights.Total())

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      TYPE lr = learningRate / ((TYPE)batch_size);

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      m_cMomenum[0].m_mMatrix = m_cDeltaWeights.m_mMatrix * lr + 

                                        m_cMomenum[0].m_mMatrix * Beta[0] ;

      m_cWeights.m_mMatrix += m_cMomenum[0].m_mMatrix;

      m_cDeltaWeights.m_mMatrix.Fill(0);

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(m_cMomenum[0].GetIndex() < 0)

         return false;
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_MomentumUpdate,

                          def_moment_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_MomentumUpdate, def_moment_weights,

                                                         m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_MomentumUpdate,

                                 def_moment_momentum, m_cMomenum[0].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_total,

                                                        (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_batch_size,

                                                                    batch_size))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_learningRate,

                                                                  learningRate))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_Lambda1,

                                                                     Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_Lambda2,

                                                                     Lambda[1]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_MomentumUpdate, def_moment_beta, Beta[0]))

         return false;

We will set the number of threads to 4 times less than the number of elements in the weight matrix and

start performing operations.

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if (! m_copencl. Execute (def_k_momentumUpdate, 1, off_set, ndRange))

         return false;

     }

   return true;

  }

Please note the constants used in kernels and their parameters. Despite the similarity of operations, a

small detail or a typo with a constant can often lead to a critical error and program termination.

Let's move on to the next implementation. The AdaGrad optimization method is implemented in the

AdaGradUpdate method and in the respective kernel, which we will identify by the

def_ k_ AdaGradUpdate constant. To avoid possible errors when specifying parameters, all parameter

constants for this kernel start with def_ adagrad_ . As you can see, all constant names are intuitive and

logically connected. This reduces the risk of a possible error. This method is very convenient when

there are a large number of constants.

The AdaGrad method, like the cumulative pulse method, uses a moment accumulation buffer. However,

unlike the previous method, there is no averaging factor here. At this point, we don't care about

differences in the use of parameters and buffers. We are only interested in their availability: the use of
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buffers and parameters is already described in the OpenCL program kernel, and here we organize the

process of transferring data from the main program to the OpenCL context.

The algorithm for organizing the process of working with the OpenCL context in the AdaGradUpdate

method is similar to that used in the methods described earlier.

· First, check for buffers in the OpenCL context.

· Then we will send pointers to buffers and optimization parameters to the kernel.

· Start kernel execution.
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bool CNeuronBase::AdaGradUpdate(int batch_size, TYPE learningRate, VECTOR &Lambda)

  {

//--- control block

   if(!m_cMomenum[0])

      return false;

   if(m_cMomenum[0].Total() < m_cWeights.Total())

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      MATRIX delta = m_CDeltaWeights . m_mMatrix /((TYPE) batch_size);

      MATRIX G = m_cMomenum[0].m_mMatrix = m_cMomenum[0].m_mMatrix + delta.Power(2);

      G = MathPow(MathSqrt(G) + 1e-32, -1);

      G = G * learningRate;

      m_cWeights.m_mMatrix += G * delta;

       m_cDeltaWeights.m_mMatrix.Fill(0);

    }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(m_cMomenum[0].GetIndex() < 0)

         return false;
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaGradUpdate,

                           def_adagrad_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaGradUpdate, def_adagrad_weights,

                                                           m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaGradUpdate, def_adagrad_momentum,

                                                        m_cMomenum[0].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaGradUpdate, def_adagrad_total,

                                                          (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaGradUpdate, def_adagrad_batch_size,

                                                                      batch_size))

         return false;

      if (! m_copencl. SetArgument (Def_K_AdaGradUpdate, Def_Adagrad_LearningRate,

                                                                    learningRate))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaGradUpdate, def_adagrad_Lambda1,

                                                                       Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaGradUpdate, def_adagrad_Lambda2,

                                                                       Lambda[1]))

         return false;

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_AdaGradUpdate, 1, off_set, NDRange))

         return false;

     }

   return true;

  }

The RMSProp optimization method is functionally similar to AdaGrad, but it includes a coefficient for

averaging the accumulated momentum. 

We're following the established framework: check the availability of OpenCL context buffers, then send

pointers to buffers and optimization parameters to the kernel while also ensuring the use of the proper

method and constant naming:

· RMS PropUpdate method 

· def_ k_  RMSPropUpdate kernel constant 

· def_ rms_  parameter constants

After specifying the parameters, launch the kernel.
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bool CNeuronBase::RMSPropUpdate(int batch_size, TYPE learningRate,

                                VECTOR &Beta, VECTOR &Lambda)

  {

//--- control block

   if(!m_cMomenum[0])

      return false;

   if(m_cMomenum[0].Total() < m_cWeights.Total())

      return false;

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      TYPE lr = learningRate;

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      MATRIX delta = m_CDeltaWeights . m_mMatrix /((TYPE) batch_size);

      MATRIX G = m_cMomenum[0].m_mMatrix = m_cMomenum[0].m_mMatrix * Beta[0] +

                                                delta.Power(2) * (1 - Beta[0]);

      G = MathPow(MathSqrt(G) + 1e-32, -1);

      G = G * learningRate;

      m_cWeights.m_mMatrix += G * delta;

      m_cDeltaWeights.m_mMatrix.Fill(0);

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(m_cMomenum[0].GetIndex() < 0)

         return false;
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_RMSPropUpdate, def_rms_delta_weights,

                                                      m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_RMSPropUpdate, def_rms_weights,

                                                           m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_RMSPropUpdate, def_rms_momentum,

                                                        m_cMomenum[0].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_total,

                                                          (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_batch_size,

                                                                      batch_size))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_learningRate,

                                                                    learningRate))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_Lambda1, Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_Lambda2, Lambda[1]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_RMSPropUpdate, def_rms_beta, Beta[0]))

         return false;

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_RMSPropUpdate, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

The developers of the AdaDelta method opted to not use a learning rate but compensated for it by

introducing an additional buffer for moments with an additional averaging coefficient. Accordingly, we

will use one more buffer in this kernel.

When setting kernel parameters, again, mind the naming:

· AdaDeltaUpdate method 

· def_ k_ AdaDeltaUpdate kernel constant 

· def_ adadelt parameter constants

Furthermore, for seamless portability of the constructed neural network, we need to ensure the

consistency of buffer usage in terms of performing operations using MQL5 and in the OpenCL context.

When used within the same platform, changing the sequence in which the momentum arrays are used

will not have an effect. Whatever we call them, their content will be appropriate to the context of use.

However, when transferring a pre-trained neural network to another platform, we will likely get

unexpected results. At the same time, we should remember the purpose and functionality of arrays.

The moments are only used during the weight matrix update process in the training of the neural
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network and do not participate in the feed-forward pass. So, the impact of mixed-up buffers will only

become apparent when attempting to retrain the neural network. This should not be neglected. If we

use a once built neural network for a long time, we will need to periodically refine it. This is necessary

to keep weights relevant in our changing world.

Taking into account the above, we will pass pointers to the loaded buffers and training parameters to

the kernel.

Let's calculate the number of required threads and launch the kernel.
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bool CNeuronBase::AdaDeltaUpdate(int batch_size, VECTOR &Beta, VECTOR &Lambda)

  {

//--- control block

   for(int i = 0; i < 2; i++)

     {

      if(!m_cMomenum[i])

         return false;

      if(m_cMomenum[i].Total() < m_cWeights.Total())

         return false;

     }

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      MATRIX delta = m_CDeltaWeights . m_mMatrix /((TYPE) batch_size);

      MATRIX W = m_cMomenum[0].m_mMatrix = m_cMomenum[0].m_mMatrix * Beta[0] +

                                  m_cWeights.m_mMatrix.Power(2) * (1 - Beta[0]);

      m_cMomenum[1].m_mMatrix = m_cMomenum[1].m_mMatrix * Beta[1] + 

                                                 delta.Power(2) * (1 - Beta[1]);

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      W = MathSqrt(W) / (MathSqrt(m_cMomenum[1].m_mMatrix) + 1e-32);

      m_cWeights.m_mMatrix += W * delta;

      m_cDeltaWeights.m_mMatrix.Fill(0);

     }

   else // OpenCL block

     {

      //--- create data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(m_cMomenum[0].GetIndex() < 0)

         return false;

      if(m_cMomenum[1].GetIndex() < 0)

         return false;



3. Building the first neural network model in MQL5

235

3.7 Organizing parallel computing using OpenCL

      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaDeltaUpdate,

                           def_adadelt_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaDeltaUpdate, def_adadelt_weights,

                                                           m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaDeltaUpdate, def_adadelt_momentumW,

                                                        m_cMomenum[0].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdaDeltaUpdate, def_adadelt_momentumG,

                                                        m_cMomenum[1].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_total,

                                                          (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_batch_size,

                                                                      batch_size))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_Lambda1,

                                                                       Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_Lambda2,

                                                                       Lambda[1]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_beta1, Beta[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdaDeltaUpdate, def_adadelt_beta2, Beta[1]))

         return false;

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_AdaDeltaUpdate, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

Our description of the operations performed in the fully connected neural layer is nearing completion.

One method remains to be described, and it's the weight update method – specifically, the Adam

optimization algorithm. This method, though the last on the list, is not of lesser importance. Like

AdaDelta, the Adam method also employs two momentum buffers, but in addition, it returns the

learning rate.

Let's recap the main stages of our algorithm and highlight key checkpoints:

· Verify the presence of the necessary data in the OpenCL context memory.

· Pass pointers to data buffers and training parameters to the kernel. Ensure naming consistency:

Method AdamUpdate  kernel constant def_ k_ AdamUpdate  parameter constants

def_ adam_ ...



3. Building the first neural network model in MQL5

236

3.7 Organizing parallel computing using OpenCL

· Monitor the consistent use of buffers between MQL5 and the OpenCL context.

· Execute the kernel.
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bool CNeuronBase::AdamUpdate(int batch_size, TYPE learningRate,

                             VECTOR &Beta, VECTOR &Lambda)

  {

//--- control block

   for(int i = 0; i < 2; i++)

     {

      if(!m_cMomenum[i])

         return false;

      if(m_cMomenum[i].Total() != m_cWeights.Total())

         return false;

     }

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

      MATRIX delta = m_CDeltaWeights . m_mMatrix /((TYPE) batch_size);

      m_cMomenum[0].m_mMatrix = m_cMomenum[0].m_mMatrix * Beta[0] +

                                                      delta * (1 - Beta[0]);

      m_cMomenum[1].m_mMatrix = m_cMomenum[1].m_mMatrix * Beta[1] +

                                           MathPow(delta,2) * (1 - Beta[1]);

      MATRIX M = m_cMomenum[0].m_mMatrix / (1 - Beta[0]);

      MATRIX V = m_cMomenum[1].m_mMatrix / (1 - Beta[1]);

      m_cWeights.m_mMatrix -= m_cWeights.m_mMatrix * Lambda[1] + Lambda[0];

      m_cWeights.m_mMatrix += M * learningRate  / MathSqrt(V);

      m_cDeltaWeights.m_mMatrix.Fill(0);

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(m_cMomenum[0].GetIndex() < 0)

         return false;

      if(m_cMomenum[1].GetIndex() < 0)

         return false;
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdamUpdate, def_adam_delta_weights,

                                                    m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdamUpdate, def_adam_weights,

                                                         m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdamUpdate, def_adam_momentumM,

                                                      m_cMomenum[0].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AdamUpdate, def_adam_momentumV,

                                                      m_cMomenum[1].GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_total,

                                                       (int)m_cWeights.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_batch_size,

                                                                    batch_size))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_Lambda1, Lambda[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_Lambda2, Lambda[1]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_beta1, Beta[0]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_beta2, Beta[1]))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AdamUpdate, def_adam_learningRate,

                                                                  learningRate))

         return false;

      //--- put the kernel in the execution queue

      int NDRange[] = { (int)((m_cWeights.Total() + 3) / 4) };

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_AdamUpdate, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

We have completed a description of the processes of a fully connected neural layer. Now, we've

reached the stage where we can look at the work done and assess the initial results. In fact, we

already have enough created base classes to build a small perceptron model with several fully

connected layers. One of them will serve as the receiver of input data (input layer), the last neural

layer will produce the results (output layer), and hidden layers will be in between.
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3.8 Implementing the perceptron model in Python

To implement the fully connected perceptron model in Python, we will use the template we created

earlier. As you may recall, in this template, we left the description of the neural layers in our model

unfilled.

# Create a neural network model

model = keras.Sequential([keras.Input(shape=inputs),

                         # Fill the model with a description of the neural layers

                         ])

To create fully connected layers in a neural network, we will use the layers.Dense class from the Keras

library. The following operation is performed within this layer:

where:

· activation = activation function, set in parameters

· input = an array of source data

· kernel = a weight matrix

· dot = a vector multiplication operation

· bias = a displacement element

Dense provides parameters to control the neural layer creation process:

· units – the dimension of the output space (the number of neurons in the layer);

· activation – the activation function used;

· use_ bias – is an optional parameter that indicates whether to use a vector of displacement

elements;

· kernel_ initializer – the method of initializing the matrix of weights;

· bias_ initializer – a method for initializing a vector of displacement elements;

· kernel_ regularizer – a weight matrix regularization method;

· bias_ regularizer – a method for regularizing the displacement vector;

· activity_ regularizer – a method of regularizing the activation function;

· kernel_ constraint – a weight matrix restriction function;

· bias_ constraint – a displacement vector restriction function.

Please note that you cannot change the settings after the first access to the layer.

In addition to the above parameters, Dense can take an input_ shape parameter that indicates the size

of the input array. This parameter is valid only for the first layer of the neural network. When this

parameter is used, an input layer is created to be inserted in front of the current layer. The operation

can be considered as an equivalent to explicitly defining the input layer.

We'll start implementing our first neural network model by copying our script template into a new

perceptron.py file. In the created file, we will create the first model with one hidden layer of 40 neurons

and 2 neurons in the results layer. In the hidden layer, we'll use Swish as an activation function. The

neurons in the output layer will be activated by the hyperbolic tangent.
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# Create a neural network model

model1 = keras.Sequential([keras.Input(shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                          ])

In theory, this is enough to start training the model. However, we study the operation of various models

and want to understand the influence of changing the neural network architecture on the model ability

to learn and generalize the initial data. So I've added two more models. One model has two additional

hidden layers. The result is a model with three hidden layers. All three hidden layers are completely

identical: they have 40 elements each and are activated by the Swish function. The first and last layers

remain unchanged.

# Create a model with three hidden layers

model2 = keras.Sequential([keras.Input(shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

The following steps should be repeated for each model. First, let's prepare the model for training using

the compile method.

model2.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

After that, we will start the model training process and save the trained model.

history2 = model2.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.2,

                      shuffle=True)

model2.save(os.path.join(path,'perceptron2.h5'))

We will build the third model on the basis of the second model with the addition of regularization. For

each neural layer, we will specify in the kernel_ regularizer parameter the keras.regularizers.l1_ l2 class

object with the L1 and L2-regularization parameters. As you can see from the class name, we'll be

using ElasticNet.
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# Add regularization to the model with three hidden layers

model3 = keras.Sequential([keras.Input(shape=inputs),

               keras.layers.Dense(40, activation=tf.nn.swish,

                  kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

               keras.layers.Dense(40, activation=tf.nn.swish,

                  kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

               keras.layers.Dense(40, activation=tf.nn.swish,

                  kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

               keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

Next, we'll compile and train the model. All three models use identical training parameters. This will

make it possible to directly assess the impact of the model architecture on the learning outcome. At

the same time, we will eliminate the influence of other factors as much as possible.

model3.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

history3 = model3.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.2,

                      shuffle=True)

model3.save(os.path.join(path,'perceptron3.h5'))

Since we are training not one but three models in this script, we also need to correct the visualization

unit. Let's display the training results of all three models on one graph. This will demonstrate

differences in the training and validation process. We will make changes to the blocks for constructing

both graphs.
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# Plot the training results of the three models

plt.figure()

plt.plot(history1.history['loss'],

         label='Train 1 hidden layer')

plt.plot(history1.history['val_loss'],

         label='Validation 1 hidden layer')

plt.plot(history2.history['loss'],

         label='Train 3 hidden layers')

plt.plot(history2.history['val_loss'],

         label='Validation 3 hidden layers')

plt.plot(history3.history['loss'],

         label='Train 3 hidden layers vs regularization')

plt.plot(history3.history['val_loss'],

         label='Validation 3 hidden layer vs regularization')

plt.ylabel('$MSE$ $Loss$')

plt.xlabel('$Epochs$')

plt.title('Dynamic of Models train')

plt.legend(loc='lower left')

plt.figure()

plt.plot(history1.history['accuracy'],

         label='Train 1 hidden layer')

plt.plot(history1.history['val_accuracy'],

         label='Validation 1 hidden layer')

plt.plot(history2.history['accuracy'],

         label='Train 3 hidden layers')

plt.plot(history2.history['val_accuracy'],

         label='Validation 3 hidden layers')

plt.plot(history3.history['accuracy'],

         label='Train 3 hidden layers\nvs regularization')

plt.plot(history3.history['val_accuracy'],

         label='Validation 3 hidden layer\nvs regularization')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Dynamic of Models train')

plt.legend(loc='upper left')

After training, our template tests the model performance on a test sample. Here, we also have to test

three models under similar conditions. I'll skip the test sample loading block, as it moved from the

template unchanged. Here is just a code for directly testing models.
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# Check the results of models on a test sample

test_loss1, test_acc1 = model1.evaluate(test_data,

                                        test_target,

                                        verbose=2) 

test_loss2, test_acc2 = model2.evaluate(test_data,

                                        test_target,

                                        verbose=2) 

test_loss3, test_acc3 = model3.evaluate(test_data,

                                        test_target,

                                        verbose=2)

The test results in the template were published in a journal. Now we have the results of testing three

models. It will be more efficient to compare the results on the graph. We will use the Matplolib library

to build graphs.

In this case, we will not display the dynamics of the process, as before, but compare the values.

Therefore, it will be more convenient to use a column chart to display values. The library offers the bar

method for constructing diagrams. This method takes two arrays in its parameters: in the first, we will

specify the labels of the compared parameters, and in the second, their values. To complete the

picture, let's add the title of the graph and the vertical axis using the title and ylabel methods,

respectively.

plt.figure()

plt.bar(

    ['1 hidden layer','3 hidden layers', '3 hidden layers\nvs regularization'],

    [test_loss1,test_loss2,test_loss3])

plt.ylabel('$MSE$ $Loss$')

plt.title('Result of test')

plt.figure()

plt.bar(

    ['1 hidden layer','3 hidden layers', '3 hidden layers\nvs regularization'],

    [test_acc1,test_acc2,test_acc3])

plt.ylabel('$Accuracy$')

plt.title('Result of test')

We will see how the script works a little later. In the next chapter, we'll prepare data for training and

testing models.

3.9 Creating training and testing samples

We have come quite a long way in building our library for building neural networks. We have completed

the work on constructing the basic dispatcher class for our neural network and have created everything

necessary for building a fully connected neural layer. We still have a lot of work to do. However, we can

already build our first neural network and test its performance using real data. Since we will have

several implementations of various architectural solutions, to compare the results of model

performance, we will take a small data subset. Let's create two data samples: a larger one for training

the neural network and a smaller one for testing the trained neural network.

Allocating a separate sample for training is a common practice. During the training process of a neural

network, weights are adjusted in such a way that the neural network accurately describes the training

dataset to the best extent possible. By using a sufficiently large number of weights, the neural network
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is able to learn the training sample down to the smallest detail. However, in doing so, the neural

network loses the ability to generalize the data. In such a state, the neural network is called

"overfitted". It is not possible to detect this in a training sample. However, if you compare the

performance of the neural network on the training dataset and on data that is not part of the training

dataset, the difference in results will clearly indicate this. A slight deterioration of the results on the

test sample is allowed, but it should not be drastic. Of course, the data in the samples should be

comparable. Most often, to achieve this, the overall available data is randomly divided into two sets in a

ratio of 70-80% for the training dataset and 20-30% for the testing dataset. In most cases, it will be

necessary to divide the general population into three subsamples:

· training 60%

· validation 20%

· test 20%

The validation dataset is used to select the best training parameters and neural network architecture.

However, we will not be using a validation dataset at this point, as we would like to compare different

implementations under otherwise equal conditions.

To generate samples, let's create the script create_ initial_ data.mq5. In the script we will specify the

following parameters:

· The period for loading data is specified as a start date and an end date; within this period, we will

retrieve historical data and indicator data from the server;

· Timeframe used to load the analyzed data;

· Number of analyzed historical bars per pattern;

· Name of files for recording training and test samples;

· Data normalization flag.

Earlier, we discussed extensively the importance of normalizing the data that is fed into the neural

network as input. Now, we can practically verify how data normalization affects the results of training

the neural network. It is to assess the impact of this factor that I introduced the data normalization

parameter. Here, it's important to note that the data fed into the neural network as input should be

comparable both in the testing and training datasets, as well as during the practical application

operation of the neural network. Therefore, in practice, it will be necessary to store the normalization

parameters and use them when normalizing data coming in during the practical application of the

neural network.

Recall that in the section on selecting the input data to feed into the neural network, we selected two

indicators: RSI and MACD. We will use them during the process of training neural networks within the

practical experiments outlined in this book.

Let's look at the script algorithm. Initially, following the analogy with the scripts discussed while

selecting the source data, we will connect the selected indicators to the chart and obtain handles for

accessing the indicator data.
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//+------------------------------------------------------------------+

//| External parameters for script operation                         |

//+------------------------------------------------------------------+

// Beginning of the period of the general population

input datetime Start = D'2015.01.01 00:00:00';  

// End of the period of the general population

input datetime End = D'2020.12.31 23:59:00';    

// Timeframe for data loading

input ENUM_TIMEFRAMES TimeFrame = PERIOD_M5;    

// Number of historical bars in one pattern

input int      BarsToLine = 40;                 

// File name for recording the training sample

input string   StudyFileName = "study_data.csv";

// File name for recording the test sample

input string   TestFileName  = "test_data.csv"; 

// Data normalization flag

input bool     NormalizeData = true;            

//+------------------------------------------------------------------+

//| Beginning of the script program                                  |

//+------------------------------------------------------------------+

void OnStart(void)

  {

//--- Connect indicators to the chart

   int h_ZZ = iCustom(_Symbol, TimeFrame, "Examples\\ZigZag.ex5", 48, 1, 47);

   int h_RSI = iRSI(_Symbol, TimeFrame, 12, PRICE_TYPICAL);

   int h_MACD = iMACD(_Symbol, TimeFrame, 12, 48, 12, PRICE_TYPICAL);

   double close[];

   if(CopyClose(_Symbol, TimeFrame, Start, End, close) <= 0)

      return;

After that, we check the validity of the obtained handles and load the historical data of indicators into

dynamic arrays. It should be noted that for the ZigZag indicator, we will load a bit more data. The

reason for this is the specifics of this indicator. The buffer of this indicator points only to the found

extrema. In other cases, the indicator returns zero values. Therefore, for the last patterns analyzed,

the target values may be outside the analyzed period.
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//--- Load indicator data into dynamic arrays

   double zz[], macd_main[], macd_signal[], rsi[];

   datetime end_zz = End + PeriodSeconds(TimeFrame) * 500;

   if(h_ZZ == INVALID_HANDLE || 

      CopyBuffer(h_ZZ, 0, Start, end_zz, zz) <= 0)

     {

      PrintFormat("Error loading indicator %s data", "ZigZag");

      return;

     }

   if(h_RSI == INVALID_HANDLE || 

      CopyBuffer(h_RSI, 0, Start, End, rsi) <= 0)

     {

      PrintFormat("Error loading indicator %s data", "RSI");

      return;

     }

   if(h_MACD == INVALID_HANDLE || 

      CopyBuffer(h_MACD, MAIN_LINE, Start, End, macd_main) <= 0 ||

      CopyBuffer(h_MACD, SIGNAL_LINE, Start, End, macd_signal) <= 0)

     {

      PrintFormat("Error loading indicator %s data", "MACD");

      return;

     }

In addition to the selected indicators, let's load the candlestick closing prices. We will use these

handles to determine the direction of price movement towards the nearest extremum and the strength

of the upcoming movement.

After loading the data, we organize the process of determining the target values at each step of the

historical data. To do this, we will create a reverse loop and loop through all the values of the ZigZag

indicator and if the value differs from zero, we will save it to the extremum variable. Simultaneously, we

will iterate through closing price values, and by measuring the deviation of the last recorded extremum

from the closing price, we will determine the direction and strength of the upcoming movement. Let's

save the obtained values into dynamic arrays target1 and target2.
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   int total = ArraySize(close);

   double target1[], target2[], macd_delta[], test[];

   if(ArrayResize(target1, total) <= 0 || 

      ArrayResize(target2, total) <= 0 ||

      ArrayResize(test, total) <= 0 || 

      ArrayResize(macd_delta, total) <= 0)

      return;

//--- Calculate targets: direction and distance 

//--- to the nearest extremum

   double extremum = -1;

   for(int i = ArraySize(zz) - 2; i >= 0; i--)

     {

      if(zz[i + 1] > 0 && zz[i + 1] != EMPTY_VALUE)

         extremum = zz[i + 1];

      if(i >= total)

         continue;

      target2[i] = extremum - close[i];

      target1[i] = (target2[i] >= 0 ? 1 : -1);

      macd_delta[i] = macd_main[i] - macd_signal[i];

     }

Here, it's important to note that on a time chart, the extremum should always come after the analyzed

closing price. Therefore, the closing price is taken from the previous bar compared to the last checked

value of the ZigZag indicator.

In the same loop, we will determine the distance between the main and signal lines of the MACD

indicator and store them in a separate dynamic array called macd_delta.

After calculating the targets and the distance between the MACD indicator lines, we normalize the data.

Of course, we will perform normalization only when this requirement is specified by the user in the

script parameters. The purpose of normalization is to transform the original data so that its values are

in the range of -1 to 1 centered on point 0. It's important to pay attention to a series of introductory

aspects that stem from the characteristics of the indicators themselves.

The RSI indicator is constructed in such a way that its values are normalized within a range from 0 to

100. Hence, we do not need to determine the maximum and minimum data value of this indicator to

normalize it. Therefore, the algorithm for normalizing the readings of this indicator is limited by the

constant 50 which is the middle of the range of possible indicator values. The formula for normalizing

the values is as follows.

The values of the MACD indicator do not have an upper and lower boundary of the range, but they are

centered around point 0. This is because, based on the construction principles of the indicator, it

reflects whether the price is above or below the moving average. The same can be said about the

calculated distance between the base and signal lines of the indicator. The signal line can be either

above or below the base line. However, at the moment the lines cross, the distance between them is 0.

Therefore, for normalizing the data, we will take the value of the indicator and divide it by the absolute

value of the maximum deviation over the analyzed period.
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Here, I want to once again emphasize the importance of data comparability for the training, testing

dataset, and data used during practical application. If we normalize the training and test sample data

now, we will have to keep the normalization parameters of all three indicators of the MACD indicator for

practical application.

After defining the normalization parameters, we will organize a cycle for enumeration and appropriate

correction of historical values of indicators.

Only the initial data is normalized, not the target values.

//--- Data normalization

   if(NormalizeData)

     {

      double main_norm = MathMax(MathAbs(macd_main[ArrayMinimum(macd_main)]),

                                         macd_main[ArrayMaximum(macd_main)]);

      double sign_norm = MathMax(MathAbs(macd_signal[ArrayMinimum(macd_signal)]),

                                         macd_signal[ArrayMaximum(macd_signal)]);

      double delt_norm = MathMax(MathAbs(macd_delta[ArrayMinimum(macd_delta)]),

                                         macd_delta[ArrayMaximum(macd_delta)]);

      for(int i = 0; i < total; i++)

        {

         rsi[i] = (rsi[i] - 50.0) / 50.0;

         macd_main[i] /= main_norm;

         macd_signal[i] /= sign_norm;

         macd_delta[i] /= delt_norm;

        }

     }

Certainly, sometimes it can be useful to normalize the target values to fit them into the range of a

specific activation function. However, in such cases, similar to normalizing input data, it's crucial to

preserve the normalization parameters for decoding the neural network's outputs in industrial

applications. These considerations lie at the interface between the neural network and the main

program, and the solution largely depends on the specific task.

After preparing the dataset, the next step is to split it into training and testing sets. A common practice

is to randomly select records from the entire dataset for the test set, with the remaining data used for

training. It is highly discouraged to take consecutive patterns for the test set, whether they are the

first or last in the dataset. This is primarily because a small subset of data is more susceptible to the

influence of local trends. Such a sample may not be representative for extrapolating the evaluation to

the entire dataset. On the other hand, randomly selecting records from the entire dataset provides a

higher probability of extracting patterns that differ significantly for the test set. This kind of sample will

be more independent of local trends and more representative to enable the evaluation of the neural

network performance on the global dataset. However, it should be noted that there are cases where

consecutive patterns are chosen for the test set, but these are specific instances related to the

architecture of certain models. 

To split the dataset into training and testing sets, we will create an array of flags called test. This array

will have the same size as our global dataset. The values of its elements will indicate the usage

direction of the pattern:

· 0 means the training sample

· 1 means the testing sample
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For binary classification, you can also use an array of logical values. However, when we need to add a

validation dataset, we can easily use the value 2 for it, whereas using an array of logical values doesn't

provide us with such flexibility.

Our flag array will be first initialized with zero values. In other words, we establish that by default the

pattern belongs to the training dataset. We then determine the number of patterns for the test set.

Then we create a loop based on the number of elements for the testing dataset, generating random

values within this loop. The random value generator should return an integer number between 0 and the

size of the general population. In my solution, I used the MQL5 built-in MathRand function to generate

pseudo-random numbers. This function returns an integer value in the range of 0 to 32767. However,

since the size of the dataset is expected to be over 33,000 elements, I multiplied two random

numbers. Such a version is capable of generating more than 1 billion random values. To scale the

obtained random number to the size of our population, we first divide the generated random number by

the square of 32767, thereby normalizing the random number within the range of 0 to 1. Then multiply

by the number of elements in our general population. The resulting number will tell us the ordinal

number of the pattern for the test sample.

All we have to do is write 1 to the corresponding element of the flag array. However, there is still a

chance of landing twice (or even more times) on the same element of the flag array. If we do not

control for this, we are very likely to get a test sample smaller than expected. Therefore, before writing

1 to the selected element of the flag array, we first check its current state. If it already contains 1, we

decrease the loop iteration count by 1 and generate the next random number. Thus, if we hit the same

element, the loop iteration counter will not be incremented, ensuring that we obtain a testing dataset

of the expected size as output.

//--- Generate randomly the data indices for the test sample

   ArrayInitialize(test, 0);

   int for_test = (int)((total - BarsToLine) * 0.2);

   for(int i = 0; i < for_test; i++)

     {

      int t = (int)((double)(MathRand() * MathRand()) / MathPow(32767.0, 2) * 

                    (total - 1 - BarsToLine)) + BarsToLine;

      if(test[t] == 1)

        {

         i--;

         continue;

        }

      test[t] = 1;

     }

This is the end of the preparatory work. The only thing left to do is to save the prepared data into the

appropriate files. To write the data, we open two files for writing according to the names specified in

the script parameters. An obvious thing to do would be to create binary files to record numeric data.

They take up less disk space and are faster to work with. But since we are going to load data from

applications written in other programming languages, in particular from Python scripts, the most

universal approach is to use CSV files.

We open two CSV files for writing and immediately check the resulting handles for accessing the files.

Erroneous handles will signal a file opening error. The corresponding message will be displayed in the

terminal log.
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//--- Open the training sample file for writing

   int Study = FileOpen(StudyFileName, FILE_WRITE | 

                                       FILE_CSV | 

                                       FILE_ANSI, ",", CP_UTF8);

   if(Study == INVALID_HANDLE)

     {

      PrintFormat("Error opening file %s: %d", StudyFileName, GetLastError());

      return;

     }

//--- Open the test sample file for writing

   int Test = FileOpen(TestFileName, FILE_WRITE | 

                                     FILE_CSV | 

                                     FILE_ANSI, ",", CP_UTF8);

   if(Test == INVALID_HANDLE)

     {

      PrintFormat("Error opening file %s: %d", TestFileName, GetLastError());

      return;

     }

After successfully opening the files, we set up a loop to iterate through all elements of the population.

Note that the loop does not start from the zeroth element, but from the element corresponding to the

number of bars in the pattern. After all, for a complete pattern record, we must specify the data of

several previous candles. We will divide the training and test samples at the stage of writing to the file.

By checking the value of the corresponding element in the flag array, we will replace the file handle for

pattern recording with the file handle of the correct dataset. The actual pattern writing to the file is

encapsulated in a separate function, which we will review a little later. To track the process, we will

output the percentage of completion in the comments on the chart.

Upon completion of the loop, we will clear the comments on the chart, close the files, and log

information about the file names and paths to the journal.
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//--- Write samples to files

   for(int i = BarsToLine - 1; i < total; i++)

     {

      Comment(StringFormat("%.2f%%", i * 100.0 / (double)(total - BarsToLine)));

      if(!WriteData(target1, target2, rsi, macd_main, macd_signal, macd_delta, i,

                                      BarsToLine, (test[i] == 1 ? Test : Study)))

        {

         PrintFormat("Error to write data: %d", GetLastError());

         break;

        }

     }

//--- Close the files

   Comment("");

   FileFlush(Study);

   FileClose(Study);

   FileFlush(Test);

   FileClose(Test);

   PrintFormat("Study data saved to file %s\\MQL5\\Files\\%s",

               TerminalInfoString(TERMINAL_DATA_PATH), StudyFileName);

   PrintFormat("Test data saved to file %s\\MQL5\\Files\\%s",

               TerminalInfoString(TERMINAL_DATA_PATH), TestFileName);

  }

To write information about the pattern to a file, we will create a function called WriteData. In the

function parameters, we will pass pointers to arrays of source and target data, the sequential number

of the last bar in the pattern in the data arrays, the number of bars to analyze for one pattern, and the

file handle for writing data. The choice of the last bar in the pattern instead of the first is made in an

attempt to approximate the pattern construction to the real conditions of neural network operation.

When working with real-time stock price time series, we are always on the latest known bar at the

current moment. We analyze information from several recent bars, which already constitute history,

and try to understand the most probable upcoming price movement. Similarly, the bar specified in the

parameters here represents the "current moment" for us. We take the specified number of bars before

it, and all of this constitutes the pattern we analyze. Based on this pattern, our neural network should

determine the probable price movement and its strength.

//+------------------------------------------------------------------+

//| Function for writing a pattern to a file                         |

//+------------------------------------------------------------------+

bool WriteData(double &target1[], // Buffer 1 of target values

               double &target2[], // Buffer 2 target values

               double &data1[],   // Buffer 1 of historical data

               double &data2[],   // Buffer 2 of historical data

               double &data3[],   // Buffer 2 of historical data

               double &data4[],   // Buffer 2 of historical data

               int cur_bar,       // Current bar of the end of the pattern

               int bars,          // Number of historical bars 

                                  // in one pattern

               int handle)        // Handle of the file to be written

  {

Let's first collect the information on the pattern into a string variable of type string. In doing so, we

don't forget to insert a delimiter between the values of the elements. The delimiter must match the
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delimiter specified when opening the CSV file. Collecting data into a string variable is a forced

compromise. The point is that the FileWrite function for writing to a text file has a limit of 63

parameters to write, and each call to write is terminated with an end-of-line character. Now, we have

two problems before us:

1. By specifying all pattern data within one call of the WriteData function, using 4 indicators per 1

bar, we will be able to describe no more than 15 candlesticks.

2. We have to collect information on all the bars at once.

We cannot use a loop to iterate through the array values. We need to manually specify all the elements

to be written in the parameters of the data-writing function. The use of a string variable helps address

these issues. In a simple loop, we can collect all values into one text string. In this process, we are not

limited in the number of included parameters. Of course, during the collection of indicators into the

string, we will need to insert a delimiter between them, thus simulating a CSV file string. Moreover, we

will write the already assembled string to the file only once. Consequently, the function will insert an

end-of-line character at the end of the write once. Thus, the entire pattern in our file will be recorded in

a single line.
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//--- check the file handle

   if(handle == INVALID_HANDLE)

     {

      Print("Invalid Handle");

      return false;

     }

//--- determine the index of the first record of the historical data of the pattern

   int start = cur_bar - bars + 1;

   if(start < 0)

     {

      Print("Too small current bar");

      return false;

     }

//--- Check the correctness of the index of the data and the data written to the file 

   int size1 = ArraySize(data1);

   int size2 = ArraySize(data2);

   int size3 = ArraySize(data3);

   int size4 = ArraySize(data4);

   int sizet1 = ArraySize(target1);

   int sizet2 = ArraySize(target2);

   string pattern = (string)(start < size1 ? data1[start] : 0.0) + "," +

                    (string)(start < size2 ? data2[start] : 0.0) + "," +

                    (string)(start < size3 ? data3[start] : 0.0) + "," +

                    (string)(start < size4 ? data4[start] : 0.0);

   for(int i = start + 1; i <= cur_bar; i++)

     {

      pattern = pattern + "," + (string)(i < size1 ? data1[i] : 0.0) + "," +

                                (string)(i < size2 ? data2[i] : 0.0) + "," +

                                (string)(i < size3 ? data3[i] : 0.0) + "," +

                                (string)(i < size4 ? data4[i] : 0.0);

     }

   return (FileWrite(handle, pattern, 

                    (double)(cur_bar < sizet1 ? target1[cur_bar] : 0),

                    (double)(cur_bar < sizet2 ? target2[cur_bar] : 0)) > 0);

  }

As a result, we obtain a structured CSV file in which a delimiter is placed between every two adjacent

elements and each row represents a separate pattern for analyzing the data.

It should also be noted that to prevent an array out-of-bounds error, we should check the index values

against the array sizes before accessing the data arrays. In case of an incorrect index, we write 0

instead of the indicator value. During the operation of the neural algorithm, all values of the input

indicator vector are multiplied by the weights, and the resulting products are summed into a common

sum. Multiplying any weight by 0 always returns 0. Therefore, zero-valued indicators have no direct

effect on the outcome of the neuron performance. Of course, we can talk about indirect influence here.

Indeed, there could be a situation where the contribution of a particular indicator to the overall sum is

insufficient to activate the neuron. However, this is a lesser evil, and we accept these risks.

Perhaps, it is worth mentioning that for future tests of our models, we will immediately create two sets

of training data:
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· We will write the training samples with non-normalized initial data to the files

study_ data_ not_ norm.csv and test_ data_ not_ norm.csv.

· We will write the training datasets with non-normalized source data into files named study_ data.csv

and test_ data.csv.

To create the aforementioned training datasets, we will use the previously described script from the file

create_ initial_ data.mq5. We will run it twice to collect the same historical data but change the

filenames for data recording and the "Data normalization flag."

3.10 Gradient distribution verification

Now is the moment when we will assemble the first neural network using MQL5. However, I won't raise

your hopes too much as our first neural network will not analyze or predict anything. Instead, it will

perform a control function and verify the correctness of the work done earlier. The reason is that

before we proceed directly to training the neural network, we need to check the correctness of the

error gradient distribution throughout the neural network. I believe it is clear that the correctness of

implementing this process significantly affects the overall result of the neural network training. After all,

it is the error gradient on each weight that determines the magnitude and direction of its change.

To verify the correctness of gradient distribution, we can use the fact that there are two options to

determine the derivative of a function:

· Analytical: determining the gradient of a function based on its first-order derivative. This method is

implemented in our backward pass method.

· Empirical: under other equal conditions, the value of one indicator is changed and its effect on the

final result of the function is evaluated.

In its geometric interpretation, the gradient is the slope of the tangent to the graph of the function at

the current point. It indicates how the value of the function changes with a change in the parameter

value.

In geometry terms, the gradient is the slope of the tangent to the graph of the function at the current point

To draw a line, we need two points. Therefore, in two simple iterations, we can find these points on the

graph of the function. First, we need to add a small number to the current value of the parameter and
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calculate the value of the function without changing the other parameters. This will be the first point.

We repeat the iteration, but this time we subtract the same number from the current value and get the

second point. The line passing through these two points will approximate the desired tangent with a

certain degree of error. The smaller the number used to change the parameter, the smaller this error

will be. This is the basis of the empirical method for determining the gradient.

If this method is so simple, why not use it consistently? Everything is quite simple here. The method

simplicity hides a large number of operations:

1. Perform a forward pass and save its result.

2. Slightly increase one parameter and repeat the forward pass with the result saved.

3. Slightly decrease one parameter and repeat the forward pass with the result saved.

4. Based on the found points, construct a line and determine its slope.

All these steps are performed to determine the gradient at only one step for one parameter. Imagine

how much time and computational resources we would need if we used this method in training a neural

network with even just a hundred parameters. Do not forget that modern neural networks contain

significantly more parameters. For instance, a giant model like GPT-3 contains 175 billion parameters.

Of course, we will not build such giants on a home computer. However, the use of the analytical method

greatly reduces the number of necessary iterations and the time for their execution.

At the same time, we can build a small neural network and compare the results of the two methods on

it. Their similarity will indicate the correctness of the implemented analytical method algorithm.

Significant discrepancies in the results of the two methods will indicate the need to reevaluate the

backward pass algorithm implemented in the analytical method.

To implement this idea in practice, let's create the script check_ gradient_ percp.mq5. This script will

receive three external parameters:

· the size of the initial data vector,

· flag for using OpenCL technology,

· function to activate the hidden layer.

Please note that we haven't specified the source of the original data. The reason is that for this work, it

doesn't matter at all what data will be input into the model. We only check the correctness of the

backward pass methods. Therefore, we can use a vector of random values as initial data.

//+------------------------------------------------------------------+

//| External parameters for the script                               |

//+------------------------------------------------------------------+

// Source data vector size

input int      BarsToLine    = 40;

// Use OpenCL

input bool     UseOpenCL     =  true;

// Hidden Layer Activation Function

input ENUM_ACTIVATION_FUNCTION HiddenActivation = AF_SWISH;

In addition, in the global scope of the script, we will connect our library and declare a neural network

object.
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//+------------------------------------------------------------------+

//| Connecting the Neural Network Library                            |

//+------------------------------------------------------------------+

#include "..\..\..\Include\NeuroNetworksBook\realization\neuronnet.mqh"

CNet Net;

At the beginning of the script body, let's define the architecture of a small neural network. However,

since we will need to perform similar tasks multiple times to validate the correctness of the process in

different architectural solutions, we will encapsulate the model creation in a separate procedure called

CreateNet. In the parameters, this procedure receives a pointer to the object of the neural network

model being created.

Let me remind you that earlier we created the CNet::Create method to create a neural network model.

In parameters, this method takes a dynamic array of descriptions of the neural network architecture.

Therefore, we need to organize a similar description of the new model. Let's collect the description of

each neural layer into a separate instance of the CLayerDescription class. We will combine them into a

dynamic array CArrayObj . When adding neuron descriptions to a dynamic array, make sure that their

sequence strictly corresponds to the arrangement of neural layers in the neural network. In my

practice, I simply create layer descriptions sequentially in the order of their arrangement in the neural

network and add them to the array as I create them.

bool CreateNet(CNet &net)

  {

   CArrayObj *layers = new CArrayObj();

   if(!layers)

     {

      PrintFormat("Error creating CArrayObj: %d", GetLastError());

      return false;

     }

To check the correctness of the implemented error propagation algorithm, we will create a three-layer

neural network. All layers will be built on the basis of the CNeuronBase class we created. The size of

the first neural layer of the initial data was specified by the user in the external parameter BarsToLine.

We will create it without an activation function and weight update method. In theory, this is the basic

approach to creating a source data layer.
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//--- source data layer

   CLayerDescription *descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronBase;

   descr.count = BarsToLine;

   descr.window = 0;

   descr.activation = AF_NONE;

   descr.optimization = None;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

We will set the number of neurons in the second (hidden) neural layer to be 10 times greater than the

input data layer. However, the actual size of the neural layer does not directly affect the process of

analyzing the algorithm performance. This layer will already receive the activation function that the

user specifies in the external parameter of the HiddenActivation script. For example, I used Swish. I

would recommend experimenting with all the activation functions you're using. At this stage, we want

to verify the correctness of all the methods we've written so far. Exactly, the more diverse your testing

is, the more potential issues you can address at this stage. This will help you avoid distractions during

the actual training of the neural network and focus on improving its performance.

At this stage, we will not perform weight updates. Therefore, the specified method of updating the

weights will not affect our testing results in any way.



3. Building the first neural network model in MQL5

258

3.10 Gradient distribution verification

//--- hidden layer

   descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronBase;

   descr.count = 10 * BarsToLine;

   descr.activation = HiddenActivation;

   descr.optimization = Adam;

   descr.activation_params[0] = (TYPE)1;

   descr.activation_params[1] = (TYPE)0;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

The third neural layer will contain only one output neuron and a linear activation function.

//--- result layer

   descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronBase;

   descr.count = 1;

   descr.activation = AF_LINEAR;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   descr.activation_params[1] = 0;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

Having collected a complete description of the neural network in a single dynamic array, we generate a

neural network. To do this, we call the CNet::Create method of our base neural network class, in which

the neural network is generated according to the passed description. At each step, we check the

correctness of performing operations on the returned results. Receiving the boolean value true

corresponds to the correct execution of the method's operations. If any of the errors occur, the

method will return false.
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We will specify the flag for using OpenCL. For full testing, we have to check the correctness of the

backpropagation method in both modes of operation of the neural network.

//--- initialize the neural network

   if(!net.Create(layers, (TYPE)3.0e-4, (TYPE)0.9, (TYPE)0.999, LOSS_MAE, 0, 0))

     {

      PrintFormat("Error of init Net: %d", GetLastError());

      delete layers;

      return false;

     }

   delete layers;

   net.UseOpenCL(UseOpenCL);

   PrintFormat("Use OpenCL %s", (string)net.UseOpenCL());

//---

   return true;

  }

We conclude or work with the model creation procedure and move on to the main procedure of our

OnStart script. In it, to create a neural network model, we just need to call the above procedure.

void OnStart()

  {

//--- create a model

   if(!CreateNet(Net))

      return;

At this stage, the neural network object is ready for testing. However, we still need initial data for

testing. As mentioned above, we will simply populate them with random values. We will create the

CBufferType data buffer to store a sequence of initial data. Target results are not of interest at this

point. When generating the neural network, we filled the weight matrix with random values and do not

expect to hit the target values. We also do not plan to train the neural network at this stage. Therefore,

we will not waste resources on downloading unnecessary information.

//--- create a buffer to read the source data

   CBufferType *pattern = new CBufferType();

   if(!pattern)

     {

      PrintFormat("Error creating Pattern data array: %d", GetLastError());

      return;

     }

In the loop, fill the entire buffer with random values.

//--- generate random source data

   if(!pattern.BufferInit(1, BarsToLine))

      return;

   for(int i = 0; i < BarsToLine; i++)

      pattern.m_mMatrix[0, i] = (TYPE)MathRand() / (TYPE)32767;

Now there is enough information to conduct a forward pass of the neural network. We will implement it

by calling the FeedForward method of our neural network. The results of the direct pass will be stored

in a separate data buffer of reference values. Probably the name reference for a randomly obtained

result sounds strange. But within the scope of our testing, this will be the reference against which we

will consider deviations when changing the input data or weights.
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//--- perform a forward and reverse pass to obtain analytical gradients

   const TYPE delta = (TYPE)1.0e-5;

   TYPE dd = 0;

   CBufferType *init_pattern = new CBufferType();

   init_pattern.m_mMatrix.Copy(pattern.m_mMatrix);

   if(!Net.FeedForward(pattern))

     {

      PrintFormat("Error in FeedForward: %d", GetLastError());

      return;

     }

   CBufferType *etalon_result = new CBufferType();

   if(!Net.GetResults(etalon_result))

     {

      PrintFormat("Error in GetResult: %d", GetLastError());

      return;

     }

In the next step, we add a small constant to the result of the feed-forward pass and run the

backpropagation pass of our neural network to calculate the error gradients analytically. In the above

example, I used the constant 1*10-5 as a deviation.
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//--- create a result buffer

   CBufferType *target = new CBufferType();

   if(!target)

     {

      PrintFormat("Error creating Pattern Target array: %d", GetLastError());

      return;

     }

//--- save obtained data to separate buffers

   target.m_mMatrix.Copy(etalon_result.m_mMatrix);

   target.m_mMatrix[0, 0] = etalon_result.m_mMatrix[0, 0] + delta;

   if(!Net.Backpropagation(target))

     {

      PrintFormat("Error in Backpropagation: %d", GetLastError());

      delete target;

      delete etalon_result;

      delete pattern;

      delete init_pattern;

      return;

     }

   CBufferType *input_gradient = Net.GetGradient(0);

   CBufferType *weights = Net.GetWeights(1);

   CBufferType *weights_gradient = Net.GetDeltaWeights(1);

   if(UseOpenCL)

     {

      input_gradient.BufferRead();

      weights.BufferRead();

      weights_gradient.BufferRead();

     }

Please note that we need to keep the reference result unchanged. That's why we needed to create

another data buffer object, into which we copied values from the benchmark values buffer. In this

buffer, we correct the data for the backpropagation pass.

According to the results of the backpropagation pass, we will save the error gradients obtained

analytically at the level of the initial data and weights. We also save the weights themselves, which we

will need when analyzing the distribution of error gradients at the level of the weight matrix.

Perhaps it's worth mentioning that since we adjust the weights during the training process, obtaining

accurate gradients at the weight matrix level is most informative for us. Accurate gradients at the level

of input data mostly serve as indirect evidence of the correctness of gradient distribution throughout

the entire neural network. This is due to the fact that before determining the error gradient at the level

of the initial data, we have to consistently draw it analytically through all layers of our neural network.

We obtained the error gradients by an analytical method. Next, we need to determine the gradients

empirically and compare them with the results of the analytical method.

Let's look at the initial data level first. To achieve this, we will copy our pattern of input data into a new

dynamic array, which will allow us to modify the required indicators without the fear of losing the

original pattern.

We will organize a loop to enumerate all the indicators of our pattern. Inside the loop, we will first add

our constant 1*10-5 to each indicator of the original pattern in turn and implement a feed-forward pass

neural network. After the feed-forward pass, we take the result obtained and compare it with the
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reference one that was saved earlier. The difference between the results of the feed-forward pass will

be stored in a separate variable. Then we subtract a constant from the initial value of the same

indicator and repeat the feed-forward pass. The result of the feed-forward pass is also comparable to

the reference result. Let's find the arithmetic mean of two passes.

//--- in the loop, alternately change the elements of the source data and compare

//--- empirical result with the value of the analytical method

   for(int k = 0; k < BarsToLine; k++)

     {

      pattern.m_mMatrix.Copy(init_pattern.m_mMatrix);

      pattern.m_mMatrix[0, k] = init_pattern.m_mMatrix[0, k] + delta;

      if(!Net.FeedForward(pattern))

        {

         PrintFormat("Error in FeedForward: %d", GetLastError());

         return;

        }

      if(!Net.GetResults(target))

        {

         PrintFormat("Error in GetResult: %d", GetLastError());

         return;

        }

      TYPE d = target.At(0) - etalon_result.At(0);

      pattern.m_mMatrix[0, k] = init_pattern.m_mMatrix[0, k] - delta;

      if(!Net.FeedForward(pattern))

        {

         PrintFormat("Error in FeedForward: %d", GetLastError());

         return;

        }

      if(!Net.GetResults(target))

        {

         PrintFormat("Error in GetResult: %d", GetLastError());

         return;

        }

      d -= target.At(0) - etalon_result.At(0);

      d /= 2;

      dd += input_gradient.At(k) - d;

     }

   delete pattern;

At this point, you should be careful with the signs of the operation and deviations. In the first case, we

added a constant and obtained some deviation in the results. The deviation is considered as the current

value minus the reference.

In the second case, we subtracted the constant from the original value. Similarly, using the same

formula for calculating the deviation, we will obtain a value with the opposite sign. Therefore, to

combine the obtained results in magnitude and preserve the correct direction of the gradient, we need

to subtract the second deviation from the first one.

The result is divided by 2 to get the mean deviation. The result obtained is comparable to the result of

the analytical method.
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We repeat the operations described above for all parameters of the initial pattern.

There is another aspect that we should take into account. The gradient indicates how the function

value changes when the parameter changes by 1. Our constant is much smaller. Therefore, the

empirically calculated gradient we obtained is significantly underestimated. To compensate for this,

let's divide the empirically obtained value by our constant and display the total result in the MetaTrader

5 log.

//--- display the total value of deviations at the level of the initial data in the journal

   PrintFormat("Delta at input gradient between methods %.5e", dd / delta);

Similarly, we determine the empirical gradient at the level of the weight matrix. Note that to access the

matrix of weights, we obtain not a copy of the matrix but a pointer to the object. This is a very

important point. Thanks to this, we can modify the values of weights directly in our script without

creating additional methods to update buffer values in the neural network and neural layer classes.

However, this approach is more of an exception than a general practice. The reason is that with this

approach, we cannot track changes to the weight matrix from the neural layer object.

The cumulative result of comparing empirical and analytical gradients at the weight matrix level is also

printed to the MetaTrader 5 log.
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//--- reset the value of the sum and repeat the loop for the gradients of the weights

   dd = 0;

   CBufferType *initial_weights = new CBufferType();

   if(!initial_weights)

     { 

      PrintFormat("Error creating reference weights buffer: %d", GetLastError());

      return;

     }

   if(!initial_weights.m_mMatrix.Copy(weights.m_mMatrix))

     {

      PrintFormat("Error copying weights to initial weights buffer: %d",

                                                              GetLastError());

      return;

     }

   for(uint k = 0; k < weights.Total(); k++)

     {

      if(k > 0)

         weights.Update(k - 1, initial_weights.At(k - 1));

      weights.Update(k, initial_weights.At(k) + delta);

      if(UseOpenCL)

         if(!weights.BufferWrite())

            return;

      if(!Net.FeedForward(init_pattern))

        {

         PrintFormat("Error in FeedForward: %d", GetLastError());

         return;

        }

      if(!Net.GetResults(target))

        {

         PrintFormat("Error in GetResult: %d", GetLastError());

         return;

        }

      TYPE d = target.At(0) - etalon_result.At(0);
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      weights.Update(k, initial_weights.At(k) - delta);

      if(UseOpenCL)

         if(!weights.BufferWrite())

            return;

      if(!Net.FeedForward(init_pattern))

        {

         PrintFormat("Error in FeedForward: %d", GetLastError());

         return;

        }

      if(!Net.GetResults(target))

        {

         PrintFormat("Error in GetResult: %d", GetLastError());

         return;

        }

      d -= target.At(0) - etalon_result.At(0);

      d /= 2;

      dd += weights_gradient.At(k) - d;

     }

--- display the total value of deviations at the level of weights in the journal

   PrintFormat("Delta at weights gradient between methods %.5e", dd / delta);

After completing all the iterations, we clear the memory by deleting the used objects and exit the

program.

//--- clear the memory before exiting the script

   delete init_pattern;

   delete etalon_result;

   delete initial_weights;

   delete target;

  }

The results of my testing are shown in the screenshot below. Based on the testing results, I obtained a

deviation in the 11th to 12th decimal place. For comparison, deviations in the 8–9th decimal places are

considered acceptable in different sources. And it's not worth noting that when using OpenCL, the

deviation turned out to be an order of magnitude smaller. This is not an advantage of using technology,

but rather the influence of a random factor. At each run, a random matrix of weights and initial data

was re-generated. As a result, the comparison was carried out on different parts of the neural network

function with different curvature. 

Results of comparing analytical and empirical error gradients

In general, we can say that the testing confirmed the correctness of our implementation of the error

backpropagation algorithm both by means of MQL5 and using the OpenCL multi-threaded computing
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technology. Our next step is to assemble a more complex perceptron, and we will try to train it on a

training set.

3.11 Comparative testing of implementations

In the previous section, we verified the correctness of the backpropagation algorithm operation. Now

we can safely move on to training our perceptron. We will perform this work in the script

perceptron_ test.mq5. The first block of the script will remind you of the script from the previous

section. This is a consequence of using our library to create neural networks. We will create a neural

network using it. Hence, the algorithm for initializing and using the neural network will be identical in all

cases.

To enable various testing scenarios, we will add the following external parameters to the script:

· The name of the file containing the training sample.

· The name of the file to record the dynamics of the error change. Using these values, we will be able

to plot the error change graph during the training process, which will help us visualize the neural

network learning process.

· The number of historical bars used in the description of one pattern.

· The number of input layer neurons per bar.

· Switch flag for using OpenCL technology in the process of training a neural network.

· Batch size for one iteration of weight matrix update.

· Learning rate.

· The number of hidden layers.

· The number of neurons in a single hidden layer.

· The number of iterations of updating the weight matrix.

Just like in the previous section, after declaring the external parameters in the global scope of the

script, we will include our library for creating a neural network and declare an object of the base class

CNet.
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//+------------------------------------------------------------------+

//| External parameters for script operation                         |

//+------------------------------------------------------------------+

// Name of the file with the training sample

input string   StudyFileName  = "study_data.csv";

// File name for recording the error dynamics

input string   OutputFileName = "loss_study.csv";

// Number of historical bars in one pattern

input int      BarsToLine     = 40;

// Number of input layer neurons per 1 bar

input int      NeuronsToBar   = 4;

// Use OpenCL

input bool     UseOpenCL      = false;

// Packet size for updating the weights matrix          

input int      BatchSize      = 10000;

// Learning rate

input double   LearningRate   = 3e-5;

// Number of hidden layers

input int      HiddenLayers   = 1;

// Number of neurons in one hidden layer

input int      HiddenLayer    = 40;

// Number of iterations of updating the weights matrix

input int      Epochs         = 1000;

//+------------------------------------------------------------------+

//| Connect the neural network library                               |

//+------------------------------------------------------------------+

#include <NeuroNetworksBook\realization\neuronnet.mqh>

CNet *net;

Before moving on to writing the script code, let's consider what functionality we need to incorporate

into it.

First, we need to create the model. For this, we will define the model architecture and call the model

initialization method. Similar operations were performed in the script to check the correctness of the

error gradient distribution.

Next, to train our model, we need to load the previously created training dataset, which will contain a

set of input data and target values.

Only after successfully completing these steps, we can start the model training process. This is a cyclic

process that includes a feed-forward pass, a backpropagation pass, and weight matrix updates. There

are several approaches to the duration of model training. The most common one involves limiting the

number of training epochs and tracking changes in the model error. We will use the first approach. The

analysis of the error dynamics during the training process will allow us to develop criteria for applying

the second method. Therefore, during training, we need to record the model error change and save the

collected sequence after training. At the end of the training, we will save the obtained model.

Thus, we have defined the necessary functionality for our script. To create clear and readable code, we

will divide it into blocks corresponding to the tasks mentioned above. In the body of the main function

OnStart, we will sequentially call the corresponding functions with control over the execution of

operations.
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First, we will create a vector to record the dynamics of the model error during training. Its size will be

equal to the number of training epochs.

//+------------------------------------------------------------------+

//| Beginning of the script program                                  |

//+------------------------------------------------------------------+

void OnStart()

  {

//--- prepare a vector to store the network error history

   VECTOR loss_history = VECTOR::Zeros(Epochs);

Next, we initialize our model for training. Here we instantiate a neural network class and pass the

object pointer to the model initialization function. Be sure to check the result of the operation.

//--- 1. Initialize model

   CNet net;

   if(!NetworkInitialize(net))

      return;

The next step is to load the training sample. For this purpose, we will need two dynamic arrays: one for

loading the patterns of source data, and the other for the target values. Both arrays will be

synchronized.

The data loading is performed in the LoadTrainingData function, in the parameters of which we will pass

the file for data loading and pointers to the created dynamic array objects.

//--- 2. Load the training sample data

   CArrayObj data;

   CArrayObj targets;

   if(!LoadTrainingData(StudyFileName, data, targets))

      return;

As mentioned earlier, after creating the model and loading the training dataset, we can start the

training process. This functionality will be assigned to the NetworkFit method, in the parameters to

which we will pass pointers to our model, a training sample with target values, and a vector recording

the dynamics of the model error variation during training.

//--- 3. Train model 

   if(!NetworkFit(net, data, targets, loss_history))

      return;

After completing the model training process, we save the history of the model error change during

training. We will also keep the trained model. We do not need to create a separate function to save the

trained model. We can use the previously created method of our base neural network class to save the

model.

//--- 4. Save the error history of the model

   SaveLossHistory(OutputFileName, loss_history);

//--- 5. Save the obtained model

   net.Save("Study.net");

   Print("Done");

  }

To confirm the successful completion of all operations, we will print an informational message to the log

and terminate the script.
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As you can see, the code of the main function of the script turned out to be quite short, but clearly

structured. This distinguishes it from the gradient distribution correctness check script in the previous

section. The choice of programming style remains with the programmer and does not affect the

functionality of our library. We go back to our script and now we will write the functions that we called

above from the main function of the script.

First on the list is the NetworkInitialize model initialization function. In the parameters of this function,

we pass a pointer to the object of the model being created. In the body of the function, we have to

initialize the model before training. To initialize the model, we need to provide a description of the

model to be created. I remind you that we create the model description in a dynamic array, each

element of which contains a pointer to an instance of the object CLayerDescription with the description

of the architecture of a specific neural layer. The very operation of creating such a model description

has been moved to a separate function, CreateLayersDesc, which is a natural extension of the

structured code concept.

//+------------------------------------------------------------------+

//| Initializing the model                                           |

//+------------------------------------------------------------------+

bool NetworkInitialize(CNet &net)

  {

   CArrayObj layers;

//--- create a description of the network layers

   if(!CreateLayersDesc(layers))

      return false;

After creating the model architecture description, we call the initialization method of our neural

network CNet::Create. Into it, we pass the description of the model architecture, the learning rate,

optimization parameters, loss function, and regularization parameters. Don't forget to check the result

of the model creation operations.

//--- initialize the network

   if(!net.Create(&layers,(TYPE)LearningRate,(TYPE)0.9,(TYPE)0.999,LOSS_MSE,0,0))

     {

      PrintFormat("Error of init Net: %d", GetLastError());

      return false;

     }

   net.UseOpenCL(UseOpenCL);

   net.LossSmoothFactor(BatchSize);

   return true;

  }

After the successful initialization of the model, we set the flag for using OpenCL and set the batch size

for model error averaging. In the provided example, regularization is set at the level of the weight

matrix update batch.

To complete the description of the model initialization process, let's take a look at the

CreateLayersDesc function, which is responsible for creating the architecture description of the model.

In the parameters, the method receives a pointer to a dynamic array, into which we will write the

architecture of the created model.

We first create a description of the initial data layer. The number of neurons in the input layer of the

raw data depends on two external parameters: the number of historical bars in one pattern

(BarsToLine) and the number of input layer neurons per bar (NeuronsToBar). The quantity is
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determined by their product. The input layer will be without an activation function and will not be

trained. That's clear and should not raise any questions. In this layer, you're essentially storing the

initial parameters from an external system in the results array of the layer. Within the layer, no

operations are performed on the data.

bool CreateLayersDesc(CArrayObj &layers)

  {

//--- create source data layer

   CLayerDescription *descr;   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = NeuronsToBar * BarsToLine;

   descr.window       = 0;

   descr.activation   = AF_NONE;

   descr.optimization = None;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      return false;

     }

When using fully-connected neural layers, each neuron in the hidden layer can be considered as a

specific pattern that the neural network learns during the training process. In this logic, the number of

neurons in the hidden layer represents the number of patterns that the neural network is capable of

memorizing. Certainly, you can establish a logical relationship between the number of elements in the

previous layer and the number of possible combinations, which will represent patterns. But let's not

forget that our previous neural layer results are non-binary quantities, and the range of variation is

quite large. Therefore, the total number of possible combinatorial variants of patterns will turn out to be

very large. The average probability of their occurrence will vary greatly. Indeed, most of the time, the

number of neurons in each hidden layer will be determined by the neural network architect within a

certain range, and the exact number is often fine-tuned based on the best performance on a validation

dataset. For this reason, we gave the user the ability to specify the number of neurons in the hidden

layer in the external parameter HiddenLayer. But let's say right away that we will create all neural

layers of the same architecture and size.

The number of hidden layers depends on the complexity of the problem being solved and is also

determined by the neural network architect. In this test, I will use a neural network with one hidden

layer. However, I suggest that you independently conduct a few experiments with different numbers of

layers and assess the impact of changing this parameter on the results. To perform such experiments,

we have derived a separate external parameter – the number of HiddenLayers.

In practice, we create one hidden layer description and then add it to the dynamic array of

architecture descriptions as many times as we need to create hidden neural layers. 
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//--- hidden layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = HiddenLayer;

   descr.activation   = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   for(int i = 0; i < HiddenLayers; i++)

      if(!layers.Add(descr))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         return false;

        }

Within this section, I do not aim to fully train the neural network with the best possible results. We will

only compare the performance of our library in different modes and their impact on learning outcomes.

Let's also see in practice the impact of some of the approaches we discussed in the theoretical part of

the book. Therefore, we will not delve deeply into the careful selection of architectural parameters for

the neural network to achieve maximum results at this moment.

I have specified Swish as the activation function for the hidden layer. This is one of those functions

whose range of values is limited at the bottom and not limited at the top. In this case, the function is

differentiable over the whole range of permitted values. However, we will be able to evaluate other

activation features during the testing process.

Choosing the activation function for the output layer is a compromise. The challenge here is that we

have two goals: direction and strength of movement. This is not a standard approach to solving the

problem, as our neural network output consists of two neurons with completely different values. One

might consider the direction of movement as a binary classification (buy or sell), while determining the

strength of movement is a regression task. It would probably be logical to train the neural network only

to determine the strength of the movement, and the direction would correspond to the sign of the

result. However, we are learning and experimenting. Let's observe the behavior of the neural network in

such a non-standard situation. We will try to activate the neurons with a linear function, which is

standard for solving regression tasks.

I have specified Adam as the training method for both neural layers.

The algorithm for describing neural layers is completely identical to the one discussed in the previous

section. First, we describe each layer in an object of the CLayerDescription class. The sequence of

describing layers corresponds to their sequence in the neural network, from the input layer of raw data

to the output layer of results. As the layers are getting their descriptions, add them to the collection of

the previously created dynamic array.
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//--- results layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = 2;

   descr.activation   = AF_LINEAR;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      return false;

     }

   return true;

  }

The next step in our script was loading the training dataset in the LoadTrainingData function. We will

load it from the file specified in the function parameters. In the body of the function, we immediately

open the specified file for reading and check the result of the operation based on the value of the

obtained handle.

//+------------------------------------------------------------------+

//| Uploading training data                                          |

//+------------------------------------------------------------------+

bool LoadTrainingData(string path, CArrayObj &data, CArrayObj &targets)

  {

   CBufferType *pattern;

   CBufferType *target;

//--- open the file with the training sample

   int handle = FileOpen(path, FILE_READ | FILE_CSV | FILE_ANSI | FILE_SHARE_READ,

                                                                     ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error opening study data file: %d", GetLastError());

      return false;

     }

We will carry out the operation of loading the training sample in two steps. First, we will first patterns

and target values into the two CBufferType buffers, piece by piece. We will collect the source data

elements of one pattern in the pattern buffer and the relevant target results in the target buffer.
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//--- display the progress of training data loading in the chart comment

   uint next_comment_time = 0;

   enum

     {

      OutputTimeout = 250 // no more than once every 250 milliseconds

     };

//--- organize the cycle of loading the training sample

   while(!FileIsEnding(handle) && !IsStopped())

     {

      if(!(pattern = new CBufferType()))

        {

         PrintFormat("Error creating Pattern data array: %d", GetLastError());

         return false;

        }

      if(!pattern.BufferInit(1, NeuronsToBar * BarsToLine))

         return false;

      if(!(target = new CBufferType()))

        {

         PrintFormat("Error creating Pattern Target array: %d", GetLastError());

         return false;

        }

      if(!target.BufferInit(1, 2))

         return false;

      for(int i = 0; i < NeuronsToBar * BarsToLine; i++)

         pattern.m_mMatrix[0, i] = (TYPE)FileReadNumber(handle);

      for(int i = 0; i < 2; i++)

         target.m_mMatrix[0, i] = (TYPE)FileReadNumber(handle);

After loading information about one pattern from the file, we will store pointers to objects with the data

in two dynamic arrays, CArrayObj . We also got pointers to them in the function parameters. One array

is used for source data patterns (data) and the second array is used for target values (targets). We

repeat the operations in a loop until we reach the end of the file. To allow the user to monitor the

process, we will display information about the number of loaded patterns on the chart in the comments

field.

Note that since we are passing pointers to data objects into dynamic arrays, we need to create new

instances of CBufferType objects after writing the pointers to the array. Otherwise, we will fill the entire

dynamic array with a pointer to the same instance of an object, and the buffer will contain generic

information about all patterns, the manipulation of which will require a different algorithm.

Consequently, the entire neural network will not work correctly.
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      if(!data.Add(pattern))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

      if(!targets.Add(target))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

      //--- output download progress in chart comment

      //--- (not more than once every 250 milliseconds)

      if(next_comment_time < GetTickCount())

        {

         Comment(StringFormat("Patterns loaded: %d", data.Total()));

         next_comment_time = GetTickCount() + OutputTimeout;

        }

     }

   FileClose(handle);

   return true;

  }

After completing the loop for reading the data, we will obtain two arrays of objects with the same

number of elements. In these, elements with the same index will constitute the source-target pair of

the pattern data. Here we close the training sample file.

Now that we have the neural network already created and the training sample loaded, we can start

training in the NetworkFit function. In its parameters, this method receives pointers to objects of the

neural network and the training dataset. Additionally, it receives a pointer to a vector recording the

dynamics of the model's error changes during the training process. To train the neural network, we will

create two nested loops. We will initiate the first loop with the number of iterations equal to the

external parameter Epochs which is the number of weight matrix updates. In the nested loop, we will

create a number of iterations equal to BatchSize, i.e. the batch size to update the weights.



3. Building the first neural network model in MQL5

275

3.11 Comparative testing of implementations

bool NetworkFit(CNet &net, const CArrayObj &data,

                const CArrayObj &target, VECTOR &loss_history)

  {

//--- training

   int patterns = data.Total();

//--- loop through the eras

   for(int epoch = 0; epoch < Epochs; epoch++)

     {

      ulong ticks = GetTickCount64();

      //--- teach by batches

      for(int i = 0; i < BatchSize; i++)

        {

         //--- check to see if the training has stopped

         if(IsStopped())

           {

            Print("Network training stopped by user");

            return true;

           }

In the body of the nested loop, we will randomly select one pattern from the training dataset. For each

selected pattern, we will first make a forward pass on the corresponding input data. Then open the

target values and do a backward pass.

         //--- select a random pattern

         int k = (int)((double)(MathRand() * MathRand()) / MathPow(32767.0, 2) *

                                                                        patterns);

         if(!net.FeedForward(data.At(k)))

           {

            PrintFormat("Error in FeedForward: %d", GetLastError());

            return false;

           }

         if(!net.Backpropagation(target.At(k)))

           {

            PrintFormat("Error in Backpropagation: %d", GetLastError());

            return false;

           }

        }

By repeating iterations of feed-forward and backpropagation passes, we accumulate the error gradient

on each element of the weight matrix. After completing the specified number of iterations of feed-

forward and backpropagation passes up to the batch size for weight matrix updates, we exit the inner

loop. Then we update the weights in the direction of the average gradient of the error, clear the buffer

of accumulated error gradients, and save the current value of the loss function in a vector to monitor

the training process. After that, we enter a new loop of training iterations.
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      //--- reconfigure the network weights

      net.UpdateWeights(BatchSize);

      printf("Use OpenCL %s, epoch %d, time %.5f sec", (string)UseOpenCL,

                               epoch, (GetTickCount64() - ticks) / 1000.0);

      //--- report on a bygone era

      TYPE loss = net.GetRecentAverageLoss();

      Comment(StringFormat("Epoch %d, error %.5f", epoch, loss));

      //--- remember the epoch error to save to file

      loss_history[epoch] = loss;

     }

   return true;

  }

In the proposed example, the training process is constrained by an external parameter of the number of

iterations of updating the weight matrix. In practice, a common approach is often used where the

training process stops upon achieving specified performance metrics. This could be the value of the loss

function, the accuracy rate of hitting expected results, and so on. A hybrid approach can also be

employed, where both metrics are monitored while also setting a maximum number of training

iterations.

After the training process is completed, we save the dynamics of the loss function to a file. This

functionality is performed by the SaveLossHistory function, in the parameters of which we will pass the

name of the file to record the data and the vector of dynamics of changes in the model error during

training.

In the body of the function, we open or create a new CSV file to record the data and in a loop store all

the model error values received during training.

void SaveLossHistory(string path, const VECTOR &loss_history)

  {

   int handle = FileOpen(OutputFileName, FILE_WRITE | FILE_CSV | FILE_ANSI,

                                                              ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error creating loss file: %d", GetLastError());

      return;

     }

   for(ulong i = 0; i < loss_history.Size(); i++)

      FileWrite(handle, loss_history[i]);

   FileClose(handle);

   printf("The dynamics of the error change is saved to a file %s\\MQL5\\Files\\%s",

                             TerminalInfoString(TERMINAL_DATA_PATH), OutputFileName);

  }

After writing the data to the file, we close the file and output an informational message to the log

indicating the full path of the saved file.

The presented example of the script implementation shows a full loading of the training sample into

memory. Of course, working with RAM is always faster than accessing permanent memory. However,

the sizes of the training dataset do not always allow it to be fully loaded into RAM. In such cases, the

training sample is loaded and processed in batches.
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Normalizing data at the neural network output

After creating such a script, we can conduct several instructive experiments. For example, we have

previously discussed the importance of normalizing the initial data before feeding it to the input of a

neural network. But how important is that? Why is it not possible to adjust the appropriate weights

during the neural network training process to account for the data scale? Yes, we were talking about

the impact of large values. But now we can do a practical experiment and see the effect of input data

normalization on the model training result.

Let's take historical data for the EURUSD instrument, with a five-minute timeframe covering the period

from 01.01.2015 to 12.31.2020, and create two training datasets: one with normalized data and the

other with unnormalized data. Let's run the above neural network training script on both samples. We

made the script for creating the training sample in Section 3.9.

The graph depicting the dynamics of the loss function says it all. The error on normalized data is much

lower, even if we start with random weights. If the initial value of the loss function on unnormalized data

is around 120, then on normalized data, it's only 0.6. Of course, during the training process, the value

of the loss function on non-normalized data drops rapidly and after 200 iterations of weighting factor

updates it drops to 6, and after 1000 iterations it reaches 4.5. But despite such a rapid rate of decline

in the loss function index, it still significantly outperforms that for normalized data. On the final

iterations, after 1000 weight matrix update iterations, the loss function approaches approximately

0.44.

Graph of the dynamics of the MSE loss function during the training of a neural network, on both normalized and

unnormalized data
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Graph of the dynamics of the MSE loss function during the training of a neural network, on both normalized and

unnormalized data (scale)

I conducted a similar experiment both with and without using OpenCL technology. The results of the

neural network were comparable. But in terms of performance on such a small neural network, the CPU

won. Obviously, the data transfer overhead was much higher than the performance gains from utilizing

multithreading technology. These results were expected. As we discussed earlier, using such

technology is justified for large neural networks when the costs of data transmission between devices

are offset by the performance gains achieved by splitting computational iterations into parallel threads. 

I suggest repeating a similar experiment with your data – then you won't have any questions about the

necessity of normalizing the input data. I believe that after conducting the experiment it is obvious that

further testing should be performed on normalized data.

Choosing the learning rate

The next question that always arises for creators of neural networks is the choice of the learning rate.

When tackling this issue, it's essential to strike a balance between performance and the quality of

learning. Choosing an intentionally high learning rate allows for faster error reduction at the beginning

of training. But then the rate of learning rapidly declines and at best stops far from the intended goal.

In the worst case, the error starts to increase. Choosing an excessively small learning rate reduces the

training speed. The process takes more time, and there's an increased risk of getting stuck in a local

minimum without reaching the desired goal.

For experimental testing of the impact of learning rate on the neural network training process, let's

train the previously created neural network using four different learning rates: 0.003, 0.0003, 0.00003

and 0.000003. The results of the test are shown in the graph below.
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Comparison of the loss function dynamics when using different learning rates

During the training of the neural network using a learning rate of 0.003, fluctuations in the loss function

are observed. During the learning process, the amplitude of the oscillations increases. In general, there

is a tendency for the model error to increase. Such behavior is characteristic of an excessively high

learning rate.

Reducing the learning rate makes the training schedule smoother. However, at the same time, the rate

of decrease in the loss function value diminishes with each weight matrix update. The most gradual

decrease in the loss function value is demonstrated by the training process with a learning rate of

0.000003. However, achieving the smoothness of the graph came at the cost of increasing the number

of weight matrix update iterations required to reach the optimal result. Throughout the entire training

process with 1000 weight matrix update iterations, a learning rate of 0.000003 exhibited the worst

result among all.

Training the neural network with coefficients of 0.0003 and 0.00003 showed similar results. The loss

function graph with a learning rate of 0.00003 turned out to be more jagged. But at the same time, the

best result in terms of error value was shown by training with a rate of 0.0003.
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Comparison of the loss function dynamics when using different learning rates (scale)

Selecting the number of neurons in the hidden layer

The next aspect I'd like to demonstrate in practice is the impact of the number of neurons in the

hidden layer on the training process and its outcome. When we talk about fully connected neural layers,

where each neuron in the subsequent layer has connections to all neurons in the previous layer, and

each connection is individual and independent, it's logical to assume that each neuron will be activated

by its own combination of states from the neurons in the previous layer. Thus, each neuron responds to

a different state pattern of the previous layer. Consequently, having a greater number of neurons in the

hidden layer has the potential to memorize more such patterns and make them more detailed. At the

same time, we are not programming pattern variations; we allow the neural network to learn them

autonomously from the presented training dataset. It would seem that in this logic, increasing the

number of neurons in the hidden layer can only increase the quality of training of the neural network.

But in practice, not all patterns have an equal probability of occurrence. The goal of training a neural

network is not to memorize each individual state down to the finest details. Their goal is to use the

training dataset to generalize the presented data, identify and highlight dependencies and regularities.

The obtained data should allow the construction of a function that describes the relationship between

the target values and the input data with the required accuracy. Therefore, an excessive increase in

neurons in the hidden layer reduces the neural network's ability to generalize and leads to overfitting.

The other aspect of increasing the number of neurons in the hidden layer is the increase in the

consumption of time and computational resources. The point is that adding one neuron in the hidden

layer adds as many elements to the weight matrix as the previous layer contains plus one element for

bias. Therefore, when choosing the number of neurons in the hidden layer, it's important to consider

the balance between the achieved learning quality and the training costs for such a neural network. At

the same time, you need to think about the risk of overfitting.
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Certainly, there are established methods to combat overfitting in neural networks. These primarily

include increasing the training dataset size and regularization techniques. We have discussed

theoretical aspects of regularization earlier, and we will talk about practical applications a little later.

Now I suggest looking at the graphs of the error function values during the training of a neural network

with a single hidden layer, where the number of neurons changes while keeping other conditions

constant. When testing, I compared the training of 4 neural networks with 20, 40, 60 and 80 neurons

in the hidden layer. Of course, such a number of neurons is too small to get any decent training results

on a sample of 350 thousand patterns. Moreover, there is no risk of overtraining here. But they are

enough to look at the impact of this factor on learning.

Comparison of the loss function dynamics when using different numbers of neurons in the hidden layer

As can be seen in the graph, the model with 20 neurons in the hidden layer showed the worst result.

They are clearly insufficient for such a task.

Regarding the other three models, it can be said that the variation in the graphs during the first 100

weight update iterations can be attributed to the randomness factor due to initializing the models with

random weights. After about 250-300 iterations of updates to the weight matrix, the graphs are

intertwined into a single bundle and from this point go on together.

Increasing the scale of the graph allows us to identify the main trend: as the number of neurons in the

layer increases, the number of iterations required to reach local minima and overall train the neural

network also increases. At the same time, local minima of neural networks with a large number of

neurons fall lower, and their graphs have a lower frequency of oscillations.

Overall, throughout the entire training process, the model with 60 neurons demonstrates the best

performance. Slightly behind, almost in parallel, is the graph of the model with 40 neurons in the hidden

layer. For a model with 80 neurons in the hidden layer, 1000 iterations of updating the weight matrix

were insufficient. This model shows a slower decrease in the value of the loss function. At the same
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time, the dynamics of the loss function values graph demonstrate the potential for further reducing the

loss function value with continued training of the model. There are valid reasons to expect a decrease in

the performance achieved by the model with 60 neurons in the hidden layer.

Comparison of loss function dynamics using different numbers of neurons in the hidden layer (scale)

However, it's important to note that a decrease in error on the training dataset could also be

associated with model overfitting. Therefore, before the practical deployment of a trained model, it's

always important to test it on "unseen" data. 

Training, validation, testing.

During training, we adjust the weight matrix parameters to achieve the minimum error on the training

dataset. But how will the model behave on new data beyond the training sample? It's also important to

consider that we are dealing with non-static data that is constantly changing, influenced by a large

number of factors. Some of these factors are known to us, while we might not even be aware of others.

And even about the factors known to us, we cannot say with certainty how they will change in the

future. Moreover, we don't know how this will impact the variation of the data we are studying. It is

most likely that the performance of the neural network will deteriorate on the new data. But what will

that deterioration be? Are we willing to accept such risks?

The first step towards addressing this issue is the validation of the model's training parameters. For

model validation, a dataset that is not part of the training set is used. Most often, the entire set of

initial data is divided into three blocks:

· training sample (~60%)

· validation sample (~20%)

· test sample (~20%)

The percentage distribution for each dataset is given as an example and can vary significantly

depending on the specific task at hand.
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The essence of the validation process lies in testing the parameters of the trained model on data that is

not part of the training dataset. During validation, hyperparameters of the trained model are tuned to

achieve the best possible performance.

When writing a script for a fully connected perceptron in Python, we allocated 20% of the training

dataset for validation. The training of the first model demonstrated results similar to those obtained

when training the model created in MQL5. That's a positive signal for us. Obtaining similar results when

training models created in three different programming languages can indicate the correctness of the

algorithm we have implemented.

Change in performance of a model with a single hidden layer on validation at pace with its training

Evaluating the graphs of the test results, one can notice a tendency for the error to decrease during

the learning process. This is a positive signal that indicates the model's ability to learn and establish

relationships between input data and target labels. At the same time, there's an increase in error on

the validation data, which could indicate both the overfitting of the model and the non-

representativeness of the validation dataset.

The issue might be that we specified a portion of the data for validation within the training dataset. In

this case, the TenzorFlow library takes the latest data in the training sample set. However, this

approach doesn't always yield accurate results, as the outcomes of individual periods can be

significantly influenced by local trends. 

In the graph below, I can see the impact of both factors. The overall trend of increasing error on the

validation data indicates the model's tendency to overfit, while the initial validation error being lower

than the training error might be due to the influence of local trends.
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Change in performance of a model with a single hidden layer on validation at pace with its training

The graph of the accuracy metric shows similar trends. The metric itself reflects the model accuracy as

a proportion of correct answers in the total number of results. Here we observe an increase in the

indicator during training with an almost unchanged indicator on validation. This may indicate that the

model learns patterns that do not occur in the validation sample.

In theory, adding hidden layers should enhance the model's ability to learn and recognize more complex

patterns and structures. We created the second model in Python with three hidden layers. Indeed, in

this model in training, the error decreased significantly. But at the same time, it has further increased

in the validation process. This is a clear sign of the model overfitting. When the model, due to its

capabilities, does not generalize dependencies and simply "memorizes" pairs "initial data - target

values", the result appears randomly on new data not included in the training sample.
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Change in performance of a model with three hidden layers on validation at pace with its training

The dynamics of the accuracy metric have trends similar to those of the loss function. The only

difference is that the loss function decreases during the training process, while the accuracy increases.

One way to combat overfitting is to regularize the model. We added ElasticNet regularization to the

third model, and it did the job. When the model was trained with regularization, the error decreased at

a slower rate. At the same time, the increase in error on the validation set has slowed down.

Once again, on the accuracy metric graph, we observe the same trends as on the loss function graph.

Note that the training and regularization parameters were not meticulously tuned. Therefore, learning

outcomes cannot be considered definitive.
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Change in performance of a model with three hidden layers on validation at pace with its training

The change in the performance of the model with three hidden layers and regularization on validation is occurring at a

similar pace to its training.
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The change in the performance of the model with three hidden layers and regularization on validation is occurring at a

similar pace to its training.

After training the models, we will evaluate them using the test dataset. In contrast to validation, the

model with three hidden layers and no regularization demonstrated the lowest error on the test

dataset. The model with regularization showed the maximum error. Such differences in results between

the test and validation datasets can possibly be explained by the way the datasets were created. While

the validation sample included only the most recent data from the training sample, the test sample

collected random data sets from the entire population. Thus, the test sample can be considered more

representative, as it is deprived of the influence of local tendencies.

Measuring the accuracy metric on the test sample showed similar results. The best result was obtained

on the model with three hidden layers.
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Comparison of model results on a test sample

Comparison of model results on a test sample

We can summarize the results of our practical work.

1. Normalizing the raw data before feeding it to the input of the neural network greatly increases the

chances of convergence of the neural network and reduces the training time.
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2. The learning rate should be carefully selected experimentally. Too high learning rates lead to

unbalancing of the neural network and an increase in error. Too low learning rates lead to more

time and computational resources spent on training the neural network. This increases the risk of

stopping the learning process at a local minimum without achieving the desired result.

3. Increasing the number of neurons in the hidden layer gives improved results of training. But at the

same time, training costs are also rising. When choosing the size of the hidden layer, it is

necessary to find a balance between the training error and the resource cost of conducting the

training of the neural network. It should be kept in mind that an excessive increase in the number

of neurons in the hidden layer increases the risk of neural network overfitting.

4. Increasing the number of hidden layers also increases the model's ability to learn and recognize

more complex shapes and structures. In this case, the model's propensity to overfitting increases

significantly.

5. The use of a set of recent training sample values for validation is not always able to show true

trends, as such a validation sample is strongly influenced by local trends and cannot be

representative.

However, we are building a model for financial markets. It is important to us to make a profit both in

the long term and in the present moment. Of course, there may be some localized losses, but they

should not be large and frequent. Therefore, it is important to obtain acceptable results both on a

single localized dataset and on a more representative sample. Probably, getting better results on a

local segment has a higher impact: after making a local profit, we can retrain the model to adapt to

new trends and make a profit on a new local segment. At the same time, if training costs exceed

possible local losses, the profitability over a long period using a representative sample becomes more

significant.

4. Basic types of neural layers

In the previous sections, we got acquainted with the architecture of a fully connected perceptron and

constructed our first neural network model. We tested it in various modes, received our first results,

and gained our first experience. However, the fully connected neural layers used in the perceptron,

despite their merits, also possess certain drawbacks. For instance, a fully connected layer analyzes

only the current data without any connection to previously processed data. Thus, each packet of

information is analyzed in an informational vacuum. To expand the volume of analyzed data, it is

necessary to continually increase the size of the model. Consequently, the expenses for training and

operation grow exponentially. A fully connected layer analyzes the entire aggregate as a whole and fails

to reveal dependencies between individual elements.

In this chapter, we will explore various architectural solutions for constructing neural layers aimed at

overcoming the drawbacks of fully connected layers that we studied earlier. Fully connected neural

networks analyze data without considering their context and interconnections, which can lead to

insufficient efficiency and an increase in model volume. We will consider the following architectural

approaches:

· Convolutional Neural Networks (CNN): we will delve into their architecture and implementation

principles, as well as examine ways to build them using MQL5 and OpenCL. Next, we will explore

practical testing of convolutional models aimed at evaluating their performance and efficiency.

· Recurrent Neural Networks (RNN): the architecture and implementation principles; ways to build

LSTM blocks using MQL5 and organize parallel calculations using OpenCL. From this section, you

will also learn how to implement RNNs in Python and test them.
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Thus, in this chapter, we will study convolutional and recurrent neural networks, their operation and

application in practical problems. We will also examine various methods of their construction and

optimization.

4.1 Convolutional neural networks

We continue our exploration of neural network architectures, focusing now on the principles of

operation and construction of convolutional neural networks (CNNs). These neural networks are widely

used in tasks involving object recognition in photos and videos. It is considered that convolutional neural

networks are resistant to changes in scale, shifts in perspective, and other spatial distortions of images.

Their architecture enables them to equally effectively detect objects in any part of a scene.

In addition to the architectural differences we will discuss in the next chapter, there is a fundamental

distinction in the logical processing of incoming data streams between convolutional and fully

connected neural networks. As we have seen earlier, each neuron in a fully connected network is linked

to all neurons in the previous layer, responding to distinct patterns in input data. Let's try to translate

this to image pattern recognition.

Imagine training a neural network to recognize digits printed on a piece of paper. Each digit is printed

on a perfectly clean sheet of paper, and your neural network has learned to recognize them perfectly.

But when you input a signal with a slight noise, its output becomes unpredictable, as the noise alters

the image, making it deviate from the ideal patterns in the training dataset.

The opposite situation is also possible. When you train a neural network on noisy images, where the

object of interest is on some background, a fully connected neural network with a sufficient number of

neurons and an adequate training dataset can solve such a task. At the same time, it perceives the

picture as a whole. Changing or removing the background can disturb the equilibrium of a fully

connected neural network, causing its output to become unpredictable. Once again, it's all about the

integrity of the perception of the world. When using supervised learning, if we provided a neural network

with a noisy image during training and gave it the correct answer, the neural network associated the

image with the answer and memorized it. But it didn't pick out the right image from the picture;

instead, it memorized the whole picture. Therefore, the absence of the background is perceived by the

neural network as the absence of some component of the image. In such a case, it will be difficult to

give the correct result.

Similarly, issues arise with rotations, zooms, or any minor alteration in input data, treating each change

as new and unseen by a fully connected network. This demands additional resources for processing and

memorization, posing performance challenges as the size of processed images increases.

In addition to the recognition problems mentioned above, there is also a performance problem. As the

size of the processed images increases, the size of the incoming data stream also grows. As a

consequence, the weight matrices also grow. Therefore, more memory is required to store the weight

matrix and more time is required to train the neural network. That said, in many cases, a significant

portion of the image does not carry useful information. Consequently, resources are being spent

inefficiently.

To address these, convolutional neural networks were designed. Instead of examining the whole image,

CNNs divide it into small components, scrutinizing each as if under a microscope. Each convolutional

layer contains filters checking individual parts for correspondence to desired patterns, mitigating noise

and background influence. The use of small weight matrices reduces memory requirements, and the

size remains unchanged with larger processed images.
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The use of small weight matrices for each filter allows for a significant reduction in the memory

requirement for storing them. Moreover, in this approach, the size of the weight matrix does not depend

on the size of the original image, but on the size of the filter image. Therefore, as the size of the

processed images increases, the size of the weight matrix remains unchanged.

In addition to the aforementioned benefits, CNNs reduce the processed data with each layer since for

each small constituent part of the image, only one value is returned, indicating the degree of similarity

between the image and the desired pattern.

In terms of trading, I have tried to translate the advantages of CNNs into a new plane. Instead of

searching for small constituents of the desired pattern in an image, we will be looking for small

components of patterns from price candles and indicator values in the input data stream. By doing so,

we will try to eliminate the influence of noise fluctuations on the overall result.

Furthermore, one of the major advantages of convolutional neural networks lies in the fact that the

network learns the filters during the training process.

Let's delve into the architectures of this solution and get to know it more closely. 

4.1.1 Description of architecture and implementation principles

Convolutional networks, in comparison with a fully connected perceptron, have two new types of layers:

convolutional (filter) and pooling (subsampling). Alternating, the specified layers are designed to

highlight the main components and filter out noise in the original data while simultaneously reducing the

dimensionality (volume) of the data, which is then fed into a fully connected perceptron for decision-

making. Depending on the tasks to be solved, it is possible to consistently use several groups of

alternating convolutional and subsample layers.

Convolutional neural network
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The Convolution layer is responsible for recognizing objects in the source data set. In this layer,

sequential operations of mathematical convolution of the original data with a small template (filter) are

carried out, acting as the convolution kernel.

Convolution is an operation in functional analysis that, when applied to two functions f and g,

returns a third function corresponding to the cross-correlation function of f(x) and g(-x). The

operation of convolution can be interpreted as the "similarity" of one function to the mirrored and

shifted copy of another.

In other words, the convolutional layer searches for a template element in the entire original sample. At

the same time, on each iteration, the template is shifted across the array of original data with a

specified step, which can be from 1 to the size of the template. If the magnitude of the shift step is

smaller than the size of the template, then such convolution is called overlapping.

As a result of the convolution operation, we obtain a feature array that shows the similarity of the

original data to the desired template at each iteration. Activation functions are used for data

normalization. The size of the obtained array will be smaller than the array of original data, and the

number of such arrays is equal to the number of templates (filters).

It is also important for us to note that the templates themselves are not specified during the design of

the neural network but are selected during the training process.

Next subsample layer is used to reduce the size of the feature array and filter noise. The application of

this iteration is based on the assumption that the similarity of the original data to the template is

primary, and the exact coordinates of the feature in the array of original data are not so important.

This allows addressing the scaling issue, as it permits some variability in the distance between the

sought-after objects.

At this stage, data is condensed by maintaining the maximum or average value within a specified

window. This way, only one value per data window is saved. Operations are carried out iteratively,

shifting the window by a specified step with each new iteration. Data compaction is performed

separately for each array of features.

Pooling layers with a window and a step of two are often used, which makes it possible to halve the size

of the feature array. However, in practice, it is also possible to use a larger window. Furthermore,

consolidation iterations can be carried out both with overlapping (when the step size is smaller than the

window size) and without.

At the output of the pooling layer, we obtain arrays of features of smaller dimensions. 

Depending on the complexity of the tasks being solved, after the pooling layer, it is possible to use one

or several groups of convolutional and pooling layers. The principles of their construction and

functionality comply with the principles described above.

In the general case, after one or several groups of "convolution + compaction", arrays of features

obtained from all filters are gathered into a single vector and fed into a multilayer perceptron for the

neural network's decision-making.

Convolutional neural networks are trained by the well-known method of error backpropagation. This

method belongs to the unsupervised learning methods and imply propagating the error gradient from
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the output layer of neurons through hidden layers to the input layer of neurons with adjustment of

weights towards the anti-gradient.

Convolutional neural networks are trained by the well-known method of error backpropagation.

In the pooling layer, the error gradient is calculated for each element in the feature array, analogous to

the gradients of neurons in a fully connected perceptron. The algorithm for transferring the gradient to

the previous layer depends on the compaction operation used. If only the maximum value is taken, then

the entire gradient is passed to the neuron with the maximum value. For the other elements within the

consolidation window, a zero gradient is set, as during the forward pass they did not influence the final

result. If the operation of averaging is used within the window, then the gradient is evenly distributed to

all elements within the window.

Weights are not used in the compaction operation, therefore, nothing is adjusted during the training

process.

Operations are somewhat more complicated when training the neurons of the convolutional layer. The

error gradient is calculated for each element of the feature array and descends to the corresponding

neurons of the previous layer. The process of training the convolutional layer is based on convolution

and reverse convolution operations.

To propagate the error gradient from the pooling layer to the convolutional layer, first, the edges of the

error gradient array, obtained from the pooling layer, are padded with zero elements, and then a

convolution of the resulting array is performed with the convolution kernel rotated by 180°. The output

is an array of error gradients equal to the input data array, in which the gradient indices will correspond

to the index of the corresponding neuron of the previous layer.

To obtain the weight deltas, convolution is performed between the matrix of input values and the matrix

of error gradients of this layer, rotated by 180°. The output is an array of deltas with a size equal to

the convolution core. The resulting deltas should be adjusted for the derivative of the activation

function of the convolutional layer and the learning coefficient. After that, the weights of the

convolution core change by the value of the corrected deltas.

It probably sounds rather hard to understand. Let's try to clarify these points while considering the

code in detail.

4.1.2 Construction using MQL5

As we have already seen in the description of the convolutional network architecture. To construct it,

we need to create two new types of neural layers: convolutional and pooling. The first is responsible for

data filtering and extracting the desired data, while the second is for pinpointing the points of maximum

correspondence to the filter and reducing the data array's dimensionality. The convolutional layer has a

weight matrix, but it is much smaller than the weight matrix of a fully connected layer due to the fact

that it is searching for a small pattern. As for the pooling layer, it has no weighting coefficients at all.

This reduction in the dimension of the weight matrix makes it possible to reduce the number of

mathematical calculations and thereby increase the speed of information processing. At the same time,

the number of operations decreases both during the forward and backward passes. Therefore, the time

required to train the neural network is significantly reduced. The ability of the algorithm to filter out

noise allows you to improve the quality of the neural network.
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Pooling layer

We begin the implementation of the algorithm by constructing a pooling layer. To do this, we will create

a class CNeuronProof. We have previously voiced the idea that for the continuity of neural layers, they

will all inherit from one base class. Adhering to this concept, we will inherit the new neural layer from

the previously created CNeuronBase class. The inheritance will be public. Therefore, all methods not

overridden within the CNeuronProof class will be accessible from the parent class.

To cover additional requirements due to the peculiarities of the convolutional network algorithm, we will

add variables to the new class to store additional information:

· m_ iWindow – window size at the input of the neural layer

· m_ iStep – step size of the input window

· m_ iNeurons – output size of one filter

· m_ iWindowOut – number of filters

· m_ eActivation – activation function

Note that, unlike the base class CNeuronBase, we did not use a separate activation function class

CActivation but introduced a new variable m_ eActivation. The reason is that the pooling layer does not

use the activation function in the previously considered form. Its functionality is slightly different here.

Usually, the result of the pooling layer is the maximum or the arithmetic mean value of the analyzed

window. Therefore, we implement new functionality within the methods of this class and will create a

new enumeration with two elements:

· AF_ AVERAGE_ POOLING – the arithmetic mean of the input data window

· Af_ MAX_ POOLING – the maximum value of the input data window

At the same time, we deliberately will not make changes to the code of the base class regarding new

activation functions, as they will not be used in other neural layer architectures.

//--- activation functions of the pooling layer

enum ENUM_PROOF

  {

   AF_MAX_POOLING,

   AF_AVERAGE_POOLING

  };

Another feature of the pooling layer is the absence of a weight matrix. Therefore, the layer will not

participate in the process of training and updating the weights. In this case, we can even delete some

objects to free up memory. At the same time, the pooling layer cannot be completely excluded from

the backward pass, as it will be involved in the propagation of the error gradient. To avoid cluttering the

dispatcher class methods with excessive checks and at the same time to exclude the invocation of

unnecessary parent class methods, we will replace a number of methods with "stubs" that will return

the value required for the normal operation of the integrated neural network algorithm.

· CalcOutputGradient always returns false because it is not intended to use the layer as an output

layer for the neural network.

· CalcDeltaWeights and UpdateWeights always return true. The absence of a weight matrix makes

these methods redundant, but for the correct operation of the entire model, it is necessary to

return a positive result from the methods.

· GetWeights and GetDeltaWeights always return NULL. Methods have been overridden to prevent

errors due to accessing a non-existent object.
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Let's add another method to return the number of elements in the output of one filter and we will get

the following class structure.

class CNeuronProof    :  public CNeuronBase

  {

protected:

   uint              m_iWindow;             //Window size at the input of the neural layer

   uint              m_iStep;               //Input window step size

   uint              m_iNeurons;            //Output size of one filter

   uint              m_iWindowOut;          //Number of filters

   ENUM_PROOF        m_eActivation;         //Activation function

public:

                     CNeuronProof(void);

                    ~CNeuronProof(void) {};

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcOutputGradient(CBufferType *target) override;

                                                               { return false;}

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                         VECTOR &Beta, VECTOR &Lambda) override

                                                               { return true; }

   //---

   virtual CBufferType     *GetWeights(void)       const {  return(NULL);     }

   virtual CBufferType     *GetDeltaWeights(void)  const {  return(NULL);     }

   virtual uint      GetNeurons(void)              const {  return m_iNeurons;}

   //--- Methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- Object identification method

   virtual int       Type(void) override      const { return(defNeuronProof); }

  };

In the class constructor, we only initialize the added variables using initial values.

CNeuronProof::CNeuronProof(void) :  m_eActivation(AF_MAX_POOLING),

                                    m_iWindow(2),

                                    m_iStep(1),

                                    m_iWindowOut(1),

                                    m_iNeurons(0)

  {

  }

We did not add any new objects, and the destructor of the base class is responsible for deleting those

created in the base class. Therefore, the destructor of our class will remain empty.

Let's look further at the methods of the new class of pooling layer CNeuronProof. Let's examine the Init

method that initializes the neural layer. In the parameters, the method, similar to the method of the

parent class, receives a layer description object. At the beginning of the method, we check the validity

of the received object as well as the match between the required layer and the current neural network

class.



4. Basic types of neural layers

296

4.1 Convolutional neural networks

bool CNeuronProof::Init(const CLayerDescription *description)

  {

//--- control block

   if(!description || description.type != Type() ||

      description.count <= 0)

      return false;

After successfully passing the initial check, we will save and verify the parameters of the created layer:

· input window size

· input window step

· the number of filters

· the number of elements at the output of one filter

All specified parameters must be non-zero positive values.

//--- Save constants

   m_iWindow = description.window;

   m_iStep = description.step;

   m_iWindowOut = description.window_out;

   m_iNeurons = description.count;

   if(m_iWindow <= 0 || m_iStep <= 0 || m_iWindowOut <= 0 || m_iNeurons <= 0)

      return false;

Let's also check the specified activation function. For the pooling layer, we can only use two variants of

the activation function, AF_ AVERAGE_ POOLING and AF_ MAX_ POOLING. In other cases, we will exit the

method with the result false.

//--- Checking the activation function

   switch((ENUM_PROOF)description.activation)

     {

      case AF_AVERAGE_POOLING:

      case AF_MAX_POOLING:

         m_eActivation = (ENUM_PROOF)description.activation;

         break;

      default:

         return false;

         break;

     }

After successfully passing all the control blocks, we proceed directly to the initialization of the neural

layer. First, we initialize the results vector m_ cOutputs with zero values. We will create this buffer in the

form of a rectangular matrix, with its rows representing individual filters.

//--- Initializing the results buffer

   if(!m_cOutputs)

      if(!(m_cOutputs = new CBufferType()))

         return false;

   if(!m_cOutputs.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

The use of matrices allows us to distribute data across filters within the scope of a single object. This

gives us the opportunity to use a transparent data structure and exchange data between CPU and
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OpenCL context. This will allow us to gain a little time when transferring data and organize parallel

processing of data by all filters at once.

A similar approach is used for the m_ cGradients error gradient buffer.

//--- Initialize the error gradient buffer

   if(!m_cGradients)

      if(!(m_cGradients = new CBufferType()))

         return false;

   if(!m_cGradients.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

After completing the initialization of the result and gradient buffers, we will remove unused objects and

exit the method with a positive result.

//---

   m_eOptimization = None;

//--- Deleting unused objects

   if(!!m_cActivation)

      delete m_cActivation;

   if(!!m_cWeights)

      delete m_cWeights;

   if(!!m_cDeltaWeights)

      delete m_cDeltaWeights;

   for(int i = 0; i < 2; i++)

      if(!!m_cMomenum[i])

         delete m_cMomenum[i];

//---

   return true;

  }

Now that we have completed the initialization of the neural layer, let's move on to implementing the

feed-forward pass in the FeedForward method. Similar to the previous method, the forward pass

method is constructed following the concept of inheritance and overriding virtual methods of the base

class while adding new functionality. In its parameters, the method receives a pointer to an object of

the previous neural layer. As always, at the beginning of the method, we will set up a validation block to

check the input data. Here, we are checking the validity of pointers to the previous neural layer and the

result buffers of both the previous and current neural layers.

bool CNeuronProof::FeedForward(CNeuronBase *prevLayer)

  {

//--- Control block

   if(!prevLayer || !m_cOutputs ||

      !prevLayer.GetOutputs())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

After successfully passing the control block, we will save a pointer to the result buffer of the previous

layer and create a branching algorithm in the method based on the computational device in use: CPU or

OpenCL context. We will return to the multi-threaded calculation algorithm a little later. Now, let's

consider the implementation in MQL5.

Once again, we emphasize that the subsample layer does not have a weight matrix. And just like all

other neural layers, it uses the same activation function for all neurons and filters. So, the difference
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between the filter outputs can only occur when different input data is used. In other words, the number

of filters in the pooling layer must match the number of filters in the preceding convolutional layer. So,

we will first copy the original data matrix and reformat it if necessary.

//--- Branching of the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

      MATRIX inputs = input_data.m_mMatrix;

      if(inputs.Rows() != m_iWindowOut)

        {

         ulong cols = (input_data.Total() + m_iWindowOut - 1) / m_iWindowOut;

         if(!inputs.Reshape(m_iWindowOut, cols))

            return false;

        }

It should be noted that despite the assumption of using a pooling layer after convolutional layers, our

method allows for its use after the base class of a fully connected neural layer. That is why we copy the

initial data matrix. This allows us to seamlessly reformat it into the desired format without the fear of

disrupting the structure of the preceding layer.

It must be noted that MQL5 does not support three-dimensional matrices. Therefore, from this point

on, we will need to work separately for each filter. First, we will create a local matrix with the number

of rows and columns equal to the dimensions of the results of one filter and the input window,

respectively. We organize two nested loops: an outer loop with a number of iterations equal to the

number of filters, and an inner loop with a number of iterations equal to the number of elements in one

filter of the current layer.

//--- Create a local matrix to collect data from one filter

      MATRIX array = MATRIX::Zeros(m_iNeurons, m_iWindow);

      m_cOutputs.m_mMatrix.Fill(0);

//--- Filter iteration cycle

      for(uint f = 0; f < m_iWindowOut; f++)

        {

//--- Loop through the elements of the results buffer

         for(uint o = 0; o < m_iNeurons; o++)

           {

            uint shift = o * m_iStep;

            for(uint i = 0; i < m_iWindow; i++)

               array[o, i] = ((shift + i) >= inputs.Cols() ? 0 :

                              inputs[f, shift + i]);

           }

In the inner loop, we implement another nested loop. In its body, we will distribute the input data of one

filter into the previously created matrix according to the size of the data window and its step. The use

of a loop is driven by the need for a unified approach in cases where the size and stride are not equal.

After distributing the initial data, we will use matrix operations according to the given activation

function. The resulting vector is stored in the results matrix. The row of the results matrix corresponds

to the number of the analyzed filter.
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//--- Saving the current result in accordance with the activation function

         switch(m_eActivation)

           {

            case AF_MAX_POOLING:

               if(!m_cOutputs.Row(array.Max(1), f))

                  return false;;

               break;

            case AF_AVERAGE_POOLING:

               if(!m_cOutputs.Row(array.Mean(1), f))

                  return false;

               break;

            default:

               return false;

           }

        }

     }

I use the term 'filter' to maintain a clear chain in your understanding: the filter from the convolutional

layer transitions to the filter in the pooling layer. Iterations of the pooling layer can hardly be called a

filter. At the same time, I want it to be clear in your understanding that the convolutional and pooling

layers, while organized into two objects of neural layers, form a single integrated structure. Therefore

the same terminology is used.

After successfully completing all iterations of the loop system, we exit the method with the result true.

   else

     {

//--- The multi-threaded calculation block will be added in the next chapter

      return false;

     }

//--- Successful completion of the method

   return true;

  }

The feed-forward pass is followed by the backpropagation pass. The absence of a weight matrix in the

pooling layer allows the backpropagation pass to be organized in a single method, unlike the base class

of the neural network CNeuronBase, in which the backpropagation pass is divided into several functional

methods.

Essentially, for the pooling layer, the backpropagation pass is the CalcHiddenGradient method that

propagates the error gradient to the hidden layer. We have replaced the remaining methods with

placeholders, as mentioned earlier.

The CalcHiddenGradient method itself is built within the framework of our concept of using a single

format of virtual methods for all classes of neural networks with common inheritance from a single base

class of the neural layer. Therefore, similar to the method of the base class of the neural layer

CNeuronBase::CalcHiddenGradient, the method receives a pointer to the object of the previous neural

layer in its parameters. At the beginning of the method, a control block for checking incoming data is

organized. Here, we are checking the correctness of the pointer received as a parameter, which points

to the object of the previous neural layer, and the presence of active result buffers and error gradients

in the previous layer. We also check the correctness of the result buffers and error gradients of the

current layer.
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bool CNeuronProof::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- Control block

   if(!prevLayer || !m_cOutputs ||

      !m_cGradients || !prevLayer.GetOutputs() ||

      !prevLayer.GetGradients())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   CBufferType *input_gradient = prevLayer.GetGradients();

   if(!input_gradient.BufferInit(input_data.Rows(), input_data.Cols(), 0))

      return false;

After successfully passing the control block, similar to the forward pass method, we will copy and

reformat the matrix of input data. We will also create a zero local matrix of similar size, to accumulate

error gradients.

Note that in the base neural layer class, we did not pre-zero the gradient buffer. The difference lies in

the approach to passing the error gradients to the previous layer. The base class algorithm includes

recalculation and saving of the gradient value for each element. With this approach, pre-clearing the

buffer doesn't make sense because any value will be overwritten with a new one. In the pooling layer

algorithm, recording the error gradient into each buffer element of the previous layer is only envisaged

when using Average Pooling (arithmetic mean value). In the case of Max Pooling (maximum value), the

error gradient is transferred only to the element with the maximum value, because only it affects the

subsequent result of the neural network. The remaining elements receive a zero error gradient.

Therefore, we immediately clear the entire buffer and only insert the gradient value for elements that

affect the result.

Next, we divide the algorithm depending on the computational device. We will not now discuss the

implementation of multi-threaded calculations in OpenCL but will focus on implementation using MQL5.

Here, just like in the forward pass, we organize a system of nested loops to iterate through filters and

their elements. Inside the loops, the error gradient is distributed to the elements of the previous layer

depending on the activation function.
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//--- Branching of the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

      MATRIX inputs = input_data.m_mMatrix;

      ulong cols = (input_data.Total() + m_iWindowOut - 1) / m_iWindowOut;

      if(inputs.Rows() != m_iWindowOut)

        {

         if(!inputs.Reshape(m_iWindowOut, cols))

            return false;

        }

//--- Create a local matrix to collect data from one filter

      MATRIX inputs_grad = MATRIX::Zeros(m_iWindowOut, cols);
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//--- Filter iteration cycle

      for(uint f = 0; f < m_iWindowOut; f++)

        {

//--- Loop through the elements of the results buffer

         for(uint o = 0; o < m_iNeurons; o++)

           {

            uint shift = o * m_iStep;

            TYPE out = m_cOutputs.m_mMatrix[f, o];

            TYPE gradient = m_cGradients.m_mMatrix[f, o];

 //--- Propagate the gradient in accordance with the activation function

            switch(m_eActivation)

              {

               case AF_MAX_POOLING:

                  for(uint i = 0; i < m_iWindow; i++)

                    {

                     if((shift + i) >= cols)

                        break;

                     if(inputs[f, shift + i] == out)

              {

                        inputs_grad[f, shift + i] += gradient;

                        break;

                       }

                    }

                  break;

               case AF_AVERAGE_POOLING:

                  gradient /= (TYPE)m_iWindow;

                  for(uint i = 0; i < m_iWindow; i++)

                    {

                     if((shift + i) >= cols)

                        break;

                     inputs_grad[f, shift + i] += gradient;

                    }

                  break;

               default:

                  return false;

              }

           }

        }

//--- copy the gradient matrix to the buffer of the previous neural layer

      if(!inputs_grad.Reshape(input_gradient.Rows(), input_gradient.Cols()))

         return false;

      input_gradient.m_mMatrix = inputs_grad;

     }

When using the arithmetic average (AF_ AVERAGE_ POOLING), the error gradient is equally distributed to

all elements in the input data window corresponding to the result element.

When using the maximum value (AF_ MAX_ POOLING), the entire error gradient is passed on to the

element with the maximum value. Moreover, when there are multiple elements with the same maximum

value, the error gradient is passed to the element with the minimum index in the result buffer of the

previous layer. This choice was made deliberately to enhance the overall efficiency of the neural

network. The reason for this is that when passing the same gradient to elements with the same value,
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we risk getting into a situation where two or more neurons will work synchronously, producing identical

results. Duplicating the signal with different neurons doesn't increase the significance of the signal; it

only reduces the efficiency of the neural network's operation. After all, when working synchronously,

the efficiency of such neurons becomes equal to the work of one neuron. Therefore, by passing the

error gradient to only one neuron, we hope that the next time, another element will receive a different

gradient value and disrupt the synchronization of neurons' operation.

After filling the local gradient matrix, we transfer the obtained result to the gradient buffer of the

previous layer and exit the method with the result of the operations.

   else

     {

//--- The multi-threaded calculation block will be added in the next chapter

      return false;

     }

//--- Successful completion of the method

   return true;

  }

The methods discussed above describe the main functionality of the pooling layer. For the

completeness of the class functionality, it's necessary to add methods for working with files to save

information about the trained neural network to a file. The main characteristic of the pooling layer is

the absence of a weight matrix. Hence, there are no trainable elements and no need to store any data

buffers. To fully restore the functionality of the layer, it's sufficient to save the values of its variables

that define the operational parameters of the class.

· m_ iWindow – window size at the input of the neural layer

· m_ iStep – step size of the input window

· m_ iNeurons – output size of one filter

· m_ iWindowOut – number of filters

· m_ eActivation – activation function
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bool CNeuronProof::Save(const int file_handle)

  {

//--- Control block

   if(file_handle == INVALID_HANDLE)

      return false;

//--- Save constants

   if(FileWriteInteger(file_handle, Type()) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iWindow) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iStep) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iWindowOut) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iNeurons) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_eActivation) <= 0)

      return false;

//--- Successful completion of the method

   return true;

  }

The method for restoring the layer from a file is slightly more complex than the method for saving it. In

this case, I think the term 'recovery' is more appropriate than 'loading'. This is due to the fact that we

will not read any information about training and development of the method from the file. From the file,

we first read the layer parameters, which contain roughly the same amount of information as we pass

in the initialization method in the layer description object. Then we initialize the result and error

gradient buffers. 
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bool CNeuronProof::Load(const int file_handle)

  {

//--- Control block

   if(file_handle == INVALID_HANDLE)

      return false;

//--- Load constants

   m_iWindow = (uint)FileReadInteger(file_handle);

   m_iStep = (uint)FileReadInteger(file_handle);

   m_iWindowOut = (uint)FileReadInteger(file_handle);

   m_iNeurons = (uint)FileReadInteger(file_handle);

   m_eActivation = (ENUM_PROOF)FileReadInteger(file_handle);

//--- Initialize the results buffer

   if(!m_cOutputs)

     {

      m_cOutputs = new CBufferType();

      if(!m_cOutputs)

         return false;

     }

   if(!m_cOutputs.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

//--- Initialize the error gradient buffer

   if(!m_cGradients)

     {

      m_cGradients = new CBufferType();

      if(!m_cGradients)

         return false;

     }

   if(!m_cGradients.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

//---

   return true;

  }

At this stage, we can say that we have completed the first part of the work on constructing

convolutional neural network objects. Now we will move on to the second stage, building a convolutional

layer class.

Convolutional layer

The construction of the convolutional layer is carried out in the CNeuronConv class, which we will

inherit from the CNeuronProof pooling layer class created above. Inheriting from the pooling layer class

does not violate our concept of having all classes in our neural network inherit from a common base

class. The pooling layer class is a direct descendant of the base class, and all its descendants will also

be descendants of the base class.

At the same time, by inheriting from the pooling layer class, we immediately gain access to all the

added and overridden functionality, including variables for working with data windows. Moreover,

inheriting objects and variables reinforces the connection between classes and underscores the unity of

approaches in data processing.

Thus, thanks to inheritance, in the convolutional layer class CNeuronConv, we will use objects and

variables declared in the parent classes. We don't need to declare any new objects and variables. As a
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consequence, the constructor and destructor of our class remain empty methods. At the same time,

the convolutional layer class uses the weight matrix. In this case, we will need to override some

previously set stubs.

· UpdateWeights completely satisfies the algorithm of the method of the base class CNeuronBase, so

let's call its execution.

· GetWeights and GetDeltaWeights return pointers to the corresponding data buffers.

As a result, the class structure will take the following form.

class CNeuronConv    :  public CNeuronProof

  {

public:

                     CNeuronConv(void) {};

                    ~CNeuronConv(void) {};

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer);

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer);

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer);

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda)

     {

      return CNeuronBase::UpdateWeights(batch_size, learningRate,

                                        Beta, Lambda);

     }

   //---

   virtual CBufferType*  GetWeights(void)      const { return(m_cWeights);     }

   virtual CBufferType*  GetDeltaWeights(void) const { return(m_cDeltaWeights);}

   bool              SetTransposedOutput(const bool value);

   //--- methods for working with files

   virtual bool      Save(const int file_handle);

   virtual bool      Load(const int file_handle);

   //--- object identification method

   virtual int       Type(void)       const { return(defNeuronConv); }

  };

Let's examine the implementation of the Init method that initializes the convolutional layer. It partially

combines the initialization methods of both parent classes. Unfortunately, we cannot use any of them:

in the initialization method of the base class, buffers of incorrect sizes will be created and will still need

to be overridden, and in the initialization method of the pooling layer, objects that will need to be

recreated later are deleted. Therefore, we will write the entire algorithm into the method.

Like similar methods in the parent classes, the initialization method receives a pointer to an object

describing the created neural layer in its parameters. As before, the method starts with a control block

in which we validate the received pointer, the specified type of the layer being created, and the layer

parameters.
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bool CNeuronConv::Init(const CLayerDescription *desc)

  {

//--- control block

   if(!desc || desc.type != Type() || desc.count <= 0 || desc.window <= 0)

      return false;

After executing the control block, we save the layer parameters into special variables and initialize the

necessary buffers.

//--- save constants

   m_iWindow = desc.window;

   m_iStep = desc.step;

   m_iWindowOut = desc.window_out;

   m_iNeurons = desc.count;

//--- save parameter optimization method

   m_eOptimization = desc.optimization;

First, we initialize the results buffer m_ cOutputs. Similar to the pooling layer, we set the number of rows

and columns of the buffer matrix equal to the number of filters and the number of elements in one filter,

respectively. The buffer is initialized with zero values. 

Next, we initialize the m_ cGradients error gradient buffer with zero values. We set its size equal to the

size of the m_ cOutputs results buffer.

//--- initialize the results buffer

   if(!m_cOutputs)

      if(!(m_cOutputs = new CBufferType()))

         return false;

//--- initialize the error gradient buffer

   if(!m_cGradients)

      if(!(m_cGradients = new CBufferType()))

         return false;

   if(!m_cOutputs.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

   if(!m_cGradients.BufferInit(m_iWindowOut, m_iNeurons, 0))

      return false;

Next, we will need to initialize an instance of the activation function object. As you may recall, during

the development of the base neural layer class, we decided to separate all the work related to

initializing the activation function instance into a separate method called SetActivation. Here we just

call this method of the parent class, and check the result of the operations.

//--- initialize the activation function class

   VECTOR params=desc.activation_params;

   if(!SetActivation(desc.activation, params))

      return false;

Then we initialize the weight matrix with random values. The number of rows in the weight matrix is

equal to the number of filters being used, and the number of columns in the matrix is one greater than

the size of the analyzed window. The added element is used for bias. The matrix is initialized with

random values.
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//--- initialize the weight matrix buffer

   if(!m_cWeights)

      if(!(m_cWeights = new CBufferType()))

         return false;

   if(!m_cWeights.BufferInit(desc.window_out, desc.window + 1))

      return false;

   double weights[];

   double sigma = desc.activation == AF_LRELU ?

                  2.0 / (double)(MathPow(1 + desc.activation_params[0], 2) *

                                                                 desc.window) :

                  1.0 / (double)desc.window;

   if(!MathRandomNormal(0, MathSqrt(sigma), m_cWeights.Total(), weights))

      return false;

   for(uint i = 0; i < m_cWeights.Total(); i++)

      if(!m_cWeights.m_mMatrix.Flat(i, (TYPE)weights[i]))

         return false;

At the end of the method, we initialize the buffers involved in the learning process. These are: a buffer

of weight deltas (also known as a buffer of accumulated gradients) and moment buffers. Recall that the

number of moment buffers used depends on the user-specified method for optimizing model

parameters. The sizes of the specified buffers will correspond to the size of the weights matrix.
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//--- initialize the gradient buffer at the weight matrix level

   if(!m_cDeltaWeights)

      if(!(m_cDeltaWeights = new CBufferType()))

         return false;

   if(!m_cDeltaWeights.BufferInit(desc.window_out, desc.window + 1, 0))

      return false;

//--- initialize moment buffers

   switch(desc.optimization)

     {

      case None:

      case SGD:

         for(int i = 0; i < 2; i++)

            if(m_cMomenum[i])

               delete m_cMomenum[i];

         break;

      case MOMENTUM:

      case AdaGrad:

      case RMSProp:

         if(!m_cMomenum[0])

            if(!(m_cMomenum[0] = new CBufferType()))

               return false;

         if(!m_cMomenum[0].BufferInit(desc.window_out, desc.window + 1, 0))

            return false;

         if(m_cMomenum[1])

            delete m_cMomenum[1];

         break;

      case AdaDelta:

      case Adam:

         for(int i = 0; i < 2; i++)

           {

            if(!m_cMomenum[i])

               if(!(m_cMomenum[i] = new CBufferType()))

                  return false;

            if(!m_cMomenum[i].BufferInit(desc.window_out, desc.window + 1, 0))

               return false;

           }

         break;

      default:

         return false;

         break;

     }

   return true;

  }

After initializing the class, we will move on to the forward pass method, which we will create in the

overridden virtual method FeedForward. This way, we continue to exploit the concepts of inheritance

and virtualization of class methods. In its parameters, the feed-forward pass method receives a pointer

to the object of the previous layer, just like all the similar methods in the parent classes.

At the beginning of the method, as usual, we will insert a control block for checking the source data. In

this method, we validate the received pointer to the object of the preceding neural layer and check for

the presence of an 'active' result buffer in it. We also check whether the result buffer and weight matrix
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of the current layer have been created. To simplify the data access procedure for the result buffer of

the preceding layer, we will store a pointer to this object in a local variable.

bool CNeuronConv::FeedForward(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !m_cOutputs || !m_cWeights || !prevLayer.GetOutputs())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   ulong total = input_data.Total();

Next, we divide the algorithm into two threads depending on the execution device. We will discuss the

algorithm for constructing multi-threaded calculations using OpenCL technology in the next chapter.

Now let's look at the algorithm for arranging operations using MQL5.

The forward pass convolutional layer algorithm will somewhat resemble the similar pooling layer

method. This is quite understandable: both layers work with a data window, which moves through the

initial data array with a given step. Differences exist in the methods for processing the set of values

that fall into the window.

Another difference lies in the approach to the perception of the array of initial data. The pooling layer in

the convolutional neural network algorithm is placed after the convolutional layer, which can contain

multiple filters. Consequently, the result buffer will contain the results of processing the data by

multiple filters. The pooling layer is supposed to separate the results of one filter from another. In the

convolutional layer, I chose to simplify this aspect, so I treat the entire input array as a single vector of

input data. This approach allows us to simplify the method algorithm without losing the quality of the

neural network in general.

Let's return to the algorithm. Before using matrix operations, we need to transform the vector of input

data into a matrix with a number of rows equal to the number of elements in one filter. The number of

columns should correspond to the size of the analyzed window of input data. Here, there are two

possible scenarios: whether the size of the analyzed window is equal to its step or not.

In the first case, we can simply reformat the vector into a matrix. In the second case, we need to

create a loop system for copying data.
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//--- branching of the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

      MATRIX m;

      if(m_iWindow == m_iStep && total == (m_iNeurons * m_iWindow))

        {

         m = input_data.m_mMatrix;

         if(!m.Reshape(m_iNeurons, m_iWindow))

            return false;

        }

      else

        {

         if(!m.Init(m_iNeurons, m_iWindow))

            return false;

         for(ulong r = 0; r < m_iNeurons; r++)

           {

            ulong shift = r * m_iStep;

            for(ulong c = 0; c < m_iWindow; c++)

              {

               ulong k = shift + c;

               m[r, c] = (k < total ? input_data.At((uint)k) : 0);

              }

           }

        }

Then, we will add the bias vector, which includes a single column of ones, to the resulting matrix. We

multiply the resulting matrix by the transposed weight matrix.

//--- add a bias column

      if(!m.Resize(m.Rows(), m_iWindow + 1) ||

         !m.Col(VECTOR::Ones(m_iNeurons), m_iWindow))

         return false;

//--- Calculate the weighted sum of elements of the input window

      m_cOutputs.m_mMatrix = m_cWeights.m_mMatrix.MatMul(m.Transpose());

     }

Finally, we call the Activation method of the class of the activation function and terminate the method.

   else

     {

//--- The multi-threaded calculation block will be added in the next chapter

      return false;

     }

   if(!m_cActivation.Activation(m_cOutputs))

      return false;

//--- Successful completion of the method

   return true;

  }

After completing work on the feed-forward pass, we will move on to working on the backpropagation

pass. Unlike the pooling layer, the convolutional layer contains a weight matrix. Therefore, to organize

the pass, we need a full set of methods.
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A little ahead, I will say that the weight matrix update method from the base class is perfectly suitable.

However, since we inherited not directly from the CNeuronBaseclass but from a pooling layer

CNeuronProof, in which the method was replaced by a stub, we will have to forcefully turn to the base

class method.

bool CNeuronConv::UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda)

     {

      return CNeuronBase::UpdateWeights(batch_size, learningRate, Beta, Lambda);

     }

But let's return to the logical chain of the backpropagation algorithm and take a look at the method for

distributing the gradient through the hidden layer, CNeuronConv::CalcHiddenGradient.

If you look at the influence of the elements of the initial data on the elements of the results, you will

notice a dependence. Each element of the resulting vector analyzes a block of data from the initial data

vector in the size of the specified window. Similarly, each element of the initial data affects the value of

elements in the result vector within a certain influence window. The size of this window depends on the

step with which the input window moves across the source data array. With a step equal to one, both

windows are equal. However, as the step increases, the size of the influence window decreases.

Consequently, to propagate the error gradient, we need to collect error gradients from elements of the

subsequent layer within the influence window.

I propose to look at the practical implementation of this method. We continue working with the virtual

methods of the parent classes. In the parameters, the method receives a pointer to the object of the

previous layer. Following the same pattern as with other methods, we start with a data validation block

at the beginning of the method. Here, we validate the received pointer in the parameters and check for

the presence of valid objects for output value buffers and error gradients of the previous layer. We also

check for the presence of the error gradient buffer and weight matrix of the current layer.

bool CNeuronConv::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !prevLayer.GetGradients() ||

      !m_cGradients || !m_cWeights)

      return false;

After successfully passing the control block, we will adjust the error gradient by the derivative of the

activation function of the current layer.

//--- adjusting error gradients to the derivative of the activation function

   if(m_cActivation)

     {

      if(!m_cActivation.Derivative(m_cGradients))

         return false;

     }

Next comes the branching of the algorithm depending on the computing device used. We are currently

looking at the MQL5 branch.

The backpropagation method is the mirror of the forward pass method. During the feed-forward pass,

we first transfer the input data to a local matrix and then multiply it by the weight matrix. During the

backpropagation pass, we will first reformat the error gradient matrix received from the previous layer

into the required format and then multiply it by the weight matrix.
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//--- branching of the algorithm depending on the execution device

   CBufferType* input_gradient = prevLayer.GetGradients();

   if(!m_cOpenCL)

     {

      MATRIX g = m_cGradients.m_mMatrix;

      if(!g.Reshape(m_iWindowOut, m_iNeurons))

         return false;

      g = g.Transpose();

      g = g.MatMul(m_cWeights.m_mMatrix);

      if(!g.Resize(m_iNeurons, m_iWindow))

         return false;

As a result of matrix multiplication, we obtain a matrix of gradients for the previous layer. However, the

process becomes more complex due to the presence of the analyzed window and its step. If they are

equal, we just need to reformat the matrix and copy its value to the buffer of the previous layer. But if

the size of the analyzed window of the source data is not equal to its step, then we will need to organize

a loop system for copying and summing gradients. Indeed, in this case, one neuron of the source data

influences several neurons of the results of each filter.

      if(m_iWindow == m_iStep && input_gradient.Total() == (m_iNeurons * m_iWindow))

        {

         if(!g.Reshape(input_gradient.Rows(), input_gradient.Cols()))

            return false;

         input_gradient.m_mMatrix = g;

        }

      else

        {

         input_gradient.m_mMatrix.Fill(0);

         ulong total = input_gradient.Total();

         for(ulong r = 0; r < m_iNeurons; r++)

           {

            ulong shift = r * m_iStep;

            for(ulong c = 0; c < m_iWindow; c++)

              {

               ulong k = shift + c;

               if(k >= total)

                  break;

               if(!input_gradient.m_mMatrix.Flat(k,

                                  input_gradient.m_mMatrix.Flat(k) + g[r, c]))

                  return false;

              }

           }

        }

     }

After completing the loop iterations, we exit the method with a positive result.
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   else

     {

//--- The multi-threaded calculation block will be added in the next chapter

      return false;

     }

//--- Successful completion of the method

   return true;

  }

After distributing the gradient through the hidden layer, it's time to calculate the error gradient on the

elements of the weight matrix. After all, it is the weights that we will select for optimal operation of the

neural network. All the work on propagating the error gradient is necessary only to determine the

direction and magnitude of the weight adjustments. This approach makes selecting the optimal weight

matrix directed and controllable.

Work on distributing the error gradient over the elements of the weight matrix is implemented in the

CalcDeltaWeights method. This method is also virtual and is overridden in each class. In the

parameters, the method receives a pointer to the object of the previous layer. At the beginning of the

method, we immediately check the correctness of the received pointer and the presence of operational

data buffers in the current and previous neural layers. To calculate the gradient on the weight matrix,

we will need a buffer for incoming gradients, a buffer for input data (results from the previous layer),

and a buffer to store the obtained results (m_ cDeltaWeights). Let me remind you that our algorithm

includes gradient distribution at each iteration of the backward pass, and the weight matrix update is

triggered by a request from an external program. Therefore, in the m_ cDeltaWeights buffer, we will

accumulate the error gradient value. During the update, we will divide the accumulated value by the

number of completed iterations. Thus, we obtain the average error for each weight.

bool CNeuronConv::CalcDeltaWeights(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !m_cGradients || !m_cDeltaWeights)

      return false;

To simplify access to the data buffer of the previous layer, we will save the pointer to the object in a

local variable.

Next, we divide the algorithm into two logical threads of operations depending on the computational

device in use.

//--- branching of the algorithm depending on the execution device

   CBufferType *input_data = prevLayer.GetOutputs();

   if(!m_cOpenCL)

     {

We will discuss the implementation of the OpenCL algorithm in the next chapter. Now we will focus on

the implementation using MQL5.

We have a two-dimensional weight matrix, in which one dimension represents the filters of our layer.

Each row in the weight matrix is a separate filter. Therefore, the number of rows in the weight matrix is

equal to the number of filters used. The second dimension (columns) of the matrix represents the

elements of our filter, and their number is equal to the size of the input window plus bias.

However, since the filter window moves across the input data array, each element of the filter affects

the result of all elements in the vector of the current layer results. Therefore, for each filter element,
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we need to collect error gradients from all elements of the result vector, which are stored in the

m_ cGradientsbuffer. Vector operations will help us with this. But first, let me remind you that during the

forward pass, we transformed the vector of the original data. Let's repeat this process.

      MATRIX inp;

      uint input_total = input_data.Total();

      if(m_iWindow == m_iStep && input_total == (m_iNeurons * m_iWindow))

        {

         inp = input_data.m_mMatrix;

         if(!inp.Reshape(m_iNeurons, m_iWindow))

            return false;

        }

      else

        {

         if(!inp.Init(m_iNeurons, m_iWindow))

            return false;

         for(ulong r = 0; r < m_iNeurons; r++)

           {

            ulong shift = r * m_iStep;

            for(ulong c = 0; c < m_iWindow; c++)

              {

               ulong k = shift + c;

               inp[r, c] = (k < input_total ? input_data.At((uint)k) : 0);

              }

           }

        }

      //--- add a bias column

      if(!inp.Resize(inp.Rows(), m_iWindow + 1) ||

         !inp.Col(VECTOR::Ones(m_iNeurons), m_iWindow))

         return false;

Next, we will directly collect error gradients for filter elements. Similar to the fully connected layer, the

weight gradient in the convolutional layer is equal to the product of the neuron error gradient and the

value of the corresponding element of the input data. In terms of matrix operations, all we need to do is

multiply the gradient matrix before the activation function by the reformatted matrix of input data.

      MATRIX g = m_cGradients.m_mMatrix;

      if(!g.Reshape(m_iWindowOut, m_iNeurons))

         return false;

i      m_cDeltaWeights.m_mMatrix += g.MatMul(inp);

     }

We will add the obtained result to the previously accumulated error gradients in the m_ cDeltaWeights

matrix.
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   else

     {

//--- The multi-threaded calculation block will be added in the next chapter

      return false;

     }

//--- Successful completion of the method

   return true;

  }

We will become familiar with the algorithm for implementing multi-threaded computations in the next

chapter, and at this stage, we exit the method with a positive result.

We've already discussed the weight update method earlier. We still need to create methods for working

with files because we should have the ability to load and use a previously trained neural network. And

here, we will also use the previously created groundwork. We have already created similar methods for

two parent classes: the base class of the neural layer CNeuronBase, and the pooling layer

CNeuronProof. Pooling layer methods are greatly simplified since it does not contain a matrix of weights

and objects for its training. Therefore, we will use the base class method and force it to be called from

the CNeuronConv::Save method. This approach will help us eliminate unnecessary controls since they

are already implemented in the parent class method. We just have to check the result of the method.

But we need more than that because the pooling layer introduces new variables. Therefore, after

executing the parent class method, we will add the missing parameters to the file.

bool CNeuronConv::Save(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronBase::Save(file_handle))

      return false;

//--- save constant values

   if(FileWriteInteger(file_handle, (int)m_iWindow) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iStep) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iWindowOut) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_iNeurons) <= 0)

      return false;

   if(FileWriteInteger(file_handle, (int)m_bTransposedOutput) <= 0)

      return false;

//---

   return true;

  }

The data loading is organized on the same principle. First, we need to read the data from the file in the

same order in which it was written there. Hence, we will first call the method of the parent class. In it,

all the controls are already implemented, and the sequence of data loading is observed. We only need

to check the result returned by the parent class method, and after successful execution, read

additional parameters from the file in the same sequence in which they were saved.
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bool CNeuronConv::Load(const int file_handle)

  {

//--- calling the method of the parent class

   if(!CNeuronBase::Load(file_handle))

      return false;

//--- reading the values   of constants

   m_iWindow = (uint)FileReadInteger(file_handle);

   m_iStep = (uint)FileReadInteger(file_handle);

   m_iWindowOut = (uint)FileReadInteger(file_handle);

   m_iNeurons = (uint)FileReadInteger(file_handle);

   m_eActivation = -1;

//---

   if(!m_cOutputs.Reshape(m_iWindowOut, m_iNeurons))

      return false;

   if(!m_cGradients.Reshape(m_iWindowOut, m_iNeurons))

      return false;

//---

   return true;

  }

In this section, we created two new types of neural layers: pooling and convolutional. In the next

section, we will further enhance their functionality with the ability to use the OpenCL for organizing

parallel computations using multi-threading technologies. Then, in the comparative testing block, we

will assemble a small neural network and compare the performance of the new architectural solution

with the previously obtained testing results of fully connected neural networks.

4.1.3 Organizing parallel computing in convolutional networks using

OpenCL

In the previous section, we already created classes for two new types of neural layers. These are the

convolutional and pooling layers. These types of layers are key in the architecture of convolutional

neural networks. By alternating convolutional and pooling layers, we can create a model that searches

for the key components of the desired object in the array of source data while simultaneously reducing

the size of the processed information without sacrificing the overall performance of the model. This

approach also helps filter out noise from the source data.

Reducing the information volume leads to a reduction in the cost of processing it. Furthermore, we can

also parallelize computations in the convolutional and pooling layers using the technology of multi-

threaded calculations in OpenCL. This will help reduce the time required for calculations while

maintaining the overall operation volume, making the training and operation of the neural network much

faster.

To organize multi-threaded operations using OpenCL, we need to perform two blocks of operations:

· Write additional kernels in the previously created OpenCL program (opencl_ program.cl).

· Organize the process of interaction with the OpenCL context on the side of the main program.

Before organizing the transfer of data from the main program to the OpenCL context, it is necessary to

understand when and what data will be needed. Therefore, we will begin our work by making changes to

the OpenCL program.
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Pooling layer

The creation of kernels in the OpenCL program and the construction of classes in the main program will

start with the implementation of methods for the pooling layer. Feed-forward operations will be

implemented in the ProofFeedForward kernel. We will transfer two data buffers from the main program

to the kernel:

· inputs: a vector of input data

· outputs: a vector for writing results

To prevent an array out-of-bounds error, we will pass the size of the inputs_ total initial data vector to

the kernel in the parameters.

Let me remind you that in the convolutional neural networks algorithm, the pooling layer follows the

convolutional layer of neurons. In turn, the convolutional layer includes several filters. Therefore, when

receiving the results of the work of multiple filters from the convolutional layer in a single buffer, the

pooling layer should process each filter separately. Therefore, to logically divide the common buffer of

results of the convolutional layer by filters, the kernel will be given the size of the output vector of one

filter input_ neurons.

In the kernel parameters, we specify the window size for analyzing the initial data (window), the step

for moving the window (step), the number of filters (window_ out), and the activation function

(activation).

__kernel void ProofFeedForward(__global double *inputs,

                               __global double *outputs,

                               int inputs_total,

                               int input_neurons,

                               int window,

                               int step,

                               int activation)

We will run this kernel in a two-dimensional task space. Thus, in each kernel, we will process one

element of the results array in one filter. The number of the processed element will be determined by

the thread identifier in dimension with index 0. Therefore, the total number of threads will tell us the

number of elements in the output of one filter (neurons). Using this data, we will determine the offsets

to the beginning of the window of analyzed data within the filter array of the initial data (shift).

  {

   const int n = get_global_id(0);

   const int w = get_global_id(1);

   const int neurons = get_global_size(0);

   const int window_out = get_global_size(1);

   int shift = n * step;

The second dimension with index 1 will indicate the index of the analyzed filter. Accordingly, we will

determine the shift in the arrays of initial data (shift_ inp) and results (out) before the beginning of the

processed filter. Don't forget to check for any out-of-range errors within the result array.

Let's prepare a variable to store intermediate values of the current element of the result vector (s).
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   int out = w * neurons + n;

   int shift_inp = w * input_neurons;

   TYPE s = 0;

   TYPE k = (TYPE)1 / (TYPE)window;

   TYPE4 k4 = (TYPE4)(k);

The values in the pooling layer will be computed in a nested array. In it, we will iterate through the

elements of the input data that fall within the analyzed window and assemble the resulting value

according to the activation formula.

Let me remind you that in our implementation, the pooling layer can receive one of two activation

functions:

· Average pooling which involves taking the arithmetic mean of the elements within the input data

window.

· Max pooling which involves selecting the maximum element within the input data window.

When calculating the arithmetic mean, we will not collect the sum of all elements and then divide by

the size of the analyzed window. On the contrary, each element is first divided by the size of the

window, and then the resulting quotients are summed up. This will allow us to get the final result in the

body of the loop, eliminating the division operation behind the loop. The implementation of the division

operation behind the loop is not critical, but only if it concerns any variants of operations in the loop. In

our case, division is necessary only in the case of the arithmetic mean. When using Max pooling, the

division is redundant, and for correct operation, we would need an additional check of the activation

function. By moving the division inside the loop, we eliminate the need for an additional check for the

activation function and only apply it when calculating the actual value. 

Please note that we use vector operations with TYPE4 data type to speed up the process.

Consequently, the step of the loop through the elements of the window is equal to four.

   for(int i = 0; i < window; i += 4)

      switch(activation)

        {

         case 0:

            s += dot(ToVect4(inputs, i, 1, min(shift_inp+input_neurons,inputs_total),

                             shift_inp + shift), k4);

            break;

         case 1:

            s = Max4(ToVect4(inputs, i, 1, min(shift_inp+input_neurons,inputs_total), 

                             shift_inp + shift), s);

            break;

         default:

            break;

        }

   outputs[out] = s;

  }

After exiting the loop that iterates over the elements of the analyzed window, we will save the obtained

value into the corresponding element of the result vector and exit the kernel.

We have examined the feed-forward kernel and can now proceed to build the algorithm for the

backpropagation pass. As discussed earlier in the context of building the algorithm using MQL5, in the

pooling layer, the backpropagation pass algorithm involves simply propagating the error gradient
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through the hidden layer. Therefore, the process of constructing the backpropagation pass will consist

of writing the ProofCalcHiddenGradient gradient propagation kernel algorithm.

The new kernel will communicate with the external program through four data buffers:

· inputs: buffer for the results of the preceding layer

· gradient_ inputs: buffer for the gradients of the preceding layer (in this case, it is used to record the

results of the kernel operation)

· outputs: buffer for the results of the forward pass of the current layer

· gradients: buffer for the gradients at the results level of the current layer

Buffer size control will be organized using the inputs_ total and outputs_ total parameters. The names of

the parameters correspond to the buffers whose sizes they store.

It is important to note that, unlike a fully connected layer, neurons in the pooling layer have limited

connections to neurons in the previous layer. We will define connection zones using the window and

step parameters. You can see that parameters of the same name were declared in the forward pass

kernel. We have also retained their functional significance.

Let's add parameters for the number of elements per filter output and the activation function being

used.

__kernel void ProofCalcHiddenGradient(__global TYPE *inputs,

                                      __global TYPE *gradient_inputs,

                                      __global TYPE *outputs,

                                      __global TYPE *gradients,

                                      int inputs_total,

                                      int outputs_total,

                                      int window,

                                      int step,

                                      int neurons,

                                      int activation)

When organizing multi-threaded computations, it's important to consider the issue of concurrent

attempts to write to the same buffer elements from different threads. Therefore, the most suitable

algorithms are those in which each thread is provided with its own objects for writing data, and these

objects do not intersect with objects being written to by other threads.

Following the logic mentioned above, we will create an algorithm in which each thread will collect

gradients and write them to a separate element of the gradient buffer of the previous layer. It should

be noted that one difference in this approach compared to the one we adopted in the MQL5

implementation is as follows. When using the Max pooling activation function, if there are two or more

elements with values equal to the maximum, the gradient will be fully transferred to all such elements.

In contrast, in the implementation of the main program, we passed the gradient to only one element.

Considering the use of variables and their precision, we assess the risk of encountering such a situation

as minimal and accept it.

At the beginning of the kernel body, let's determine the ordinal number of the required element and the

filter by stream identifiers. The total number of threads will give us the number of elements of one filter

in the input data buffer (input_ neurons) and the number of filters (window_ out). Based on this data, we

determine the first (start) and last (stop) elements of the resulting vector, which are affected by the

processed element. When defining the influence zone, we need to keep in mind the limitations of the
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data buffer dimension for each filter. Therefore, the first element cannot be less than 0, and the last

element cannot be greater than the number of elements in one filter (neurons).

  {

   const int n = get_global_id(0);

   const int w = get_global_id(1);

   const int input_neurons = get_global_size(0);

   const int window_out = get_global_size(1);

//---

   int start = n - window + step;

   start = max((start - start % step) / step, 0);

   int stop = min((n - n % step) / step + 1, neurons);

Next, we determine the offset of the analyzed element in the common initial data buffer. At the same

time, do not forget to check for going beyond the array of initial data.

After that, we will prepare the necessary internal variables. First of all, this is a variable for collecting

intermediate values of the gradient (grad) and the value of the current element in the source data

buffer (inp).

The creation of the last condition is because when using Max pooling, we will need to constantly

compare the value of an element in the source data with the value from the results buffer. For technical

reasons, accessing internal variables is much faster than accessing elements of the global array buffer.

This is related to the storage location of the data. Internal variables are stored in private memory,

while buffers are stored in global memory. The size of the private memory is small, and we cannot copy

the entire array there, but accessing it takes minimal time. The size of the global memory is much

larger, but the access time to it is significantly longer. To reduce the overall running time of the

program, we will move a frequently used value from the global to the private memory of the OpenCL

context.

   TYPE grad = 0;

   int shift_inp = w * input_neurons + n;

   if(shift_inp >= inputs_total)

      return;

   TYPE inp = inputs[shift_inp];

Next, we will organize a nested loop in which we will iterate over the elements that fall within the

influence zone of the analyzed element of the input data. Inside the loop, we will first determine the

offset of the processed element in the gradient error buffer. We will immediately check if the error

gradients array falls within the boundaries. Then we will transfer the gradient in accordance with the

activation function used.

For Average pooling, we simply divide the value of the error gradient by the size of the input data

window and add the resulting value to the accumulated error gradient of the analyzed source data

element. Please note that we will divide the error gradient by the size of the input data window, and not

by the zone of influence. Indeed, the error obtained during the feed-forward pass is influenced by all the

elements of the input data that affect the specific value.

In the case of Max pooling, we will first compare the value of the corresponding elements at the output

and input of the neural layer. Only if they match will we transmit the error gradient in full.

After exiting the loop, we will save the computed gradient value in the gradient error buffer of the

previous layer and conclude the execution of the kernel.
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   for(int o = start; o < stop; o ++)

     {

      int shift_g = w * neurons + o;

      if(shift_g >= outputs_total)

         break;

      switch(activation)

        {

         case 0:

            grad += gradients[shift_g] / (TYPE)window;

            break;

         case 1:

            grad += (outputs[shift_g] == inp ? gradients[shift_g] : 0);

            break;

         default:

            break;

        }

     }

   gradient_inputs[shift_inp] = grad;

  }

The above two kernels cover the forward and backward pass processes in the pooling layer. Now we

can move on to working with the convolutional layer.

Convolutional layer

Convolutional layer For the convolutional layer, we also have to implement forward and backward pass

algorithms. Similarly to the kernels discussed earlier, the forward pass algorithm will be described in the

ConvolutionFeedForward kernel. A convolutional layer, like a fully connected one, has a weight matrix

and an activation function. Therefore, to communicate with the main program, we need four data

buffers:

· inputs: input data buffer

· weights: matrix of weights

· sums: vector of weighted sums of the original data before the activation function

· outputs: vector of results

In addition to buffers, for the proper functioning of the new kernel, the following parameters will be

required:

· inputs_ total: size of the input data array

· window: size of the analyzed window of the source data

· step: step of the source data window

· window_ out: number of filters in the layer
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__kernel void ConvolutionFeedForward(__global TYPE *inputs,

                                     __global TYPE *weights,

                                     __global TYPE *outputs,

                                     int inputs_total,

                                     int window,

                                     int step,

                                     int window_out)

Building the algorithm of the kernel itself is similar to constructing a similar kernel for a fully connected

neuron. Just like in the fully connected layer, the number of threads will be tied to the number of

elements in the output buffer. However, considering the specific nature of the convolutional layer's

operation, we will not be guided by the total number of elements in the buffer, but by the number of

elements in the results buffer of a single filter. In this case, the results of the n-th element of all filters

will be calculated in one thread.

At the beginning of the kernel, we will carry out preparatory work. We will determine the index of the

processed element in the filter results buffer based on the thread number. The total number of threads

will give us the number of elements in the output of each filter. From the obtained data and information

from the kernel parameters, we will calculate the offset to the beginning of the analyzed window in the

source data buffer and the size of the weight matrix being used.

  {

   const int n = get_global_id(0);

   const int neurons = get_global_size(0);

   const int weights_total = (window + 1) * window_out;

   int shift = n * step;

Since we decided to process all the filters sequentially in one thread, the next thing we do is organize a

filter iteration loop. Inside the loop, we determine the offset to the processed element in the general

result buffer and the offset in the weight matrix. At this point, we will also check for any out-of-bounds

access to the weight matrix and prepare an internal variable for collecting the resulting value. We will

initialize the variable with the bias element.

   for(int w = 0; w < window_out; w++)

     {

      int out = (transposed_out == 1 ? w + n * window_out : w * neurons + n);

      int shift_weights = w * (window + 1) ;

      if((shift_weights + window) >= weights_total)

         break;

      TYPE s = weights[shift_weights + window];

We will directly calculate the weighted sum of the analyzed input data window in a nested loop. Inside

this loop, we will iterate through the elements of the analyzed window of input data and multiply them

by the corresponding weight. To reduce the time spent on execution, we use vector operations. At the

same time, do not forget to increase the size of the cycle step to the size of the used vector variables.

      for(int i = 0; i < window; i += 4)

         s += dot(ToVect4(inputs, i, 1, inputs_total, shift),

                  ToVect4(weights, i, 1, shift_weights + window, shift_weights));

      outputs[out] = s;

     }

  }

After collecting the weighted sum, we write the resulting value to the result buffer.
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Next, we move on to creating kernels for the backward pass process. Unlike the pooling layer, the

convolutional layer contains a weight matrix. Therefore, we will need to create more than one kernel,

as in a similar process of a fully connected layer.

We will start building the process as before, following the algorithm of the backpropagation pass. We

will fully apply the adjustments of the gradient based on the derivative of the activation function, just as

we did for the fully connected layer. Let's start working on the convolutional layer by creating a

gradient propagation kernel through the ConvolutionCalcHiddenGradient layer.

In this case, propagating the gradient to the lower layer does not depend on the input data and the

results of the forward pass. Therefore, for our kernel to work, we will give it three data buffers:

· gradient_ inputs: buffer for the error gradients of the preceding layer (in this case, the result buffer)

· weights: weight matrix

· gradients: buffer for the error gradients at the input of the current layer

In addition to data buffers, a number of parameters are required for the correct operation of the

kernel:

· outputs_ total: total number of elements in the result buffer (gradients at the output of the current

neural layer);

· window: size of the input data window (the number of input data elements analyzed by one neuron

of the current layer);

· step: step of moving the window along the array of initial data;

· window_ out: number of filters in the current convolutional layer;

· neurons: number of elements at the output of one filter.

__kernel void ConvolutionCalcHiddenGradient(__global TYPE *gradient_inputs,

                                            __global TYPE *weights,

                                            __global TYPE *gradients,

                                            int window,

                                            int step,

                                            int window_out,

                                            int neurons)

The kernel will be launched in a multi-threaded mode with the number of threads equal to the number

of elements in the gradient error buffer of the previous layer, which is also equal to the number of

elements in the input data buffer.

As usual, at the beginning of the kernel, we determine the ordinal number of the element being

processed by the number of the current thread and the number of elements in the gradient buffer of

the previous layer by the total number of running threads. Additionally, we calculate the size of the

weight matrix based on the size of the input data window and the number of filters in the current

convolutional layer.

  {

   const int n = get_global_id(0);

   const int inputs_total = get_global_size(0);

   int weights_total = (window + 1) * window_out;

Continuing the preparatory work, let's determine the zone of influence of the current element in the

result buffer of one filter and prepare an internal variable to record the intermediate results of the

accumulation of the error gradient for the processed element.
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   TYPE grad = 0;

   int w_start = n % step;

   int r_start = max((n - window + step) / step, 0);

   int total = (window - w_start + step - 1) / step;

   total = min((n + step) / step, total);

Let me remind you that when creating the convolution layer class in the main program, we decided to

consider the array of initial data as a single whole and apply all filters to the total amount of data.

Therefore, each element of the input data affects the results of all filters. This means that we have to

collect the error gradient on each element of the initial data from all filters. Therefore, to collect error

gradients, we need a system of nested loops with iteration of filters and elements of each filter.

The outer loop iterates over the elements of the error gradient vector at the output of the current

neural layer. In it, we will determine the offset to a specific element in the gradient vector and

immediately check for going beyond the filter size.

   for(int i = 0; i < total; i ++)

     {

      int row = r_start + i;

      if(row >= neurons)

         break;

In the body of the nested loop, we will first determine the offset in the gradient buffer of the error at

the output of the current layer and the weight matrix. Then, we will add the product of the values of

these elements to the previously accumulated error gradient for the analyzed element of the original

data.

      for(int wo = 0; wo < window_out; wo++)

        {

         int shift_g = (transposed_out == 1 ? row * window_out + wo :

                                                        row + wo * neurons);

         int shift_w = w_start + (total - i - 1) * step + wo * (window + 1);

         grad += gradients[shift_g] * weights[shift_w];

        }

     }

   gradient_inputs[n] = grad;

  }

After completion of all iterations and exiting from the block of two nested loops, the value of the

accumulated gradient is stored in the error gradient buffer of the previous layer.

The distribution of the error gradient through the hidden layers of the neural network, in accordance

with the algorithm of the error backward pass method, is followed by the transfer of the error gradient

to weights. To perform this functionality, we create the ConcolutionCalcDeltaWeights kernel.

For the correct operation of the kernel, the use of 3 data buffers will be required:

· inputs: input data buffer

· delta_ weights: buffer for the accumulated error gradients of the weight matrix (in this case, the

results buffer)

· gradients: buffer for the error gradients of the current layer (at the results level)
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The gradient buffer contains the values of the error gradients already corrected for the derivative of the

activation function. This procedure is performed before passing the error gradient to the previous layer.

Therefore, adjusting for the derivative of the activation function at this stage will be unnecessary.

In addition to the data buffers, we need to introduce a few parameters in order to build the algorithm

correctly:

· inputs_ total: total number of elements in the result buffer and, respectively, the error gradient

buffer

· step: step of moving the analyzed data window along the source data array

· neurons: number of elements at the output of one filter

__kernel void ConvolutionCalcDeltaWeights(__global TYPE *inputs,

                                          __global TYPE *delta_weights,

                                          __global TYPE *gradients,

                                          int inputs_total,

                                          int step,

                                          int neurons)

It can be noticed that among the parameters, there are no variables to indicate the size of the window

for the analyzed data and the number of filters in the current convolutional layer. This is due to a

change in the approach to creating threads for operations. This kernel will collect error gradients at the

level of the weight matrix, so it is quite logical to run the kernel for each weight. Furthermore, the

weight matrix is represented as a two-dimensional table, where each row corresponds to a separate

filter, and the elements within each row are the weights of the corresponding filter.

The OpenCL technology allows threads to be launched in two-dimensional space, with two indices for

each thread. Let's use this property and create threads for this kernel in two dimensions. In the first

dimension, the number of threads will be equal to the number of weights in one filter. In the second

dimension, the number of threads will correspond to the number of filters used.

In the body of the kernel, we will determine the position of the analyzed element in the weight matrix

and its dimensions. It should be recalled here that each filter has a bias weight, so the size of the

analyzed data window will be one element less than the number of threads in the first dimension (the

dimension with index 0).

Right there, we will determine the position of the analyzed element in the one-dimensional buffer of the

weight matrix and the offset to the beginning of the corresponding filter in the error gradient buffer.

And of course, let's prepare a variable to store intermediate values of the accumulated error gradient.

  {

   const int inp_w = get_global_id(0);

   const int w = get_global_id(1);

   const int window = get_global_size(0) - 1;

   const int window_out = get_global_size(1);

//---

   int shift_delt = w * (window + 1) + inp_w;

   TYPE value = 0;

Next comes the process of directly calculating the error gradient. Here we must remember that for the

bias element, there are no corresponding elements in the source data buffer. Therefore, the gradient

will be transferred to this element in full. In order not to check at each iteration of the loop, we will do

it once before starting the loop. In the loop, we will iterate through the elements of the error gradient

buffer and the original data, while the element of the weight matrix remains unchanged.
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Thus, first, we check whether the current element of the weight matrix is a bias, and then we organize

a loop to iterate through all the error gradient elements of the corresponding filter. Inside the loop, we

will sum up the error gradient adjusted for the corresponding value of the initial data buffer.

After exiting the loop, add the obtained value to the previously accumulated error gradient for the

analyzed element of the weight matrix. Let me remind you that we will not update the weight matrix at

each iteration of the backward pass. We only accumulate the error gradient. The weight matrix is

updated by a command from the main program after processing the data package installed by the user.

   if(inp_w == window)

     {

      for(int n = 0; n < neurons; n ++)

         value += gradients[w * neurons + n];

     }

   else

      for(int n = 0; n < neurons; n ++)

        {

         int shift_inp = n * step + inp_w;

         if(shift_inp >= inputs_total)

            break;

         value += inputs[shift_inp] * gradients[w * neurons + n];

        }

   delta_weights[shift_delt] += value;

  }

After distributing the error gradient to the weight matrix through the backpropagation algorithm, its

update is provided. The weights are adjusted towards the anti-gradient. As mentioned before while

creating the convolutional layer using MQL5, the previously established process for the fully connected

layer fully meets the requirements for working with convolutional layers as well. Therefore, we will not

create separate kernels and blocks of the main program but will use the previously created solution.

Implementing functionality on the side of the main program

After supplementing the OpenCL program with new kernels, we have to embed code blocks into the

main program to organize the process of data exchange and launch kernels for execution at the right

time and with the right amount of information. Let's take a closer look at how this can be implemented.

As a reminder, when building a fully connected neural layer, we started similar work by declaring

constants. Now we will do the same: we will declare constants for calling each kernel.

#define def_k_ProofFeedForward            21

#define def_k_ProofHiddenGradients        22

#define def_k_ConvolutionFeedForward      23

#define def_k_ConvolutionHiddenGradients  24

#define def_k_ConvolutionDeltaWeights     25

We will also declare parameter constants for each kernel. The constants of the parameters must

strictly correspond to the ordinal number of the parameter in the OpenCL program kernel. Parameter

numbering starts from zero.
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//--- feed-forward pass of the pooling layer

#define def_prff_inputs                   0

#define def_prff_outputs                  1

#define def_prff_inputs_total             2

#define def_prff_input_neurons            3

#define def_prff_window                   4

#define def_prff_step                     5

#define def_prff_activation               6

//--- gradient distribution through the pooling layer

#define def_prhgr_inputs                  0

#define def_prhgr_gradient_inputs         1

#define def_prhgr_outputs                 2

#define def_prhgr_gradients               3

#define def_prhgr_inputs_total            4

#define def_prhgr_outputs_total           5

#define def_prhgr_window                  6

#define def_prhgr_step                    7

#define def_prhgr_neurons                 8

#define def_prff_activation               9

//--- feed-forward pass of the convolutional layer

#define def_cff_inputs                    0

#define def_cff_weights                   1

#define def_cff_outputs                   2

#define def_cff_inputs_total              3

#define def_cff_window                    4

#define def_cff_step                      5

#define def_cff_window_out                6

//--- gradient distribution through the convolutional layer

#define def_convhgr_gradient_inputs       0

#define def_convhgr_weights               1

#define def_convhgr_gradients             2

#define def_convhgr_window                3

#define def_convhgr_step                  4

#define def_convhgr_window_out            5

#define def_convhgr_neurons               6

//--- distribution of the gradient to the weight matrix of the convolutional layer

#define def_convdelt_inputs               0

#define def_convdelt_delta_weights        1

#define def_convdelt_gradients            2

#define def_convdelt_inputs_total         3

#define def_convdelt_step                 4

#define def_convdelt_neurons              5

After declaring the constants, we need to update the list of used kernels from the OpenCL program. Let

me remind you that this work is carried out in the CNet: :InitOpenCL method. Here we need to change

the number of used kernels to 26.
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   if(!m_cOpenCL.SetKernelsCount(26))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Let's create entry points for new kernels.

   if(!m_cOpenCL.KernelCreate(def_k_ProofFeedForward, "ProofFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_ProofHiddenGradients,

                                               "ProofCalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_ConvolutionFeedForward,

                                                "ConvolutionFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_ConvolutionHiddenGradients,

                                         "ConvolutionCalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_ConvolutionDeltaWeights,

                                            "ConcolutionCalcDeltaWeights"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Further work will continue directly in the relevant methods. Remember that during the construction of

classes, we implemented branching in many methods depending on the device used for executing

operations. We have already written the MQL5 part. Now we will describe the algorithm for working with

the OpenCL context.
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We will supplement the methods in the same sequence in which we created them earlier. Let's start

this work with the feed-forward method of the pooling layer CNeuronProof::FeedForward. To work

correctly, this method uses two data buffers: initial data and results. At the beginning of the block,

check for the presence of the specified buffers in the OpenCL context. The presence of a buffer handle

will indicate a previously passed buffer to the OpenCL context.

bool CNeuronProof::FeedForward(CNeuronBase *prevLayer)

  {

//--- Control block

   if(!prevLayer || !m_cOutputs ||

      !prevLayer.GetOutputs())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

//--- Algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

     // The MQL5 block is missing here

     }

   else // Block of operations with OpenCL

     {

      //--- check the availability of buffers in the OpenCL context

      if(input_data.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

If there is data in the OpenCL context, we will pass pointers to the data buffers and parameters

necessary for its operation to the kernel. At each step, we also check the result of the operations. This

is crucial because launching a kernel with incomplete information can lead to a critical error and the

halt of the entire program.
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      //--- Send parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofFeedForward, def_prff_inputs,

                                                         input_data.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofFeedForward, def_prff_outputs,

                                                         m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofFeedForward, def_prff_inputs_total,

                                                            input_data.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofFeedForward, def_prff_window,

                                                                     m_iWindow))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofFeedForward, def_prff_step, m_iStep))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofFeedForward, def_prff_activation,

                                                            (int)m_eActivation))

         return false;

      uint input_neurons = (input_data.Total()+m_iWindowOut-1) / m_iWindowOut;

      if(!m_cOpenCL.SetArgument(def_k_ProofFeedForward, def_prff_input_neurons,

                                                                 input_neurons))

         return false;

Once all the necessary information is passed to the kernel, we then need to specify the number of

threads for kernel execution and the initial offset in the task space. After that, we initiate the execution

of the kernel and complete the method.

       //--- Queuing up the kernel for execution

      uint off_set[] = {0, 0};

      uint NDRange[] = {m_iNeurons, m_iWindowOut};

      if(!m_cOpenCL.Execute(def_k_ProofFeedForward, 2, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

After adding the code for the CNeuronProof::FeedForward forward pass method of the pooling layer,

let's do the same work in the CNeuronProof::CalcHiddenGradient backward pass method. Unlike the

forward pass, the error gradient distribution kernel through the pooling layer uses four data buffers:

· initial data

· feed-forward results

· error gradients at the output of the neural layer

· error gradients at the source data level (the result buffer in this case).

The first two buffers are used to determine which elements to employ when using Max pooling.

Therefore, we have to load all four buffers into the memory of the OpenCL context.
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bool CNeuronProof::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- Control block

   if(!prevLayer || !m_cOutputs ||

      !m_cGradients || !prevLayer.GetOutputs() ||

      !prevLayer.GetGradients())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   CBufferType *input_gradient = prevLayer.GetGradients();

   if(!input_gradient.BufferInit(input_data.Rows(), input_data.Cols(), 0))

      return false;

//--- Algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

     // The MQL5 block is missing here

     }

   else    // Block of operations with OpenCL

     {

      //--- check for buffers in the OpenCL context

      if(input_data.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

      if(input_gradient.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

If there is data in the memory of the OpenCL context, we will pass pointers to buffers and necessary

constants to the kernel parameters. At the same time, do not forget to control the results of the

operations.
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      //--- Send parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofHiddenGradients,

                                         def_prhgr_inputs, input_data.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofHiddenGradients,

                                        def_prhgr_outputs, m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofHiddenGradients,

                                    def_prhgr_gradients, m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ProofHiddenGradients, 

                            def_prhgr_gradient_inputs, input_gradient.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients,

                                      def_prhgr_inputs_total, input_data.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients,

                                                     def_prhgr_window, m_iWindow))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients,

                                                         def_prhgr_step, m_iStep))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients,

                                        def_prhgr_activation, (int)m_eActivation))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients, 

                                                   def_prhgr_neurons, m_iNeurons))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ProofHiddenGradients,

                                     def_prhgr_outputs_total, m_cOutputs.Total()))

         return false;

Then we specify the number of threads to run the kernel and the offset in the task area. After that, we

will put the kernel in the execution queue.

Please note that when launching the forward pass kernel, the number of threads is equal to the number

of elements at the output of one filter in the pooling layer. When running a backward pass kernel, the

number of threads is equal to the number of elements in one filter of the previous neural layer.

      //--- Queuing up the kernel for execution

      uint input_neurons = (input_data.Total() + m_iWindowOut - 1) / m_iWindowOut;

      uint off_set[] = {0, 0};

      uint NDRange[] = {input_neurons, m_iWindowOut};

      if(!m_cOpenCL.Execute(def_k_ProofHiddenGradients, 2, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

This completes the work with the pooling layer class. We move on to do a similar job with the

CNeuronConv convolutional layer class.
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The convolutional neural layer, unlike the pooling layer, has a weight matrix and an activation function.

Therefore, it will require the use of more buffers for its operation. The CNeuronConv::FeedForward

forward pass method of the convolutional layer requires transferring 4 buffers to the OpenCL context

memory:

· initial data

· weight matrix

· additional activation function buffer (used for Swish activation function)

· results buffer

Let's start working in the CNeuronConv::FeedForward forward pass method by checking the availability

of buffers in use in the context of OpenCL.

bool CNeuronConv::FeedForward(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !m_cOutputs || !m_cWeights || !prevLayer.GetOutputs())

      return false;

   CBufferType *input_data = prevLayer.GetOutputs();

   ulong total = input_data.Total();

//--- algorithm branching depending on the operating device

   if(!m_cOpenCL)

     {

     // The MQL5 block is missing here

     }

   else

     {

      //--- checking data buffers

      if(input_data.GetIndex() < 0)

         return false;

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

Then we need to pass buffer pointers to the corresponding kernel. In addition, in the kernel

parameters, we will pass some constants necessary for the correct operation of the algorithm. Among

the passed parameters will be the size of the analyzed window, the window step and the number of

filters. At each step, we control the process of performing operations.
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionFeedForward,

                                          def_cff_inputs, input_data.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionFeedForward,

                                         def_cff_weights, m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionFeedForward,

                                         def_cff_outputs, m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionFeedForward,

                                       def_cff_inputs_total, input_data.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionFeedForward,

                                                      def_cff_window, m_iWindow))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionFeedForward,

                                                           def_cff_step, m_iStep))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionFeedForward,

                                                 def_cff_window_out, m_iWindowOut))

         return false;

After passing all the necessary data to the kernel, we specify the number of threads to start and

initiate its queuing.

      //--- put the kernel in the execution queue

      int off_set[] = {0};

      int NDRange[] = {(int)m_iNeurons};

      if(!m_cOpenCL.Execute(def_k_ConvolutionFeedForward, 1, off_set, NDRange))

         return false;

     }

   if(!m_cActivation.Activation(m_cOutputs))

      return false;

//---

   return true;

  }

Finally, we call the activation function and exit the method.

That's all for the feed-forward pass. Let's proceed to the backpropagation pass in the convolutional

neural layer. As you remember, the backpropagation pass includes three sub-processes:

· Distributing the error gradient over the neural network from the result to the initial data.

· Distributing the error gradient to the weight matrix of each neural layer.

· Adjusting the weight matrix towards the anti-gradient.

From the methods already implemented using MQL5, we know that no new method was created for the

last sub-process. Instead, it is suggested to use the ready-made method of the fully connected neural

layer, where we have already implemented multi-threaded computations using OpenCL tools. Therefore,

at this stage, we have to refine only the methods of the first two sub-processes.
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The CNeuronConv::CalcHiddenGradient method is responsible for distributing the error gradient across

the convolutional layer. Correct execution of the algorithm of this method requires the presence of

three data buffers:

· Buffer for error gradients at the output of the neural layer (obtained from the next layer in the

process of executing a similar method).

· Weight matrix.

· Buffer for error gradients at the input data level (in this case, it acts as a buffer for the results of

the method).

Therefore, at the beginning of the block of work with the OpenCL technology, we check the presence of

the necessary buffers in the context memory.

bool CNeuronConv::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !prevLayer.GetGradients() ||

      !m_cGradients || !m_cWeights)

      return false;

//--- adjust error gradients to the derivative of the activation function

   if(m_cActivation)

     {

      if(!m_cActivation.Derivative(m_cGradients))

         return false;

     }

//--- algorithm branching depending on the operating device

   CBufferType* input_gradient = prevLayer.GetGradients();

   if(!m_cOpenCL)

     {

     //The MQL5 block is missing here

     }

   else // Block for working with OpenCL

     {

      //--- checking data buffers

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(input_gradient.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

The next step is to pass the necessary data to the kernel parameters. Among them are pointers to the

data buffers used.
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionHiddenGradients,

                        def_convhgr_gradient_inputs, input_gradient.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionHiddenGradients,

                                    def_convhgr_weights, m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionHiddenGradients,

                                def_convhgr_gradients, m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionHiddenGradients,

                                               def_convhgr_neurons, m_iNeurons))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionHiddenGradients,

                                                 def_convhgr_window, m_iWindow))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionHiddenGradients,

                                                     def_convhgr_step, m_iStep))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionHiddenGradients,

                                          def_convhgr_window_out, m_iWindowOut))

         return false;

Next, we will specify the number of threads equal to the number of elements in the source data buffer

and enqueue the kernel for execution.

      //--- put the kernel in the execution queue

      int NDRange[] = {(int)input_gradient.Total()};

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_ConvolutionHiddenGradients, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

To complete the work on the backpropagation pass methods in the convolutional network, we need to

make similar changes to the method for distributing the error gradient to the weight matrix

CNeuronConv::CalcDeltaWeights , taking into account the specifics of this method.

The algorithm of the error gradient distribution method to the weight matrix requires the presence of

three buffers:

· Error gradient at the output level of the neural layer.

· Initial data buffer.

· Buffer for accumulating error gradients at the weight matrix level.

Let's check the presence of the specified buffers in the memory of the OpenCL context. Let me remind

you that we proceed from the assumption that there is enough video memory to store the entire model.

If the model does not completely fit in the memory of your OpenCL device, then you will need to load

the necessary data into the context memory before launching each kernel. After the completion of the

kernel, free up memory to load the next batch of data.
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bool CNeuronConv::CalcDeltaWeights(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !m_cGradients || !m_cDeltaWeights)

      return false;

//--- algorithm branching depending on the operating device

   CBufferType *input_data = prevLayer.GetOutputs();

   if(!m_cOpenCL)

     {

     // The MQL5 block is missing here

     }

   else // Block for working with OpenCL

     {

      //--- checking data buffers

      if(m_cGradients.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

      if(input_data.GetIndex() < 0)

         return false;

Then we pass the necessary parameters to the kernel corresponding to our sub-process. Let me

remind you that it is very important to observe the correspondence of the specified kernel ID,

parameter ID and the specified value, and we also control the process of performing operations at each

step.

      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionDeltaWeights,

                        def_convdelt_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionDeltaWeights,

                                    def_convdelt_inputs, input_data.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_ConvolutionDeltaWeights,

                               def_convdelt_gradients, m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionDeltaWeights,

                                 def_convdelt_inputs_total, input_data.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionDeltaWeights,

                                              def_convdelt_neurons, m_iNeurons))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_ConvolutionDeltaWeights,

                                                    def_convdelt_step, m_iStep))

         return false;

When all the necessary information is transferred to the kernel, we specify the number of threads. In

this case, we decided to use a two-dimensional thread distribution:

· by the number of filters

· by the number of weights in one filter
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To do this, we specify two parameters in the NDRange array. Each parameter specifies the size of the

corresponding task area. We send the kernel to the execution queue.

      //--- put the kernel in the execution queue

      uint NDRange[] = {m_iWindow + 1, m_iWindowOut};

      uint off_set[] = {0, 0};

      if(!m_cOpenCL.Execute(def_k_ConvolutionDeltaWeights, 2, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

Now we have already created three types of fully functional neural layers for our neural network builder

and can compare their effectiveness in solving a practical problem. I suggest doing some experiments

in the next chapter. But before proceeding to the "field tests", we still have to check the correctness of

the methods for transferring gradients.

4.1.4 Implementing a convolutional model in Python

We will implement the convolutional models in the Python language using the tools provided by the

Keras library from TensorFlow. This library offers several options for convolutional layers. First of all,

these are the basic versions of convolutional layers:

· Conv1D

· Conv2D

· Conv3D

From the names of the objects representing convolutional layers, it can be inferred that they are

intended for processing input data of various dimensions.

The Conv1D class objects create the core of the convolution that collapses with the original data in one

dimension to create an output tensor. It is important to understand and not to get confused. The initial

data is convoluted in one dimension, but the initial data supplied to the neural layer input must be in the

form of a three-dimensional tensor. The first dimension determines the size of the package of the data

(batch size) being processed. The second is measuring convolution. The third dimension contains the

initial data for convolution.

As a result of data processing, the layer also returns a 3D tensor. The first dimension remains the

same; it is equal to the size of the data package being processed. The second dimension varies

depending on the specified convolution parameters. The third dimension will be equal to the specified

number of filters used.

It should be understood that each filter applies to all initial data. At one time, the initial data is

processed in the size of the third dimension multiplied by the size of the convolution window. This is a

slight difference from our implementation of the convolutional layer in MQL5. There, we defined the

convolution window as the number of elements, while here, the convolution window determines the

number of elements in the second dimension of the three-dimensional tensor of input data.

One filter returns one value for each convolution window. Since the entire third dimension is involved in

the convolution process, we get one element from each filter. As a result, the size of the third

dimension of the output tensor changes by the number of filters used.



4. Basic types of neural layers

340

4.1 Convolutional neural networks

Like a fully connected layer, the convolutional layer class offers a fairly wide range of parameters for

fine-tuning the operation. Let's take a look at them.

· filters – the number of filters used in the bundle.

· kernel_size – one-dimensional convolution window size.

· strides – the size of the convolution step.

· padding – one of the following values is allowed: "valid", "same" or "causal" (case-insensitive);

"valid" means no indentation; "same" causes the input data to be evenly filled with zeros to obtain

an output size equal to the input size; "causal" leads to the emergence of causal (extended)

changes, for example, output [t] does not depend from input [t+1:]. It's useful when modeling

temporal data, where the model must not violate the temporal order.

· data_format – one of the following values is allowed: “channels_ last” or “channels_ first”;

determines which dimension of the input tensor contains data for convolution; the default is

“channels_ last”.

· dilation_rate – used for advanced convolution and determines the expansion rate.

· groups – the number of groups into which the input is divided along the channel axis; each group is

collapsed separately using filters, and the output is a combination of all results along the channel

axis.

· activation – activation function.

· use_bias – indicates whether to use a bias vector.

· kernel_ initializer – sets a method for initializing the weight matrix.

· bias_ initializer – sets the method for initializing the displacement vector.

· kernel_regularizer – indicates a method for regularizing the weight matrix.

· bias_regularizer – indicates a method for regularizing the displacement vector.

· activity_regularizer – indicates a method for regularizing results.

· kernel_constraint – specifies the restriction function for the weight matrix.

· bias_constraint – specifies the constraint function for the displacement vector.

For timeseries, it is usually suggested to use a one-dimensional Conv1D convolution. Convolution is

carried out by time intervals. At the same time, each filter checks for its own pattern in a specific time

interval. In relation to solving our problem, filters will assess the status of all indicators used within the

number of candles specified by the strides parameter. The process of convolution, like the neurons of a

fully connected layer, does not assess the mutual influence of individual components of the initial data.

It only assesses the similarity of the initial data with a given pattern. Of course, we don't explicitly

define these patterns when constructing the neural network. We select them during the training

process. However, it is assumed that during practical application, these patterns will remain static

between retraining periods.

True, convolutional layers are more resistant to various distortions of the initial data due to the fact

that small individual blocks are studied meticulously. However, it may be necessary to study the

patterns of individual indicators. To solve this problem, we may need to use convolutional layers of a

different dimension.

For example, Conv2D objects operate with convolutions with input data in two dimensions. At the same

time, it should be understood that the difference between one-dimensional and two-dimensional

convolutional layers goes beyond just their names. Objects in a two-dimensional convolutional layer

expect a four-dimensional tensor at the input. By analogy with the Conv1D tensor, the first dimension

determines the batch size, the second and third dimensions determine the convolution dimensions and
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the fourth dimension contains the initial data for convolution. Here arises a valid question: where do we

obtain the data for another dimension? How do we divide our initial data set into four dimensions? We

need to translate our raw data from a flat table to a voluminous table. The simplest solution is on the

surface. We say that the depth of the table of the initial data is 1. Before declaring the two-dimensional

neural layer, let's change the dimensionality of the tensor input to the Conv2D convolutional layer to a

four-dimensional one by specifying a size of 1 for the fourth dimension.

Note that since the fourth dimension is 1, the length of the input data vector for convolution is 1.

Therefore, for the convolution process to be effective, the convolution window needs to be greater than

1 in at least one dimension.

We will not dwell too much on the parameters of the Conv2D convolutional layer, since they are

identical to the parameters of a one-dimensional array. The only differences are in the kernel_ size,

strides and dilation_ rate parameters, which, in addition to a scalar value, can take a vector of two

elements. Each element of such a vector contains parameter values for the corresponding dimension.

At the same time, these parameters can take scalar values. In this case, the specified value will be

used for both dimensions.

For more complex architectural solutions for neural networks, it may be necessary to use Conv3D 3D

convolutional layers. Their usage can be justified, for example, in building arbitrage trading systems,

where a separate dimension might be needed to segregate input data by instruments.

Just like in the case of a two-dimensional convolutional layer, using three-dimensional space requires

increasing the dimensionality of the input data. A five-dimensional tensor is expected at the Conv3D

input.

The parameters of the Conv3D class, however, are inherited from the aforementioned classes with

minimal changes. The only difference is in the size of the vectors of the convolution window and its

pitch.

Attention should be paid to another feature of the convolution process. When performing operations, it

is possible to both reduce the size of the data tensor (data compression) and increase it. The first

approach is useful when dealing with large datasets, where it's necessary to extract a specific

component from the overall volume of input information. This is frequently employed in computer vision

tasks, where in high-resolution images, each pixel represents an individual value within the overall

tensor of input data.

The second approach, increasing the dimensionality, can be beneficial when there's an insufficient

amount of input data. In such cases, a small volume of input data needs to be split into separate

components while searching for non-obvious dependencies.

It should be noted that this is not a complete list of convolutional layers offered by the Keras library.

But it is beyond the scope of this book to describe all the library's features. You can always check them

out on the library website. There you can also find the latest version of the library and instructions for

installing and using it.

Just like convolutional layers, the Keras library offers several class options for a pooling layer. Among

them are:

· AvgPool1D – one-dimensional data averaging.

· AvgPool2D – two-dimensional data averaging.

· AvgPool3D – three-dimensional data averaging.

· MaxPool1D – one-dimensional extraction of the maximum value.

https://www.tensorflow.org/api_docs/python/tf/keras/layers
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· MaxPool2D – two-dimensional extraction of the maximum value.

· MaxPool3D – three-dimensional extraction of the maximum value.

All of these pooling layers have the same set of parameters:

· pool_ size – an integer number or vector of integers, determines the window size.

· strides – an integer number or vector of integers, determines the window pitch.

· padding – means one of the following values is allowed: "valid", "same" or "causal" (case-

insensitive); "valid" means no indentation; "same" – causes the source data to be evenly filled with

zeros to obtain an output size equal to the input size.

· data_ format – one of the following values is allowed: "channels_ last" or "channels_ first";

determines which dimension of the input tensor contains data for convolution; the default is

"channels_ last".

We will also implement convolutional neural network models in our template. Just like when testing

perceptron models, we will create three neural network models with different architectures and

compare the results of their training. Therefore, for implementation, we will take the previously created

file perceptron.py and create a copy of it called convolution.py. In this created file, we will replace the

model declaration blocks. 

First, we will create a perceptron with three hidden layers and weight matrix regularization. It will serve

as a basis for comparing the performance of convolutional neural networks to the results of training a

fully connected perceptron.

# Create a perceptron model with three hidden layers and regularization

model1 = keras.Sequential([keras.Input(shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish, 

                   kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                   kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                   kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

This model has 9802 parameters. The screenshot below shows the structure of the neural network we

created. In the first column of the table, the name and type of the neural layer are indicated, while in

the second column, the tensor dimensionality of the results for each layer is specified. Note that the

first dimension is not set; None is specified instead of the size. This means that this dimension is not

strictly defined and can be of variable length. This dimension is set by the batch size of the data patch.

The third column shows the number of parameters in the weight matrix for each layer.

In the second model, we will insert a one-dimensional Conv1D convolution layer with 8 filters

immediately after the initial data, and specify the convolution window and step as 1. Such a layer will

roll up all specified indicators within a single candlestick. In doing so, let's not forget to change the

dimensionality of the input data tensor from two-dimensional to three-dimensional.

Note that although we're transferring data to a 3D tensor, we specify two dimensions in the Reshape

layer parameters. This is due to the fact that the first dimension of the tensor is variable and is set by

the batch size of the input data batch.
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Perceptron structure

And one more thing. The dimensional vector passed in the parameters of the Reshape class contains

−1 in the first dimension. This tells the class to independently calculate the size of this dimension based

on the size of the original data tensor and the specified dimensions of other dimensions.

# Add a 1D convolutional layer to the model

model2 = keras.Sequential([keras.Input(shape=inputs),

                           # Reformat the tensor into three-dimensional.

    # We indicate 2 dimensions, because The 3rd dimension is determined by the packet size

                           keras.layers.Reshape((-1,4)), 

                           # Convolutional layer with 8 filters

                           keras.layers.Conv1D(8,1,1,activation=tf.nn.swish,

             kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),

Behind the convolutional layer, we will place a one-dimensional subsample layer with a choice of the

maximum MaxPool1D value. As mentioned above, the convolutional layer operates with three-

dimensional tensors. At the same time, the subsequent fully connected layers work with two-

dimensional tensors. Therefore, for the proper functioning of fully connected layers, we need to return

the data to a two-dimensional dimensionality. To do this, we will use the neural layer of the Flatten

class.

                           # Pooling layer

                           keras.layers.MaxPooling1D(2,strides=1),                         

                  # Reformat the tensor into a two-dimensional one for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish,

               kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

               kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

               kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

Note: In the initial data, each candlestick is described by four values. The use of eight filters increases

the dimensionality of the processed tensor. As a result, the model with a one-dimensional convolutional

layer already contains 15,922 parameters.
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In the third model, we will replace a 1 one-dimensional convolution layer with a two-dimensional one. As

a result, we will change the pooling layer and the data dimension. As mentioned above, we will set the

fourth dimension to 1. We can now control the size of the convolution window in two dimensions: time

and indicator. Since we would like to assess different patterns in the readings of each individual

indicator, we will specify the size of the convolution window in the first temporal dimension as 3

(evaluating patterns from 3 consecutive candlesticks), and the size of the window in the second

dimension of indicators as 1. This will allow us to identify patterns in the movement of each indicator

separately. The pitch of the convolution window in both directions will be set to 1.

Neural network structure with a one-dimensional convolutional layer

With these parameters, the first dimension (time dimension) will decrease by two elements as a result

of the convolution operations. The second dimension (dimension of indicators) will remain unchanged

since the convolution window and its pitch in this dimension are 1. At the same time, we will increase

the third dimension, and it will become equal to the number of filters. Let me remind you that before

the convolution operation, the third dimension was equal to 1. As a result of all iterations, the number

of network parameters increased to 50,794. The structure of the new neural network is presented

below. As you can see, the convolution layer has only 32 parameters. Such an increase in the number

of network parameters is due to the enlargement of the tensor size after the convolution operation for

the reasons mentioned above. This can be seen from the number of parameters in the first fully

connected layer after convolution.
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# Replace the convolutional layer in the model with a two-dimensional one

model3 = keras.Sequential([keras.Input(shape=inputs),

                           # Reformat the tensor into a four-dimensional one.

         #We indicate 3 dimensions, because... The 4th dimension is determined by the packet size

                           keras.layers.Reshape((-1,4,1)), 

                           # Convolutional layer with 8 filters

                           keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),

                           # Pooling layer

                           keras.layers.MaxPooling2D((2,1),strides=1),                         

                    # Reformat the tensor into a two-dimensional one for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

Neural network structure with a two-dimensional convolutional layer

The rest of our script will remain unchanged. We will learn more about the script results in the next

section.



4. Basic types of neural layers

346

4.1 Convolutional neural networks

4.1.5 Practical testing of convolutional models

Look at the amount of work we have already completed. This is something to be proud of. We have

implemented three types of neural layers, which already allow us to solve some practical problems.

Using those, we can create fully connected perceptrons of different complexity. Or we can create

convolutional neural network models and compare the performance of the two models on the same set

of source data.

Before assessing the practical capabilities of different neural network models, you should verify the

correctness of the methods for error gradient propagation through the convolutional neural network.

We have already performed such a procedure for fully connected neural layers in the section “Checking

the correctness of the gradient distribution”.

Let me remind you of the essence of the procedure. The error gradient is a number that determines

the slope of the tangent line to the function graph at the current point. It demonstrates how the value

of a function will change when the parameter changes.

In geometry terms, the gradient is the slope of the tangent to the graph of the function at the current point

Of course, we are dealing with non-linear functions, and analytically computed error gradients provide

only an approximate value. But when using a sufficiently small parameter change step, such an error

becomes minimal.

Moreover, we can always determine how the function value changes when we experimentally alter a

single parameter: we can take our function, change only one parameter, and calculate the new value.

The difference between the two values of the function will show the influence of the analyzed parameter

on the overall result at the current point.

Certainly, as the number of parameters increases, so do the costs of evaluating the influence of each

parameter on the overall result. Therefore, neglecting a small error, everyone uses the analytical

method to determine the error gradient. At the same time, by using the experimental method, we can

assess the accuracy of our implemented analytical algorithm and adjust its operation if necessary.

When comparing the results of analytical and experimental methods for determining the error

gradients, one point should be taken into account. To draw a straight line in a plane, two points are

required. But if we draw a straight line through the current and new point, then such a straight line will
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not be tangent to the graph of the function at the current point. Most likely it will be tangent at some

point between the current and future position. Therefore, to construct a tangent to the graph of a

function at the current point, you will need to increase and decrease the current value of the indicator

by the same small amount and calculate the function's value at both points. Then the line will touch the

function at the point we need, and the effect of the parameter on the value of the function will be its

average between two deviations.

When analyzing error gradient deviations between methods in a fully connected layer, we created the

script check_ gradient_ percp.mq5. Let's make a copy of the script named check_ gradient_ conv.mq5. In

the resulting copy, we will only change the CreateNet function. In it, after the input data layer, we will

add one convolutional layer and one pooling layer.

bool CreateNet(CNet &net)

  {

   CArrayObj *layers = new CArrayObj();

   if(!layers)

     {

      PrintFormat("Error creating CArrayObj: %d", GetLastError());

      return false;

     }

//--- The layer of source data

   CLayerDescription *descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronBase;

   int prev_count = descr.count = BarsToLine;

   descr.window = 0;

   descr.activation = AF_NONE;

   descr.optimization = None;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

The convolutional layer will consist of two filters. The size of the convolution window is equal to two, its

step is set to one. The activation function is Swish. The optimization method doesn't matter, as at this

stage we won't be training the neural network. The size of one filter is recalculated based on the size of

the previous layer and the convolution parameters.
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//--- Convolutional layer

   descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronConv;

   int m_iWindow = descr.window = 2;

   int prev_wind_out = descr.window_out = 2;

   int m_iStep = descr.step = 1;

   prev_count=descr.count=(prev_count-descr.window+2*descr.step-1)/descr.step;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

After the convolutional neural layer, we place the pooling layer. For it, we will specify the windows equal

to two and the step of one. We will specify the activation function AF_ AVERAGE_ POOLING, which

corresponds to the calculation of the average value for each source data window.
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//--- Pooling layer

   descr = new CLayerDescription();

   if(!descr)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronProof;

   descr.window = 2;

   descr.window_out = prev_wind_out;

   descr.step = 1;

   descr.count = (prev_count - descr.window + 2 * descr.step - 1) / descr.step;

   descr.activation = (ENUM_ACTIVATION_FUNCTION)AF_AVERAGE_POOLING;

   descr.optimization = None;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

Further, the script code remains unchanged.

We launch the prepared script in two modes: using OpenCL technology and without it. As a result of

testing, we obtained quite decent results. In both cases, we received deviations in the 11th decimal

place.

The results of checking deviations of the error gradient between the analytical and experimental methods of

determination

Now that we are confident in the correctness of our neural layer classes, we can proceed to the

construction and training of convolutional neural networks. First, we need to decide how we want to use

convolution.

In our dataset, each candlestick is represented by several indicators. In particular, when creating a

training sample for each candlestick, we identified four indicators:

· RSI

· MACD histogram

· MACD signal line

· Deviation between the signal line and MACD histogram
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Each of you can conduct a series of tests yourselves and determine your approach to using

convolutional models. To me, the most obvious are two use cases.

1. We can use convolution to determine certain patterns from indicator values at the level of each

candlestick. In this version, we define the number of patterns to be searched for as the number of

convolution filters. At the output of the convolutional layer, we get the degree of similarity of each

candlestick with the desired patterns.

2. It should be remembered that a fully connected neural layer is a linear function. Only the

activation feature adds non-linearity. Therefore, in general, neurons do not evaluate dependencies

between elements of the source data, but instead learn to recognize patterns from the set of

source data. Hence, each neuron evaluates the current pattern independently of past data.

But when analyzing time series, sometimes the dynamics of the change in an indicator is more

important than its absolute value. We can use convolution to determine patterns in the dynamics of

indicators. To do this, we need to slightly rearrange the indicators, lining up the values     of each indicator

in a row. For example, we can start by arranging all the RSI indicator values in the source data buffer.

Then, we can place all the elements of the MACD histogram sequence, followed by the data of the

signal line. We will complete the buffer with deviation data between the signal line and the MACD

histogram. Of course, it would be more visual to arrange the data in a tabular form, where each row

would represent the values of a separate indicator. But, unfortunately, only one-dimensional buffers are

used in the OpenCL context. Therefore, we will use virtual partitioning of the buffer into blocks.

After arranging each indicator into a separate row, we can use convolution to identify patterns in

sequential values of a single indicator. By doing so, we are essentially identifying trends within the

analyzed data window. The number of convolutional layer filters will determine the number of trends to

be recognized by the model.

Testing convolution within a single candlestick

To test the operation of convolutional neural network models, let's create a copy of the

perceptron_test.mq5 script perceptron_ test.mq5 with the name convolution_ test.mq5. At the beginning

of the script, as before, we specify the parameters for script operation.

As with checking the correctness of the gradient distribution, we only need to change the function for

describing the architecture of the CreateLayersDesc model. In it, after the layer of initial data, we add

convolutional and pooling neural layers.
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bool CreateLayersDesc(CArrayObj &layers)

  {

   CLayerDescription *descr;

//--- create source data layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = NeuronsToBar * BarsToLine;

   descr.window       = 0;

   descr.activation   = AF_NONE;

   descr.optimization = None;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      return false;

     }

Please note that for the convolutional layer, in the count field of the layer description object, we

indicate not the total number of neurons, but the number of elements in one filter. In the window_ out

field, we will specify the number of filters to use. In the window and step fields, we will specify the

number of elements per bar. With these parameters, we will obtain non-overlapping convolution, and

each filter will compare the state of indicators at each bar with a certain pattern. The activation

function is set to Swish, and the optimization method is set to Adam. We will use this optimization

method for all subsequent layers. Except, of course, the pooling, which does not contain a weight

matrix.

//--- Convolutional layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronConv;

   descr.count = BarsToLine;

   descr.window = NeuronsToBar;

   descr.window_out = 8;

   descr.step = NeuronsToBar;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

The convolutional layer is followed by the pooling layer. In this implementation, I used Max Pooling, i.e.,

selecting the maximum element within the input window. We are using a sliding window of two elements
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with a step of one element. With this set of parameters, the number of elements in one filter will

decrease by one. We do not use the activation function for this layer. The number of filters is equal to

the same parameter of the previous layer. 

//--- Sub-sample layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronProof;

   descr.count = BarsToLine - 1;

   descr.window = 2;

   descr.window_out = 8;

   descr.step = 1;

   descr.activation = (ENUM_ACTIVATION_FUNCTION)AF_MAX_POOLING;

   descr.optimization = None;

   descr.activation_params[0] = 0;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Next comes an array of hidden fully connected layers. We will create them in a loop with the same

parameters. The number of hidden layers to be created is specified in the script parameters. All hidden

layers will have the same number of elements, which is specified in the script parameters. We will use

the activation function Swish, and the weight matrix parameter optimization method, Adam, as we did

for the convolutional layer.

//--- Block of hidden fully connected layers

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = HiddenLayer;

   descr.activation   = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   for(int i = 0; i < HiddenLayers; i++)

      if(!layers.Add(descr))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         return false;

        }

At the end of the neural network initialization function, we will specify the parameters of the output

layer. It will, just like in the previously created perceptron models, contain two elements with a linear

activation function. We will use the Adam optimization method which is used by all other neural layers.
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//--- Results Layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = 2;

   descr.activation   = AF_LINEAR;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      return false;

     }

   return true;

  }

The rest of the script code remains unchanged.

According to the testing results, the convolutional neural network model exhibited a less smooth graph.

On it, we observe a wave-like decrease in the value of the error function. But at the same time, after

1000 iterations of updating the weight matrix, we got a lower value of the loss function.

A comparative graph of the training progress of the perceptron and the convolutional neural network.

As the scale increases, we can also notice a tendency for the value of the loss function to potentially

decrease with continued learning.
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A comparative graph of the training progress of the perceptron and the convolutional neural network.

Testing of sliding window convolution by indicator values

Testing convolution with a sliding window on indicator values To experiment with finding patterns in the

dynamics of indicator values, we need to make some modifications to the previously created script

convolution_ test.mq5. Let's create its copy with the name convolution_ test2.mq5. We will make the

first changes to the declaration of the convolutional layer. This time, we are creating a layer with a

convolution window of three elements and a step of one element. With these parameters, the number of

elements in one filter will be two less than the previous layer, but the total number of elements in the

output buffer will increase by a factor equal to the number of filters used. The activation function and

the optimization method remain unchanged.

//--- Convolutional layer

   int prev_count = descr.count;

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronConv;

   prev_count = descr.count = prev_count - 2;
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   descr.window = 3;

   descr.window_out = 8;

   descr.step = 1;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

In the pooling layer, the changes affected only the number of elements in one filter.

//--- Pooling layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronProof;

   descr.count = prev_count - 1;

   descr.window = 2;

   descr.window_out = 8;

   descr.step = 1;

   descr.activation = (ENUM_ACTIVATION_FUNCTION)AF_MAX_POOLING;

   descr.optimization = None;

   descr.activation_params[0] = 0;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

As mentioned before, for this test, we need to modify the sequence of source data being fed into the

neural network. Therefore, we needed to make changes to the function of loading the training sample

from the LoadTrainingData file.

As before, at the beginning of the function, we perform preparatory work. We declare instances of the

necessary local objects and open the training dataset file for reading. The file name and path are

specified in the function parameters. Let me remind you that the file with the training sample must be

located within the sandbox of your terminal.

The result of the file opening procedure is checked by the received handle.
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bool LoadTrainingData(string path, CArrayObj &data, CArrayObj &result)

  {

   CBufferType *pattern;

   CBufferType *target;

//--- open the file with the training sample

   int handle = FileOpen(path, FILE_READ | FILE_CSV | FILE_ANSI | FILE_SHARE_READ,

                                                                     ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error opening study data file: %d", GetLastError());

      return false;

     }

//--- display the progress of training data loading in the chart comment

   uint next_comment_time = 0;

   uint OutputTimeout = 250; // no more than once in 250 milliseconds

After successfully opening the training sample file for reading, we start the loop of direct data loading.

We will repeat the loop iterations until the file is finished. During each iteration, we will check if a

command to close the program has been received before proceeding.

Inside the loop body, we will first prepare new instances of objects for loading patterns and target

results.

//--- organize the loop to load training sample

   while(!FileIsEnding(handle) && !IsStopped())

     {

      if(!(pattern = new CBufferType()))

        {

         PrintFormat("Error creating Pattern data array: %d", GetLastError());

         return false;

        }

      if(!pattern.BufferInit(NeuronsToBar, BarsToLine))

        {

         delete pattern;

         return false;

        }

      if(!(target = new CBufferType()))

        {

         PrintFormat("Error creating Pattern Target array: %d", GetLastError());

         delete pattern;

         return false;

        }

      if(!target.BufferInit(1, 2))

        {

         delete pattern;

         delete target;

         return false;

        }

We still use dynamic arrays to load data:

· data: array of source data patterns
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· result: an array of patterns of target values for each pattern

· pattern: a buffer of elements of one pattern

· target: a buffer of target values of one pattern

However, to change the sequence of loaded data, we will first adjust the size of the pattern buffer

matrix so that the first columns of the matrix correspond to the number of used indicators, and the

rows correspond to the number of analyzed historical bars.

We create a system of nested loops. The outer loop has the number of iterations equal to the number

of analyzed candles. The number of iterations in the inner loop is equal to the number of elements per

candlestick. In the body of this looping system, we will write the initial data to the buffer matrix

pattern. Since the data in the training sample file is in chronological order, we will write them in the

same order. But as we read, we will distribute the information in the corresponding rows and columns of

the matrix.

      for(int i = 0; i < BarsToLine; i++)

         for(int y = 0; y < NeuronsToBar; y++)

            pattern.m_mMatrix[y, i] = (TYPE)FileReadNumber(handle);

After completing the iterations of the loop system, we only need to reformat the resulting matrix.

      if(!pattern.Reshape(1, BarsToLine * NeuronsToBar))

        {

         delete pattern;

         delete target;

         return false;

        }

The further process of loading the training sample has been moved without changes.
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      for(int i = 0; i < 2; i++)

         target.m_mMatrix[0, i] = (TYPE)FileReadNumber(handle);

      if(!data.Add(pattern))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         delete pattern;

         delete target;

         return false;

        }

      if(!result.Add(target))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         delete target;

         return false;

        }

      //--- display loading progress in a comment on the chart (no more than 1 time in 250 milliseconds)

      if(next_comment_time < GetTickCount())

        {

         Comment(StringFormat("Patterns loaded: %d", data.Total()));

         next_comment_time = GetTickCount() + OutputTimeout;

        }

     }

   FileClose(handle);

   return true;

  }

As a result of training, such a neural network demonstrated an even greater amplitude of waves in the

dynamics of loss function values. During the learning process, the amplitude of the waves was reduced.

Such behavior could indicate the use of an elevated learning rate, the effect of which was mitigated by

the Adam training method. I'd like to remind you that this training method utilizes an algorithm of

individualized adaptation of the learning rate for each element of the weight matrix.
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Comparative training graph of a perceptron and two convolutional neural network models

But back to the results of our test. Unfortunately, in this case, our model changes did not produce the

desired reduction in model error. On the contrary, it has even increased. Nevertheless, there is hope for

improved results when the learning rate is reduced.

Increasing the scale of the graph confirms the above conclusions.
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Comparative training graph of a perceptron and two convolutional neural network models

Combined model

We have examined the performance of two convolutional neural network models. In the first model, we

carried out the convolution of indicator values within one candlestick. In the second model, we

transposed (flipped) the original data and conducted a convolution in terms of indicator values. At the

same time, in the first case, we carried out convolution of all indicators at once within one bar. I'd like

to remind you that for each bar, we take four values from two indicators. In the second model, we used

a convolution with a sliding window of three bars and a convolution window step of one bar. And here

arises an obvious question: what results can be achieved if we combine both approaches? One more

experiment will give us the answer to this question.

To conduct this test, we need to build another model. In practice, the creation of such a model did not

take me much time. Let's discuss. In the first case, we took indicator values for each candlestick, while

in the second case, we used three consecutive values (three consecutive bars) of each individual

indicator. If we want to combine two approaches, then it would probably be logical to take all the

values for three consecutive bars for convolution. In both approaches, we used a step of one bar.

Therefore, we will keep this step.

To build such a model, we do not need to transpose the data. Therefore, we will build a new model

based on the convolution_ test.mq5 script. First, we will create a copy of it called

convolution_ test3.mq5. In it, we will change the parameters of the convolutional layer. In the training

sample, the data is in chronological order, so the convolution window of the full three bars will be equal

to 3 * NeuronsToBar. Then the step of the convolution window with the size of one bar will be equal to

NeuronsToBar. With these parameters, the number of elements in one filter will be BarsToLine - 2. We

leave the activation function and the parameter optimization method unchanged.



4. Basic types of neural layers

361

4.1 Convolutional neural networks

//--- Convolutional layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronConv;

   descr.count = BarsToLine - 2;

   descr.window = 3 * NeuronsToBar;

   descr.window_out = 8;

   descr.step = NeuronsToBar;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

The changes made to the parameters of the convolutional layer required a slight adjustment of the

parameters of the pooling layer. Here we have only made changes to the number of elements in one

filter.

//--- Pooling layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronProof;

   descr.count = BarsToLine - 3;

   descr.window = 2;

   descr.window_out = 8;

   descr.step = 1;

   descr.activation = (ENUM_ACTIVATION_FUNCTION)AF_MAX_POOLING;

   descr.optimization = None;

   descr.activation_params[0] = 0;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

The rest of the script code remains unchanged.

The training results of the new model turned out to be better than all the previous ones. The graph of

loss function dynamics without amplitude waves lies slightly below the graphs of all previously

conducted tests.



4. Basic types of neural layers

362

4.1 Convolutional neural networks

Comparative training graph of a perceptron and three models of convolutional neural networks

Increasing the scale of the graph confirms the above conclusions.

Comparative training graph of a perceptron and three models of convolutional neural networks
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Testing Python models

In the previous section, we created a script with three neural network models in Python. The first

perceptron model has three hidden layers, the second one has an additional Conv1D convolutional

neural layer before the perceptron model, and in the third model, the Conv1D convolutional layer is

replaced with Conv2D. At the same time, the number of parameters increased in each subsequent

model. Based on the logic of our work, the models we created in Python should replicate the

experiments conducted earlier with the neural network models built using MQL5. Therefore, the test

results were fully expected and fully confirmed the earlier conclusions. For us, this is an additional

confirmation of the correct operation of our library written in the MQL5 language. So, we can use it in

our future work. Moreover, obtaining similar results when testing models that were entirely created

using different tools eliminates the randomness of the results and minimizes the likelihood of making

errors in the model creation process.

Let's get back to the test results. During the training process, the model with the Conv2D convolution

layer showed the best results in reducing the error, which fully confirms the results obtained above. A

significant gap between the error dynamics graphs of the training and validation sets in the case of the

perceptron could indicate the underfitting of the neural network.

Comparative training graph of a perceptron and 2 models of convolutional neural networks (Python)

The error dynamics of the convolutional models are very close to each other. Their graphs are almost

parallel. However, the model with the Conv2D convolutional layer shows less error throughout the

training.
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Comparative training graph of a perceptron and two convolutional neural network models (Python zoom)

On the validation set, the error graph of the Conv2D convolutional model first decreases, but after 100

epochs of training, there is an increase in the error. Along with a decrease in the error on the training

set, this may indicate a tendency for models to overfit.

The graph of the Accuracy learning metric shows similar results.
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Comparative training graph of a perceptron and two convolutional neural network models (Python)

On the validation set, the graphs of all three models are closely intertwined in the range of 0.71–0.73.

The graph shows the intersection of the training and validation sample graphs after 400.

I would like to remind you that the validation dataset is significantly smaller than the training dataset; it

consists of the last patterns without shuffling the overall dataset. Hence, there's a high likelihood that

not all possible patterns will be included in the validation dataset. In addition, the validation set can be

influenced by local trends.

Checking the performance of all three trained models on the test set showed quite similar, albeit

slightly contradictory, results.

Testing the mean squared error of the models revealed that the convolutional model with the Conv2D

convolution layer achieved the best results. This model analyzes patterns within a single indicator using

a sliding window convolution. During training, it performed the best among the tested models. Certainly,

the differences in the performance metrics are not very significant, and it can be considered that all

models showed similar results.
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Comparison of model errors on a test set

Comparison of the model accuracies on a test set

Comparison of the results by the Accuracy metric, in contrast to the just considered MSE graph, shows

the best results for the Conv1D model. The model analyzes the patterns of each individual candlestick;

the lowest result is for the perceptron. However, as with MSE, the gap between the results is small.
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I suggest considering that all three models showed approximately equal results on the training dataset.

The exact values of the metrics on the test sample are shown in the screenshot below.

The exact values   of model validation on the test set

Conclusions

According to the results of the tests, we can say:

· The models built using MQL5 during training demonstrate results similar to models built using the

Keras library in Python. This fact confirms the correctness of the library we are creating. We can

confidently continue our work.

· In general, convolutional models contribute to improving the performance of the model on the same

training dataset.

· Approaches to convolution of the initial data may be different, and the results of the model may

depend on the chosen approach.

· Combining different approaches within one model does not always improve the results of the model.

· Don't be afraid to experiment. When creating your own model, try different architectures and

various data processing approaches.

In our tests, we used only one convolutional and one pooling layer. This can be referred to as an

approach to building simple models. The most successful convolutional models used for practical tasks

often employ multiple sets of convolutional and pooling layers. At the same time, the dimension of the

convolution window and the number of filters change in each set. Like I said, don't be afraid to

experiment. Only by comparing the performance of different models will you be able to choose the best

architecture for solving your task.

4.2 Recurrent neural networks

We have already discussed the multilayer perceptron and convolutional neural networks earlier. All of

them operate with static data within the framework of Markov processes, where the subsequent state

of the system depends only on its current state and is independent of the system's past states. Indeed,

to compensate for this limitation, we fed the neural network not only the latest price data and indicator

states but also historical data for the past few bars. However, the network itself did not memorize the

processed data and the obtained results. During each new forward pass iteration into the neural

network, we re-input the complete set of historical data, even if we had previously provided this data to

the neural network. Essentially, with each forward pass, the neural network started with a "clean

slate." The only memory such a neural network possesses is the weight matrix it learned during the

training process.
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Another drawback of using such neural networks for time series is that the position of a specific

value/pattern in the data array has absolutely no impact on the outcome values. Let me remind you of

the mathematical model of a neuron. 

Note that the sum of values is at the center of the entire model. Permuting the terms does not change

the sum, so from a mathematical perspective, it is absolutely irrelevant whether a value appears at the

beginning or at the end of the array. In practical usage of time series, however, it is quite common for

the latest values to have a greater impact on the outcome compared to older values.

Now I suggest looking at Recurrent Neural Networks. They represent a special type of neural network

designed to work with time sequences. The key feature of recurrent neurons is the transmission of their

own state as input to themselves in the next iteration.

With each new input from the external environment, the neuron, along with the new data, essentially

evaluates the outcome of its past performance as if reviewing its own history.

4.2.1 Description of architecture and implementation principles

Previously discussed types of neural networks operate with a predetermined volume of data. However,

when working with price charts, it is difficult to determine the ideal size of the analyzed data. Different

patterns may manifest over various time intervals, and these intervals are not always static, varying

depending on the current market situation. Some events may be infrequent in the market but are likely

to have a significant impact. Ideally, such an event should stay within the analyzed window. However,

once it falls outside of it, the neural network no longer considers this event, even though the market

may be reacting to it at that moment. Increasing the analyzed window leads to increased consumption

of computational resources, requiring more time for training such a neural network. In practical real-

world applications, more time will be needed for decision-making.

The use of recurrent neurons in neural networks has been proposed to address this issue in working

with time series data. This involves attempting to implement short-term memory in neural networks,

where the neuron input includes information about the current state of the system and its previous

state. This approach is based on the assumption that the neuron output considers the influence of all

factors, including its previous state, and passes all its knowledge to its future state on the next step.

This is similar to human experience, where new actions are based on actions performed earlier. The

duration of such memory and its impact on the current state of the neuron will depend on the weights.

Any architectural solution for neurons can be used here, including the fully connected and convolutional

layers we discussed earlier. We simply concatenate two tensors: one for the input data and one for the

results of the previous iteration, and feed the resulting tensor into the neural layer. At the beginning of

the neural network operation, when there is no tensor of results from the previous iteration yet, the

missing elements are filled with zeros. 
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Recurrent neuron pattern

Training recurrent neural networks is done using the well-known method of backpropagation of errors.

Similar to convolutional neural network training, the temporal nature of the process is unfolded into a

multilayer perceptron. In such a perceptron, each time segment plays the role of a hidden layer.

However, all layers of this perceptron use a single matrix of weights. Therefore, to adjust the weights,

we take the sum of the gradients for all layers and count the delta of the weights once for the sum of

all gradient layers.

Training algorithm of recurrent neural network

Unfortunately, such a simple solution is not free from drawbacks. This approach saves "memory" for a

short time. The cyclical multiplication of the signal by a coefficient less than one, combined with the

application of the neuron activation function, leads to a gradual attenuation of the signal as the number

of such cycles increases. To solve this problem, Sepp Hochreiter and Jürgen Schmidhuber proposed the

use of the Long short-term memory LSTM architecture in 1997). Today, the LTSM algorithm is
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considered one of the best for solving classification and time series prediction problems, where

significant events are separated over time and stretched over time intervals.

LSTM can hardly be called a neuron. Rather, it is already a neural network with three input data

channels and three output data channels. Out of them, only two channels are used for data exchange

with the surrounding world (one for input and one for output). The other four channels are locked in

pairs for looping (Memory for memory and Hidden state for hidden state).

Within the LSTM block, there are two main information threads that are interconnected by four fully

connected neural layers. All neural layers contain the same number of neurons, which is equal to the

size of the output thread and the memory thread. Let's take a closer look at the algorithm.

The Memory data thread serves to store and transmit important information over time. Initially, it is

initialized with zero values and filled during the neural network operation. One can compare it to a living

person who is born without knowledge and learns throughout life.

The Hidden state thread is designed to transmit the system output state over time. The size of the data

channel is equal to the data channel of the memory.

The Input data and Output state channels are designed to exchange information with the outside world.

LSTM Module Diagram

Three threads of data enter the algorithm:

· Input data describes the current state of the system.

· Memory and Hidden state are obtained from the previous state.

At the beginning of the algorithm, information from Input data and Hidden state are combined into a

single data set, which is then fed to all four latent LSTM neural layers. 
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The first neural layer, the Forget gate, determines which information stored in memory can be

forgotten and which should be remembered. It is organized as a fully connected neural layer with a

sigmoid activation function. The number of neurons in the layer corresponds to the number of memory

cells in the Memory thread. Each neuron in the layer receives a total array of Input data and Hidden

state data at the input and outputs a number between 0 (completely forget) and 1 (save in memory).

The element-wise product of the output from the neural layer with memory flow returns the corrected

memory.

where:

· s = activation logistic function

· W
FG

 = weights matrix for the input vector

· INP
t
 = input vector for the current iteration

· U
FG

 = hidden state weight matrix

· HS
t-1

 = hidden state vector from the previous iteration

In the next step, the algorithm determines which of the newly acquired information at this stage needs

to be stored in memory. Two neural layers are used:

· New Content: a fully connected neural layer with hyperbolic tangent as an activation function

normalizes the received information between −1 and 1.

· Input gate: a fully connected neural layer with a sigmoid as an activation function. It is similar to

the Forget gate and determines what new information to remember.

The use of the hyperbolic tangent as an activation function for the neural layer of new content allows

the separation of the received information into positive and negative. The element-wise work of New

Content and Input gate determines the importance of the information received and the extent to which

it needs to be stored in memory.

The vector of values obtained as a result of operations is element-wise added to the current memory

vector. This results in an updated memory state, which is subsequently transmitted to the input of the

next iteration cycle.

After updating the memory, we generate output thread values. To do this, normalize the current

memory value using hyperbolic tangent. Similar to Forget gate and Input gate, let’s compute Output

gate (the output signal gate), which is also activated by the sigmoid function.

The element product of the two received data vectors gives an array of output that is produced from

the LSTM to the outside world. The same data set will be passed to the next iteration cycle as a hidden

state thread.
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Since the introduction of the LSTM unit, there have appeared many different modifications to it. Some

tried to make it "lighter" for faster information processing and training. Others, on the contrary, made

it harder to try to get better results. The GRU (Gated Recurrent Unit) model introduced by Kyunghyun

Cho and his team in September 2014 is considered to be one of the most successful variations. This

solution can be considered a simplified version of the standard LSTM unit. In it, the Forget gate and the

Input gate are combined into a single update gate. This eliminates the use of a separate memory

thread. Only the Hidden state is used to transmit information through time.

At the beginning of the GRU algorithm, as in LSTM, the refresh and reset gates are defined. The

mathematical formula for calculating values is similar to the definition of the gate values in LSTM.

Then the current memory state is updated. In this process, the hidden state from the previous iteration

is first multiplied by the corresponding weight matrix and then element-wise multiplied by the value of

the reset gate. The resulting vector is added from the product of the raw data to its weight matrix. The

total vector is activated by a hyperbolic tangent.

In conclusion of the algorithm, the hidden state from the previous iteration is element-wise multiplied

by the value of the update gate, while the current memory state is multiplied by the difference between

one and the value of the update gate. The sum of these products is passed as the output from the

block and as the hidden state for the next iteration.

Thus, in the GRU model, the reset gate controls the rate of data forgetting. The update gate

determines how much information to take from the previous state and how much of the new data.

4.2.2. Building an LSTM block in MQL5

To implement in our library, among all the options for architectural solutions of recurrent neurons, I

have chosen the classical LSTM block. In my opinion, the presence of filters for new information and

memory content in the form of gates will help minimize the influence of the noisy component of the

signal. And a separate memory channel will help retain information for a longer period.

As before, to create a new type of neural layer, we will create a new class CNeuronLSTM. To maintain

inheritance, the new class will be created based on our CNeuronBase neural layer base class.

https://arxiv.org/pdf/1406.1078v3.pdf
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class CNeuronLSTM    :  public CNeuronBase

  {

public:

                     CNeuronLSTM(void);

                    ~CNeuronLSTM(void);

   //--- method of identifying the object

   virtual int       Type(void)               const { return(defNeuronLSTM); }

  };

Since we apply the inheritance mechanism, our new class immediately possesses the basic functionality

that was previously implemented in the parent class. Now we need to refine this functionality for the

correct operation of our recurrent block. First, let's rewrite the virtual identification method.

As you know from the description of the LSTM block architecture presented in the previous chapter, we

will need four fully connected layers for its proper operation. We'll declare them in the protected block

of our class. And to maintain code readability, we will name them in accordance with the functionality

laid out in the algorithm.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   CNeuronBase*       m_cForgetGate;

   CNeuronBase*       m_cInputGate;

   CNeuronBase*       m_cNewContent;

   CNeuronBase*       m_cOutputGate;

In addition to the created neural layers, the block algorithm uses memory streams and a hidden state.

We will need separate buffers to store them. We will also need to use the chronology of internal neurons

in our training. Therefore, to store such information, we will create dynamic arrays, which we will also

declare in the protected block:

· m_ cMemorys – memory state;

· m_ cHiddenStates – hidden state;

· m_ cInputs – concatenated array of raw data and hidden state;

· m_ cForgetGateOuts – state of the forget gate;

· m_ cInputGateOuts – state of the input gate;

· m_ cNewContentOuts – new content;

· m_ cOutputGateOuts – output gate state.
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class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

   CArrayObj*       m_cMemorys;

   CArrayObj*       m_cHiddenStates;

   CArrayObj*       m_cInputs;

   CArrayObj*       m_cForgetGateOuts;

   CArrayObj*       m_cInputGateOuts;

   CArrayObj*       m_cNewContentOuts;

   CArrayObj*       m_cOutputGateOuts;

Of course, in the process of operating a neural network, we cannot indefinitely accumulate a history of

states, because our resources are finite. Therefore, we will need some kind of reference for

understanding the buffer filling. If the buffer overflows above this limit, we will remove the oldest data

and replace it with new. The depth of history for training the recurrent block will serve as such a

reference for us. This parameter will be user-defined and stored in the m_ iDepth variable.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

   int               m_iDepth;

Continuing the discussion about declaring auxiliary variables for the class, there is another point to pay

attention to. All four internal neural layers use the same input data which includes the concatenated

tensor of the original data and the hidden state. The CalcHiddenGradient method of passing the

gradient through the hidden layer of our base class is constructed so that it replaces the error gradient

values in the buffer of the previous layer. However, we need to sum up the error gradient from all

internal flows. Therefore, to accumulate the sum of the gradients, we will add another buffer

m_ cInputGradient.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

   CBufferDouble*       m_cInputGradient;

It seems we've sorted out the variables. Now let's start building the class methods. The first thing that

the class starts with is the constructor CNeuronLSTM::CNeuronLSTM. In this method, we create

instances of the objects used and set initial values for the internal variables.
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CNeuronLSTM::CNeuronLSTM(void)   : m_iDepth(2)

  {

   m_cForgetGate = new CNeuronBase();

   m_cInputGate = new CNeuronBase();

   m_cNewContent = new CNeuronBase();

   m_cOutputGate = new CNeuronBase();

   m_cMemorys = new CArrayObj();

   m_cHiddenStates = new CArrayObj();

   m_cInputs = new CArrayObj();

   m_cForgetGateOuts = new CArrayObj();

   m_cInputGateOuts = new CArrayObj();

   m_cNewContentOuts = new CArrayObj();

   m_cOutputGateOuts = new CArrayObj();

   m_cInputGradient = new CBufferType();

  }

We immediately create the destructor of the class CNeuronLSTM::~CNeuronLSTM, in which the reverse

operation takes place, that is, memory is released after the class has finished its work. Here it's

important to ensure complete memory cleanup so that nothing is missed.

CNeuronLSTM::~CNeuronLSTM(void)

  {

   if(m_cForgetGate)

      delete m_cForgetGate;

   if(m_cInputGate)

      delete m_cInputGate;

   if(m_cNewContent)

      delete m_cNewContent;

   if(m_cOutputGate)

      delete m_cOutputGate;

   if(m_cMemorys)

      delete m_cMemorys;

   if(m_cHiddenStates)

      delete m_cHiddenStates;

   if(m_cInputs)

      delete m_cInputs;

   if(m_cForgetGateOuts)

      delete m_cForgetGateOuts;

   if(m_cInputGateOuts)

      delete m_cInputGateOuts;

   if(m_cNewContentOuts)

      delete m_cNewContentOuts;

   if(m_cOutputGateOuts)

      delete m_cOutputGateOuts;

   if(m_cInputGradient)

      delete m_cInputGradient;

  }
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Object initialization

Next, let's take a look at the method of initializing an instance of the CNeuronLSTM::Init class. It is in

this method that all internal objects and variables are created and initialized, as well as the necessary

foundation for the normal operation of the neural layer is prepared in accordance with the user-defined

requirements. We created a similar virtual method in our base class for neural layers and constantly

override it in each of our new classes.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

public:

                     CNeuronLSTM(void);

                    ~CNeuronLSTM(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

As you know, a similar method of the base class receives the description of the neural layer being

created as parameters. So, our method in the parameters will get a pointer to an instance of the

CLayerDescription class. Therefore, at the beginning of the method, we perform a check for the validity

of the received pointer and the parameters set in it. First of all, the type of neural layer it specifies

must match our class. Also, our LSTM block cannot be used as an input layer and must contain at least

one neuron at the output.

bool CNeuronLSTM::Init(const CLayerDescription *desc)

  {

//--- Control block

   if(!desc || desc.type != Type() || desc.count <= 0 || desc.window == 0)

      return false;

The use of the LSTM block as a source data layer is simply a waste of resources. We create a large

number of additional objects that will never be used since we write the information directly into the

output buffer in the input layer.

Next, we have to initialize our internal neural layers. To do this, we will call the sameInit method of our

objects. Therefore, we need to pass them the corresponding instance of the CLayerDescription class.

We can't simply pass the object describing the recurrent block received from the user, as we need to

create other objects. So, first, we will prepare a description of the objects to be created:

· All internal neural layers are fully connected. Hence, we create base class objects. Therefore, we

will specify the defNeuronBase type in the type parameter.

· All of them take as input a single tensor, which is a combination of the original data vector and the

hidden state. We get the size of the source data vector in the method parameters

(CLayerDescription.window parameter). The size of the hidden state vector is equal to the size of

the output buffer of the current layer. We also get this value in method parameters

(CLayerDescription.count parameter). The sum of the two values will be written in the window

parameter.

· If you look carefully at the LSTM block diagram in the previous section, you will be able to see that

all internal information flows have the same size. The forget gate output vector is element-wise

multiplied by the memory flow. This means their sizes are equal. Similarly, the input gate result

vector is elementally multiplied by the new content layer result. Then this product is element-wise

summed with the memory flow. Finally, everything is atomically multiplied by the output control
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gate. It becomes clear that all flows are equal to the size of the output buffer of the current block.

So, to the count parameter, we will move the value of a similar element from the external

parameters of the method.

· The activation function is defined by the architecture of the LSTM block. All gates are activated by

a sigmoid and the new content layer by a hyperbolic tangent. Along with the activation function, we

will specify its corresponding parameters.

· We will transfer the optimization method specified by the user.

//--- create a description for the inner neural layers

   CLayerDescription *temp = new CLayerDescription();

   if(!temp)

      return false;

   temp.type = defNeuronBase;

   temp.window = desc.window + desc.count;

   temp.count = desc.count;

   temp.activation = AF_SIGMOID;

   temp.activation_params[0] = 1;

   temp.activation_params[1] = 0;

   temp.optimization = desc.optimization;

After preparing the description for the internal neural layers, we will return to our inheritance from the

parent class. All the block parameters are hidden within the internal neural layers, so there is no need

for us to keep an additional weight matrix in memory, nor the associated delta and momentum buffers.

In addition, we do not plan to use the CActivation activation class object. Essentially, the functionality

of the input layer from the base class is sufficient for us. To initialize the necessary objects and remove

the excess ones, we will zero out the size of the input data in the description of the recurrent block and

call the initialization method of the parent class.

//--- call the parent class initialization method

   CLayerDescription *temp2=new CLayerDescription();

   if(!temp2 || !temp2.Copy(desc))

     return false;

   temp2.window = 0;

   if(!CNeuronBase::Init(temp2))

      return false;

   delete temp2;

To obtain information from the user about the history depth for training the recurrent block, we will use

the window_ out element. We will save the received value in a specially prepared variable. We did not

check this value at the beginning of the method in order not to block the operation of the neural

network. Instead, we simply limited the lower bound of the stored value. Therefore, if the user forgets

to specify a value or indicates an intentionally low value, the neural network will use the value that we

have set.

   if(!InsertBuffer(m_cHiddenStates, m_cOutputs, false))

      return false;

   m_iDepth = (int)fmax(desc.window_out, 2);

Next, we move on to initializing our gate. The forget gate will be initialized first. Before calling the gate

object initialization method, we need to verify the validity of the pointer to the object. If necessary, we

will create a new instance of the object. If the attempt to create a new instance of the object is

unsuccessful, we exit the method with the false result. If there is an actual object instance, we initialize

the gate.
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//--- initialize ForgetGate

   if(!m_cForgetGate)

     {

      if(!(m_cForgetGate = new CNeuronBase()))

         return false;

     }

   if(!m_cForgetGate.Init(temp))

      return false;

   if(!InsertBuffer(m_cForgetGateOuts, m_cForgetGate.GetOutputs(), false))

      return false;

Similar iterations are performed for the other two gates.

//--- initialize InputGate

   if(!m_cInputGate)

     {

      if(!(m_cInputGate = new CNeuronBase()))

         return false;

     }

   if(!m_cInputGate.Init(temp))

      return false;

   if(!InsertBuffer(m_cInputGateOuts, m_cInputGate.GetOutputs(), false))

      return false;

//--- initialize OutputGate

   if(!m_cOutputGate)

     {

      if(!(m_cOutputGate = new CNeuronBase()))

         return false;

     }

   if(!m_cOutputGate.Init(temp))

      return false;

   if(!InsertBuffer(m_cOutputGateOuts, m_cOutputGate.GetOutputs(), false))

      return false;

The new content layer will be initialized in the same way. We will only preliminarily change the type of

the activation function in the layer description.

//--- initialize NewContent

   if(!m_cNewContent)

     {

      if(!(m_cNewContent = new CNeuronBase()))

         return false;

     }

   temp.activation = AF_TANH;

   if(!m_cNewContent.Init(temp))

      return false;

   if(!InsertBuffer(m_cNewContentOuts, m_cNewContent.GetOutputs(), false))

      return false;

After initializing the internal layers, we will move on to the other objects of our LSTM recurrent block.

We initialize the gradient accumulation buffer. As in the case of neural layers, we first verify the validity

of the object pointer. If necessary, we create a new instance of the class. Then we fill the entire buffer
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with zero values. We take the buffer size from the previously prepared description of the internal neural

layers.

//--- initialize the InputGradient buffer

   if(!m_cInputGradient)

     {

      if(!(m_cInputGradient = new CBufferType()))

         return false;

     }

   if(!m_cInputGradient.BufferInit(1, temp.window, 0))

      return false;

   delete temp;

It should be noted that after initializing the buffer for accumulating gradient values, we will no longer

use the object describing the internal neural layers. Therefore, we can delete the unnecessary object.

In conclusion, all that remains is to create and fill with zero values the buffers for the memory flow and

hidden state. Note that both buffers will be used on the first direct pass, and their absence will paralyze

the entire neural network. A separate method CreateBuffer has been added to create these buffers,

which we will consider later.

So, first, we create a memory buffer. We declare a temporary variable and call the CreateBuffer

method. As a result of the method, we expect a pointer to the buffer object. Certainly, after obtaining a

pointer, we check its validity. If an error occurs, we exit the method with the result of false.

Next, we check for the presence of existing objects in the memory stack. We are discussing the

method of initializing a class instance, so we expect an empty stack to be present. If the stack,

however, contains any information, we clear the stack and fill the created buffer with null values. After

this, we place our buffer into the memory stack.

//--- initialize Memory

   CBufferType *buffer =  CreateBuffer(m_cMemorys);

   if(!buffer)

      return false;

   if(!InsertBuffer(m_cMemorys, buffer, false))

     {

      delete buffer;

      return false;

     }

As a result of executing this code block within the method, we expect to obtain a memory stack

containing a single null memory buffer. Please note that at the end of the block execution, we do not

delete the buffer object, even though the variable scope does not extend beyond this method. The

reason is, we operate object pointers here. By putting a pointer on the stack, we can always get it from

there. Conversely, if we delete the object pointed to by the variable pointer in the stack, we will also

end up with a pointer to a deleted object, along with all the resulting consequences. The object will

actually be deleted either upon stack overflow or when attempting to close the entire instance of the

class.

Repeat all iterations for the hidden state buffer.
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//--- initialize HiddenStates

   if(!(buffer =  CreateBuffer(m_cHiddenStates)))

      return false;

   if(!InsertBuffer(m_cHiddenStates, buffer, false))

     {

      delete buffer;

      return false;

     }

Lastly, we pass the current pointer to the OpenCL object to all internal objects and exit the method.

//---

   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

We have considered the algorithm of the class initialization method. However, as you may have noticed,

during the execution of the algorithm, we used two methods of the class: SetOpenCL and CreateBuffer.

The first method exists in the parent class, but for proper functionality, we will need to override it. The

second method is new.

The CreateBuffer method in the initialization method was used to create a new buffer. Looking a bit

ahead, we will use it in a broader context. As you know from the architecture of the LSTM recursive

block we are building, we will need to extract the last hidden state and memory vectors from the stack

on each feed-forward pass. We will also transfer this functionality to the CreateBuffer method.

Since we anticipate the method working with multiple stacks, we will pass a pointer to a specific stack

as a parameter to the method. The result of the method execution will be a pointer to the desired

buffer. We declare the method in the protected block of our class.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

   CBufferDouble*     CreateBuffer(CArrayObj *&array);

At the beginning of the method body, as usual, we check the received stack pointer. However, in case

we receive an invalid pointer, we don't rush to exit the method with an error message. Instead, we try

to create a new stack. Only if we can't create a new stack, we exit the method.

Remember, the code that invokes the method expects to receive not just the logical state of the

method execution but a pointer to the buffer. Therefore, in case of an error, we return NULL instead of

the expected pointer.

CBufferType *CNeuronLSTM::CreateBuffer(CArrayObj *&array)

  {

   if(!array)

     {

      array = new CArrayObj();

      if(!array)

         return NULL;

     }

Next, we create a new buffer and immediately check the result.
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   CBufferType *buffer = new CBufferType();

   if(!buffer)

      return NULL;

After successfully creating the buffer, we split the algorithm into two threads. In one case when there

are no buffers on the stack, we fill the buffer we created with zero values. If there is already

information on the stack, we copy the latest states to the buffer. Then we return a pointer to the buffer

of the calling program.

   if(array.Total() <= 0)

     {

      if(!buffer.BufferInit(m_cOutputs.Rows(), m_cOutputs.Cols(), 0))

        {

         delete buffer;

         return NULL;

        }

     }

   else

     {

      CBufferType *temp = array.At(0);

      if(!temp)

        {

         delete buffer;

         return NULL;

        }

      buffer.m_mMatrix = temp.m_mMatrix;

     }

//---

   if(m_cOpenCL)

     {

      if(!buffer.BufferCreate(m_cOpenCL))

         delete buffer;

     }

//---

   return buffer;

  }

Note that I'm referring to the latest data and, in doing so, I'm copying the buffer with index 0. This

class implements reverse stack logic. For each new buffer, we will insert it at the beginning of the

stack, pushing the older ones down, and when the stack is full, we will remove the last ones.

And second point: we don't take a pointer to an existing buffer, instead we create a new one. This is

because we will change the contents of the buffer during the forward pass. In doing so, it's important

for us to preserve the previous state. In the case of using a pointer to an old buffer, we will simply

overwrite its values, effectively discarding the desired previous states.

The second method, SetOpenCL, is an overriding method of the parent class and has the same

functionality of passing a pointer to the OpenCL context to all internal objects involved in the

computation process. Similar to the method in the parent class, our method will receive a pointer to

the OpenCL context as a parameter and will return a logical result indicating the readiness of the class

to operate within the specified context.
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class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

public:

   ....   

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

The algorithm of the method is quite simple. First, we call the method of the parent class and pass the

resulting pointer to it. The validation of the received pointer correctness is already implemented in the

parent class method. Therefore, we need not repeat it here.

Then, we pass the OpenCL context pointer stored in our class variable to all internal objects. The key

point here is that the method of the parent class has verified the received pointer and has saved the

corresponding pointer in a variable. To ensure that all objects operate within the same context, we

propagate the processed pointer. 

bool CNeuronLSTM::SetOpenCL(CMyOpenCL *opencl)

  {

//--- call the parent class method

   CNeuronBase::SetOpenCL(opencl);

//--- call the relevant method for all internal layers

   m_cForgetGate.SetOpenCL(m_cOpenCL);

   m_cInputGate.SetOpenCL(m_cOpenCL);

   m_cOutputGate.SetOpenCL(m_cOpenCL);

   m_cNewContent.SetOpenCL(m_cOpenCL);

   m_cInputGradient.BufferCreate(m_cOpenCL);

   for(int i = 0; i < m_cMemorys.Total(); i++)

     {

      CBufferType *temp = m_cMemorys.At(i);

      temp.BufferCreate(m_cOpenCL);

     }

   for(int i = 0; i < m_cHiddenStates.Total(); i++)

     {

      CBufferType *temp = m_cHiddenStates.At(i);

      temp.BufferCreate(m_cOpenCL);

     }

//---

   return(!!m_cOpenCL);

  }

At this point, we can say that we have completed the work on the class initialization algorithm. We can

now move on to the next phase, which is to create a feed-forward algorithm.
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4.2.2.1 Feed-forward method for LSTM block

As always, we will create the feed-forward algorithm in the FeedForward method. The feed-forward

pass method is one of the basic methods that is defined by a virtual method in the base class and is

overridden in all inherited methods.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

public:

   ....   

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

The FeedForward method receives a pointer to the previous neural layer as a parameter, which

contains the initial data for the method operation. It returns a logical value indicating the execution

status of the method operations.

At the beginning of the method, we check the validity of pointers to all objects that are critical for the

method operations. If there is at least one invalid pointer, we exit the method with the result of false.

bool CNeuronLSTM::FeedForward(CNeuronBase *prevLayer)

  {

--- check the relevance of all objects

   if(!prevLayer || !prevLayer.GetOutputs() || !m_cOutputs ||

      !m_cForgetGate || !m_cInputGate || !m_cOutputGate ||

      !m_cNewContent)

      return false;

After successfully passing through the control block, we create stubs for new memory buffers and

hidden states. To do this, we use the CreateBuffer method discussed above, remembering to control

the result of the operations.
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--- prepare blanks for new buffers

   if(!m_cForgetGate.SetOutputs(CreateBuffer(m_cForgetGateOuts), false))

      return false;

   if(!m_cInputGate.SetOutputs(CreateBuffer(m_cInputGateOuts), false))

      return false;

   if(!m_cOutputGate.SetOutputs(CreateBuffer(m_cOutputGateOuts), false))

      return false;

   if(!m_cNewContent.SetOutputs(CreateBuffer(m_cNewContentOuts), false))

      return false;

   CBufferType *memory = CreateBuffer(m_cMemorys);

   if(!memory)

      return false;

   CBufferType *hidden = CreateBuffer(m_cHiddenStates);

   if(!hidden)

     {

      delete memory;

      return false;

     }

Next, we have to prepare the initial data for the correct operation of the internal layers. This procedure

is not as simple as it may seem at first glance. The reason is that to call the feed-forward methods of

our gates, we require not just a buffer but a neural layer. We cannot put a pointer to the previous layer

obtained in the parameters, because it does not contain all the necessary information. It lacks the

hidden state data necessary for the algorithm to function correctly. Therefore, we will need to create

an empty neural layer and fill its output buffer with the necessary data.

But before creating a new neural layer, we verify the validity of the pointer to the stack storing the

source data neural layers. If needed, we create a new one, as after conducting the feed-forward pass,

we will need to store the created neural layer for subsequent neural network training. The check for the

stack presence is performed before completing the entire loop of feed-forward operations, in order to

save resources by avoiding unnecessary operations.

--- create a buffer for the source data

   if(!m_cInputs)

     {

      m_cInputs = new CArrayObj();

      if(!m_cInputs)

        {

         delete memory;

         delete hidden;

         return false;

        }

     }

Please note that before exiting the method after an unsuccessful attempt to create a new stack, we

will need to delete the objects created within the method, for which pointers are not passed to the

global variables of the class.

Next, we create a new instance of the base neural layer object. And, as always, we check the result of

the operation.



4. Basic types of neural layers

385

4.2 Recurrent neural networks

   CNeuronBase *inputs = new CNeuronBase();

   if(!inputs)

     {

      delete memory;

      delete hidden;

      return false;

     }

After successfully creating an instance of the base neural layer object, we need to create an object

describing the structure of the neural layer for its initialization. That's what we'll proceed to do. We will

create an instance of the CLayerDescription object and populate it with the necessary data. We will

specify the type of neuron layer as defNeuronBase. The number of elements in the neural layer will be

equal to the sum of the elements in the result buffers of the previous and current layers. Since we will

directly populate the result buffer of the created layer from other sources, we set the window size for

source data to 0.

   CLayerDescription *desc = new CLayerDescription();

   if(!desc)

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

   desc.type = defNeuronBase;

   desc.count = (int)(prevLayer.GetOutputs().Total() + m_cOutputs.Total());

   desc.window = 0;

After creating the description of the neural layer, we proceed to its initialization. Upon successful

completion of the operation, we delete the no-longer-needed layer description object.

   if(!inputs.Init(desc))

     {

      delete inputs;

      delete memory;

      delete hidden;

      delete desc;

      return false;

     }

   delete desc;

   inputs.SetOpenCL(m_cOpenCL);

After this, we only need to fill the result buffer of the new layer with the necessary source data. To

begin with, we get a pointer to the required buffer and verify its validity.
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   CBufferType *inputs_buffer = inputs.GetOutputs();

   if(!inputs_buffer)

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

After that, we populate the buffer with the contents of the result buffers from the previous layer and

the hidden state. We have moved the functionality of data transfer to a separate Concatenate method,

which we will consider later.

   if(!inputs_buffer.Concatenate(prevLayer.GetOutputs(), hidden,

                                 prevLayer.Total(), hidden.Total()))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

Now that we have completed the preparatory work, we can proceed directly to the feed-forward pass

operations. We will start this process by calling the feed-forward pass methods of the internal neural

layers. First, we will perform the forward pass for the forget gates. We simply call the method with the

same name on the corresponding object. We will pass a pointer to the newly created instance of the

neural layer for the source data as parameters to the method, and then we check the result of the

operation execution.

--- perform a feed-forward pass of the internal neural layers

   if(!m_cForgetGate.FeedForward(inputs))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

We will repeat the operation for all internal layers.
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   if(!m_cInputGate.FeedForward(inputs))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

   if(!m_cOutputGate.FeedForward(inputs))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

   if(!m_cNewContent.FeedForward(inputs))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

After successfully completing the feed-forward pass of all internal neural layers, the buffer of results for

each object will store prepared information about the state of all gates and the normalized data of the

new content. Now all we have to do is to combine all information flows according to the algorithm of the

LSTM block. Before constructing this process, we need to organize the branching of the algorithm

depending on the utilized device for computational operations: CPU using standard MQL5 tools or

OpenCL context.

A reasonable question may arise: why are we separating transaction threads only now? Why didn't we

utilize the power of multi-threaded operations when calculating gate state and new context? But believe

me, these operations also utilized the technology of multi-threaded computations offered by OpenCL,

although not as explicitly. For example, in the CNeuronLSTM::SetOpenCL method, we passed a pointer

to the OpenCL context to all the internal neural layers, and just a few lines above, we called the feed-

forward pass methods for each internal layer. And now take a look at the forward pass method of the

parent class CNeuronBase::FeedForward, there is also thread division present there.
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bool CNeuronBase::FeedForward(CNeuronBase *prevLayer)

  {

   ....   

--- Branching the algorithm by the computing device

   if(!m_cOpenCL)

     {

   ....   

     }

   else

     {

   ....   

     }

//---

   return false;

  }

In other words, we have previously used ready-made methods of the base class of neural layers with

ready-made functionality in both directions. We will now introduce additional operations that are unique

to the LSTM block. Therefore, we need to split the thread of operations and organize the process for

both technologies. Just as when building the previous classes, we will now go through the process of

constructing the algorithm in MQL5. We will delve into the actual process organization within the

context of OpenCL in the next chapter.

When performing operations using MQL5, we will first obtain pointers to the data buffers with the

results of internal neural layers in local variables for ease of access. Then we will use the matrix

operations of MQL5.

First, we multiply element-wise the Memory state by the Forget Gate values. We then multiply the

normalized matrix of new content (New Content) by the Input Gate, step by step. The result is added to

the updated memory state (Memory). In conclusion, we normalize the results of the operations

performed above using the hyperbolic tangent function and then element-wise multiply them with the

matrix of gate results (Output Gate). The result is written to the hidden state buffer (Hidden).

--- branching of the algorithm by the computing device

   CBufferType *fg = m_cForgetGate.GetOutputs();

   CBufferType *ig = m_cInputGate.GetOutputs();

   CBufferType *og = m_cOutputGate.GetOutputs();

   CBufferType *nc = m_cNewContent.GetOutputs();

   if(!m_cOpenCL)

     {

      memory.m_mMatrix *= fg.m_mMatrix;

      memory.m_mMatrix += ig.m_mMatrix * nc.m_mMatrix;

      hidden.m_mMatrix = MathTanh(memory.m_mMatrix) * og.m_mMatrix;

     }

For the OpenCL context algorithm, we temporarily set an exit with a negative result, which will later be

replaced by the correct code. This option will allow us to test the ready code and warn us about

choosing an incorrect parameter. 
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   else

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

After completing the loop that updates the full memory and hidden state of our LSTM block, we transfer

the hidden state values to the result buffer.

--- copy the hidden state to the neural layer results buffer

   m_cOutputs = hidden;

This could be the end of the feed-forward pass. However, we still need to save the current state for the

subsequent training of our recurrent block. First, we save the initial data to the stack. As mentioned

above, we insert new objects into the stack with an index of 0.

--- save the current state

   if(!m_cInputs.Insert(inputs, 0))

     {

      delete inputs;

      delete memory;

      delete hidden;

      return false;

     }

After adding a new element, check the stack for overflow and remove excessive historical data. To

perform this functionality, we create the ClearBuffer method. We will look at the algorithm of this

method a little later.

   ClearBuffer(m_cInputs);

Here it should be mentioned that we store the source data in the form of a neural layer. This allows us

to solve two problems at once:

1. The feed-forward and backpropagation methods for the base neural layer require a pointer to the

previous neural layer as input. Consequently, a single object can be used for both the feed-forward

and backpropagation passes without any modifications to the base neural layer.

2. In one object, we store both the raw data buffer and the gradient buffer. We do not need to

configure synchronization for buffer utilization.

In the remaining stacks, we will store buffers. Therefore, we will create an additional InsertBuffer

method for the repetitive work of saving data to the stacks. We will take a look at the algorithm of the

method a bit later, and for now, we will use it to copy information into the stacks. We will repeat the

call of the specified method for each stack and the corresponding buffer.
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   if(!InsertBuffer(m_cForgetGateOuts, m_cForgetGate.GetOutputs(), false))

     {

      delete memory;

      delete hidden;

      return false;

     }

   if(!InsertBuffer(m_cInputGateOuts, m_cInputGate.GetOutputs(), false))

     {

      delete memory;

      delete hidden;

      return false;

     }

   if(!InsertBuffer(m_cOutputGateOuts, m_cOutputGate.GetOutputs(), false))

     {

      delete memory;

      delete hidden;

      return false;

     }

   if(!InsertBuffer(m_cNewContentOuts, m_cNewContent.GetOutputs(), false))

     {

      delete memory;

      delete hidden;

      return false;

     }

Note that above, we saved the buffers of results from internal layers. These objects belong to the

neural layer structure and will be deleted from memory together when the corresponding neural layer is

deleted. Therefore, in the InsertBuffer method, we will not create a new instance of the buffer object

and copy the data.

Here, it's crucial to have a clear understanding of the differences between a pointer to an object and

the object itself. Every time we create an object, a certain amount of memory is allocated for it. The

necessary information is recorded there. This is our object. A pointer to the object is saved to access

it. It contains a reference to the memory area where the object is stored. Consequently, when

accessing the object, we take the pointer, navigate to the desired memory location, and read the

necessary information.

When we copy a pointer to an object, we don't create a new object, we just make a copy of the

reference. Therefore, when someone makes changes to the content of the object, we will also see

these changes by accessing the object through our pointer. Whether this is good or bad depends on the

method of using the object. When we need synchronization of operations with an object from different

sources, that's a good thing. Everyone will refer to the same object. This means there is no need to

synchronize data in different storages. Moreover, a pointer requires fewer resources than creating a

new object. But when we need to protect some data against changes, it is better to create a new

object and copy the necessary information.
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   if(!InsertBuffer(m_cMemorys, memory, false))

     {

      delete hidden;

      return false;

     }

   if(!InsertBuffer(m_cHiddenStates, hidden, false))

      return false;

//---

   return true;

  }

After successfully saving all the necessary information in the stack, we exit the method with a positive

result.

Congratulations! We've reached the end of the forward pass method. It may not be the simplest, but I

hope my comments have helped you understand its algorithm and the idea behind the process.

However, we still have some open questions in the form of auxiliary methods.

As we considered the algorithm of the feed-forward pass method, we mentioned the ClearBuffer

method. Here, everything is quite simple and straightforward. The method receives a pointer to the

stack in the parameters. As always, at the beginning of the method, we check the validity of the

received pointer. After successfully passing the pointer check, we verify the buffer size. If the size of

the buffer exceeds the user-specified size, we delete the last elements. By doing so, we ensure that the

buffer size fits within the specified limits. As you can see, the whole code of the method fits literally into

five lines.

void CNeuronLSTM::ClearBuffer(CArrayObj *buffer)

  {

   if(!buffer)

      return;

   int total = buffer.Total();

   if(total > m_iDepth + 1)

      buffer.DeleteRange(m_iDepth + 1, total);

  }

Then we discussed the InsertBuffer method that adds a buffer to the stack. This method has three

parameters, the last of which has a default value and is not mandatory to specify when calling the

method:

· CArrayObj  *array – a pointer to the stack for adding a buffer.

· CBufferType *element – a pointer to the buffer to be added.

· bool create_ new – a logical variable indicating the need to create a duplicate buffer. By default, a

duplicate buffer is created.

As a result of the operations, the method returns a boolean value indicating the status of the

operations.

As always, at the beginning of the method, we check if the obtained pointers are valid. Here, there is

one nuance. First, we check the pointer to the buffer to be added to the stack. With an invalid pointer,

we have nothing to add to the stack. Naturally, in such a situation, we exit the method with a negative

result.
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However, if the pointer to the stack turns out to be invalid, we will first attempt to create a new stack.

Only after an unsuccessful attempt, we will exit the method with a negative result. But if we manage to

create a new stack, we will continue working in the standard mode.

bool CNeuronLSTM::InsertBuffer(CArrayObj *&array,

                               CBufferType *element,

                               bool create_new = true)

  {

//--- control block

   if(!element)

      return false;

   if(!array)

     {

      array = new CArrayObj();

      if(!array)

         return false;

     }

Next, we split the algorithm into two separate branches depending on whether a duplicate buffer needs

to be created. If a duplicate buffer is needed, we first create a new instance of the buffer object and

immediately check the result of the operation using the obtained pointer to the object.

   if(create_new)

     {

      CBufferType *buffer = new CBufferType();

      if(!buffer)

         return false;

Then we transfer the contents of the source buffer to the new buffer. Only after that, we will add the

pointer to the new buffer to the stack. Again, we add new elements to the stack with an index of 0.

      buffer.m_mMatrix = element.m_mMatrix;

      if(!array.Insert(buffer, 0))

        {

         delete buffer;

         return false;

        }

     }

If we don't need to create a new instance of the buffer, then things are much simpler here. We simply

add the pointer to the buffer received as a parameter to the stack.

   else

     {

      if(!array.Insert(element, 0))

        {

         delete element;

         return false;

        }

     }

After adding a new element to the stack, we will check its size and remove excessive history. For this,

we will use the ClearBuffer method.
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--- remove unnecessary history from the buffer

   ClearBuffer(array);

//---

   return true;

  }

After the operations are complete, we exit the method with a positive result.

We have thoroughly covered the feed-forward pass algorithm and the methods involved in it. Next, let's

consider the backpropagation pass.
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4.2.2.2 Backpropagation methods for LSTM block

The feed-forward pass represents the standard mode of operation of a neural network. However, before

it can be used in real-life operations, we need to train our model. Recurrent neural networks are trained

using the familiar backpropagation method with a slight addition. The reason is that, unlike the neural

layer types we've discussed before, only recurrent layers use their own output as their input on future

iterations. Also, they all have their own weights that need to be learned as well. In the learning process,

we have to unfold the recurrent layers chronologically as a multilayer perceptron. The only difference is

that all layers will use the same weight matrix. Precisely for this purpose, during the feed-forward pass,

we kept a record of the state history of all objects. Now it's time to put them to good use.

We have three methods responsible for the backward pass in the base class of the neural layer:

· CalcHiddenGradient – a gradient distribution through a hidden layer.

· CalcDeltaWeights – a distribution of the gradient to the weighting matrix.

· UpdateWeights – the method of updating the weights.

class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   ....   

public:

   ....   

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer)  override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer)    override 

                                                          { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

We have to redefine them.

First, we will override the CalcHiddenGradient method for distributing the gradient through the hidden

layer. Here we will need to unwrap the entire historical chain and run the error gradient through all

states. Additionally, let's not forget that besides distributing gradients within the LSTM block, we must

also perform the second function of this method: propagating the gradient of the error back to the

previous layer.

The method receives a pointer to the object of the previous layer and returns a boolean result

indicating the success of the operations.

At the beginning of the method, we check all the objects used. We check both pointers to objects of

the previous layer and internal objects received in the parameters.

bool CNeuronLSTM::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- check the relevance of all objects

   if(!prevLayer || !prevLayer.GetGradients() ||

      !m_cGradients || !m_cForgetGate || !m_cForgetGateOuts ||

      !m_cInputGate || !m_cInputGateOuts || !m_cOutputGate ||

      !m_cOutputGateOuts || !m_cNewContent || !m_cNewContentOuts)

      return false;

Let's not forget that a backpropagation pass is only possible after a feed-forward pass. The foundation

of source data for the backpropagation pass is established exactly during the feed-forward pass.
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Therefore, the next step is to check for the presence of information in the memory stacks and hidden

states. In addition, the stack filling indicates the depth of gradient propagation in the story.

//--- check the presence of forward pass data

   int total = (int)fmin(m_cMemorys.Total(), m_cHiddenStates.Total()) - 1;

   if(total <= 0)

      return false;

Continuing the preparatory work, let's create pointers to the result and gradient buffers of the internal

layers. I think the need for pointers to gradient buffers is obvious. We will need to write error gradients

to them, propagating them through the LSTM block. The need for result buffers, on the other hand, is

not so obvious. As you know, every neuron has an activation function. Our inner layers are activated by

the logistic function and by the hyperbolic tangent. The error gradient obtained at the input of the

neural layer must be adjusted to the derivative of the activation function. The derivative of the above

activation functions can be easily recalculated based on the result of the function itself. Thus, we need

the appropriate input data to perform a correct backpropagation pass. For the previously considered

neural layers, such an issue was not raised because the correct data were written to the result buffer in

a forward pass. In the case of a recurrent block, only the result of the last forward pass will be stored

in the result buffer. To work out the depth of the history, we will have to overwrite the values of the

result buffer with the values of the corresponding time step. 

//--- make pointers to buffers of gradients and results of internal layers

   CBufferType *fg_grad = m_cForgetGate.GetGradients();

   if(!fg_grad)

      return false;

   CBufferType *fg_out = m_cForgetGate.GetOutputs();

   if(!fg_out)

      return false;

   CBufferType *ig_grad = m_cInputGate.GetGradients();

   if(!ig_grad)

      return false;

   CBufferType *ig_out = m_cInputGate.GetOutputs();

   if(!ig_out)

      return false;

   CBufferType *og_grad = m_cOutputGate.GetGradients();

   if(!og_grad)

      return false;

   CBufferType *og_out = m_cOutputGate.GetOutputs();

   if(!og_out)

      return false;

   CBufferType *nc_grad = m_cNewContent.GetGradients();

   if(!nc_grad)

      return false;

   CBufferType *nc_out = m_cNewContent.GetOutputs();

   if(!nc_out)

      return false;

At the end of the preparatory process, we will store the size of the internal thread buffers into a local

variable.
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   uint out_total = m_cOutputs.Total();

Next, we create a loop through historical data. The main operations of our method will be performed in

the body of this loop. At the beginning of the loop, we will load information from the corresponding

historical step in our stacks. Note that all buffers are loaded for the analyzed chronological step, while

the memory buffer is taken from the preceding step. I will explain the reasons for this below. 

//--- loop through the accumulated history

   for(int i = 0; i < total; i++)

     {

      //--- get pointers to buffers from the stack

      CBufferType *fg = m_cForgetGateOuts.At(i);

      if(!fg)

         return false;

      CBufferType *ig = m_cInputGateOuts.At(i);

      if(!ig)

         return false;

      CBufferType *og = m_cOutputGateOuts.At(i);

      if(!og)

         return false;

      CBufferType *nc = m_cNewContentOuts.At(i);

      if(!nc)

         return false;

      CBufferType *memory = m_cMemorys.At(i + 1);

      if(!memory)

         return false;

      CBufferType *hidden = m_cHiddenStates.At(i);

      if(!hidden)

         return false;

      CNeuronBase *inputs = m_cInputs.At(i);

      if(!inputs)

         return false;

Next, we have to distribute the error gradient received at the input of the LSTM block between the

internal neural layers. This is where we build a new process. Following our class construction concept,

we create a branching of the algorithm based on the execution device for mathematical operations.

The error gradient distribution is performed in reverse order of the forward flow of information. Hence,

we will construct its propagation algorithm from output to input. Let's look at the result node of our

LSTM block. During the feed-forward pass, the updated memory state is activated by the hyperbolic

tangent and multiplied by the output gate state. Thus, we have two components affecting the result of

the block: the memory value and the gate.
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LSTM block result node

In order to reduce the error at the block output, we need to adjust the values of both components. To

do this, we need to distribute the overall error gradient through a multiplication function that combines

the two threads of information. That is, multiply the error gradient we know by the derivative of the

function along each direction. We know from our high school math course that the derivative of the

product of a constant over a variable is a constant. We apply the following approach: when determining

the influence of one of the factors, we assume that all other components have constant values. Hence,

we can write the following mathematical formulas.

Then we can easily distribute the derivative in both directions using the following mathematical

formulas.

We haven't created a separate buffer for the activated memory state. However, we can easily count it

by re-activating the corresponding state or by dividing the hidden state by the output gate value. I

chose the second path, and the entire algorithm for distributing the error gradient at this site is

expressed in the following code.
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      //--- branching of the algorithm across the computing device

      if(!m_cOpenCL)

        {

         //--- calculate the gradient at the output of each internal layer

         MATRIX m = hidden.m_mMatrix / (og.m_mMatrix + 1e-8);

         //--- OutputGate gradient

         MATRIX grad = m_cGradients.m_mMatrix;

         og_grad.m_mMatrix = grad * m;

         //--- memory gradient

         grad *= og.m_mMatrix;

Before distributing the memory gradient to the rest of the internal layers, we must correct the resulting

gradient by the derivative of the activation function.

         //--- adjust the gradient to the derivative

         grad *= MathPow(m, 2) * (-1) + 1;

We continue to distribute the error gradient between the internal layers. We need to distribute the

error gradient from the memory flow to three more internal layers. Moving along the information flow

inside the LSTM block in reverse, the first function we encounter is summation. The derivative of the

sum is 1. Therefore, we pass the error gradient in both directions unchanged.

Error gradient distribution inside the LSTM block

Next, in both directions, we encounter the product. The principles of propagating the gradient through

the multiplication of two numbers have been explained in detail above, so there is no need to repeat

them. I just want to remind you that, unlike all buffers from the stack, only the memory buffer was

taken one step further back in history. I promised to clarify this point, and now is the most suitable

time to do so. Take a look at the LSTM block diagram. To refresh memory, we multiply the output of

the Forget gate by the memory state transferred from the previous iteration. Hence, to determine the

error gradient at the output of the Forget gate, we need to multiply the error gradient in the memory
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thread by the memory state of the previous iteration. It is the buffer of this state that we loaded at the

start of the loop

The MQL5 code of the described operations is presented below.

         //--- InputGate gradient

         ig_grad.m_mMatrix = grad * nc.m_mMatrix;

         //--- NewContent gradient

         nc_grad.m_mMatrix = grad * ig.m_mMatrix;

         //--- ForgetGates gradient

         fg_grad.m_mMatrix = grad * memory.m_mMatrix;

        }

This completes the thread separation block by computational operation unit, and we merge the threads

of the algorithm. We set a stub for the OpenCL branch and move on.

      else

        {

         return false;

        }

We have already discussed the need to use the historical states of the inner layer result buffers. Now

we need to put this into practice and fill the result buffers with relevant historical data.

      //--- copy the corresponding historical data to the buffers of the internal layers

      if(!m_cForgetGate.SetOutputs(fg, false))

         return false;

      if(!m_cInputGate.SetOutputs(ig, false))

         return false;

      if(!m_cOutputGate.SetOutputs(og, false))

         return false;

      if(!m_cNewContent.SetOutputs(nc, false))

         return false;

Next, we need to propagate the gradient from the output to the input of the internal neural layers. This

functionality is easily implemented by the base class method. However, please note the following. All

four internal neural layers use the same input data. We also need to put the error gradient together in

the same buffer. The neural layer base class methods we developed earlier are constructed in such a

way that they overwrite values. Therefore, we need to organize the process of summing the error

gradients from each internal neural layer.

First, we'll run a gradient through the Forget gate. Recall that in order to transfer the source data to

the internal neural layers, we created a base layer of source data and after performing forward pass

operations, we stored a pointer to it in the source data stack. This type of object already contains

buffers for writing data and error gradients. So, now we just take this pointer and pass it in the

parameters of the CNeuronBase::CalcHiddenGradient method. After this, our base class method will

execute and fill the error gradient buffer at the source data level for the forget gates. But it's only one

gate, and we need to gather information from all of them. To avoid losing the computed error gradient

when calling a similar method for other internal layers, we will copy the data into the m_ cInputGradient

buffer which we created in advance for accumulating error gradients.
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      //--- propagate a gradient through the inner layers

      if(!m_cForgetGate.CalcHiddenGradient(inputs))

         return false;

      if(!m_cInputGradient)

        {

         m_cInputGradient = new CBufferType();

         if(!m_cInputGradient)

            return false;

         m_cInputGradient.m_mMatrix = inputs.GetGradients().m_mMatrix;

         m_cInputGradient.BufferCreate(m_cOpenCL);

        }

      else

        {

         m_cInputGradient.Scaling(0);

         if(!m_cInputGradient.SumArray(inputs.GetGradients()))

            return false;

        }

We repeat the operations for the remaining internal layers. However, now we add the new values of the

error gradient to the previously obtained values.

      if(!m_cInputGate.CalcHiddenGradient(inputs))

         return false;

      if(!m_cInputGradient.SumArray(inputs.GetGradients()))

         return false;

      if(!m_cOutputGate.CalcHiddenGradient(inputs))

         return false;

      if(!m_cInputGradient.SumArray(inputs.GetGradients()))

         return false;

      if(!m_cNewContent.CalcHiddenGradient(inputs))

         return false;

      if(!inputs.GetGradients().SumArray(m_cInputGradient))

         return false;

Please note the following. While processing the first three internal layers we move values into the

temporary buffer m_ cInputGradient. However, while processing the last layer, we transfer the

previously accumulated error gradient into the source data layer buffer. Thus, we keep the overall error

gradient at the initial data layer along with the initial data itself in the same initial data layer. It will also

be automatically saved in our stack. Recall what I wrote about objects and pointers to them.

Here comes an interesting moment. Remember, why we did all this? Propagation of the error gradient

across all elements of the neural network is necessary to have a reference for determining the direction

and extent of weight matrix element adjustments to reduce the overall error of our neural network

performance. Consequently, as a result of the operations of this method, we must:

· Bring the error gradient to the previous layer, and

· Bring the error gradient to the weight matrices of the internal neural layers.

If we run the next iteration cycle in this state with new data for recalculating the error gradients of

internal layers, we will simply replace the just-calculated values. However, we need to propagate the

error gradients all the way to the weight matrices of the internal neural layers. Therefore, without

waiting for a call from an external program, we call the CNeuronBase::CalcDeltaWeights method for all

internal layers, which will recalculate the gradient at the weight matrix level.
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      //--- project the gradient onto the weight matrices of the internal layers

      if(!m_cForgetGate.CalcDeltaWeights(inputs))

         return false;

      if(!m_cInputGate.CalcDeltaWeights(inputs))

         return false;

      if(!m_cOutputGate.CalcDeltaWeights(inputs))

         return false;

      if(!m_cNewContent.CalcDeltaWeights(inputs))

         return false;

We pass the error gradient only from the current state to the previous neural layer. Historical data

remains only for the internal user of the LSTM block. Therefore, we check the iteration index and only

then pass the error gradient to the buffer of the previous layer. Do not forget that our error gradient

buffer at the source data level contains more data than the buffer of the previous layer. This is because

it also contains the error gradient of the hidden state. Hence, we will transfer only the necessary part

of the data to the previous layer.

We transfer the remainder to the error gradient buffer of our LSTM block. Remember, at the beginning

of the loop, it was from this buffer that we took the error gradient to propagate throughout the LSTM

block? It's time to prepare the initial data for the next iteration of our loop through the chronological

iterations of the feed-forward pass and error gradient propagation.

   //--- if the gradient of the current state is calculated, then transfer it to the previous layer

   //--- and write the hidden state gradient to the gradient buffer for a new iteration

      if(!inputs.GetGradients().Split((i == 0 ? prevLayer.GetGradients() :

                                                inputs.GetGradients()), m_cGradients,

                                                prevLayer.GetOutputs().Total()))

         return false;

     }

//---

   return true;

  }

After the successful execution of all iterations, we exit the method with a positive result.

We have gone through two of the most complex and intricate methods for constructing a recurrent

LSTM block algorithm. The rest of it will be much easier. For example, the CalcDeltaWeights method.

The functionality of this method involves passing the error gradient to the level of the weight matrix.

The LSTM block does not have any separate weight matrix. All parameters are located within the

nested neural layers, and we have already brought the error gradient to the level of their weight

matrices in the previous method. Therefore, we rewrite the method with an empty stub with a positive

result.

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) { return true; }

Another backward pass method, UpdateWeights, is a method for updating the weights matrix. The

method is also inherited from the neural layer base class and overridden as needed. LSTM block unlike

the previously discussed types of neural layers does not have a single weight matrix. Instead, internal

neural layers with their own weight matrices are used. So we can't just use the method of the parent

class and have to override it.

The CNeuronLSTM::UpdateWeights method from an external program receives the parameters required

to execute the algorithm for updating the weight matrix and returns the logical value of the result of the

method operations.
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Even though the method parameters do not include any object pointers, we still set up control

structures at the beginning of the method. Here, we check the validity of pointers to internal neural

layers and the value of the parameter indicating the depth of history analysis, which should be greater

than 0.

bool CNeuronLSTM::UpdateWeights(int batch_size, TYPE learningRate, VECTOR &Beta,

                                                                   VECTOR &Lambda)

  {

//--- check the state of objects

   if(!m_cForgetGate || !m_cInputGate || !m_cOutputGate ||

      !m_cNewContent || m_iDepth <= 0)

      return false;

Please note the batch_ size parameter. This parameter indicates the number of backpropagation

iterations between weight updates. It is tracked by an external program and passed to the method in

parameters. For an external program and for the neural network types considered earlier, the number

of feed-forward and backpropagation passes is equal, as each feed-forward pass is followed by a

backpropagation pass, in which the deviation of the estimated neural network result from the expected

result is determined and the error gradient is propagated throughout the neural network. In the case of

a recurrent block, the situation is slightly different: for each feed-forward pass, a recurrent block

undergoes multiple iterations of backward passes, determined by the depth of the analyzed history.

Consequently, we must adjust the batch size received from the external program to the depth of the

historical data.

   int batch = batch_size * m_iDepth;

We can then use the methods to update the weight matrix by passing them the correct data in the

parameters.

//--- update the weight matrices of the internal layers

   if(!m_cForgetGate.UpdateWeights(batch, learningRate, Beta, Lambda))

      return false;

   if(!m_cInputGate.UpdateWeights(batch, learningRate, Beta, Lambda))

      return false;

   if(!m_cOutputGate.UpdateWeights(batch, learningRate, Beta, Lambda))

      return false;

   if(!m_cNewContent.UpdateWeights(batch, learningRate, Beta, Lambda))

      return false;

//---

   return true;

  }

After successfully updating the weight matrices of all internal neural layers, we exit the method with a

positive result.

This concludes our review of LSTM block backpropagation methods. We can move forward in building

our system.
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4.2.2.3 Saving and restoring the LSTM block

We have already looked at the methods for initializing the feed-forward and backpropagation passes of

an LSTM block. This is enough for small-scale experiments but not enough for industrial use. One of the

key requirements of practical application is the reusability of a once-trained neural network. We

learned how to build and train our neural network. We can even get the results of applying it to real

data. But we cannot yet save a trained LSTM block to restore it later from previously saved data. Two

methods are provided in our neural layer classes to accomplish this functionality:

· Save saves the class.

· Load restores the class functions by previously saved data.

Before we start creating methods, let's look at the class structure of our LSTM block and determine

which data we need to store and which we can simply initialize with initial values.
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class CNeuronLSTM    :  public CNeuronBase

  {

protected:

   CNeuronBase*      m_cForgetGate;

   CNeuronBase*      m_cInputGate;

   CNeuronBase*      m_cNewContent;

   CNeuronBase*      m_cOutputGate;

   CArrayObj*        m_cMemorys;

   CArrayObj*        m_cHiddenStates;

   CArrayObj*        m_cInputs;

   CArrayObj*        m_cForgetGateOuts;

   CArrayObj*        m_cInputGateOuts;

   CArrayObj*        m_cNewContentOuts;

   CArrayObj*        m_cOutputGateOuts;

   CBufferType*      m_cInputGradient;

   int               m_iDepth;

   void              ClearBuffer(CArrayObj *buffer);

   bool              InsertBuffer(CArrayObj *&array, CBufferType *element,

                                                   bool create_new = true);

   CBufferType*      CreateBuffer(CArrayObj *&array);

public:

                     CNeuronLSTM(void);

                    ~CNeuronLSTM(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) override 

                                                              { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //---

   virtual int       GetDepth(void)                 const { return m_iDepth; }

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- method of object identification

   virtual int       Type(void)  override     const { return(defNeuronLSTM); }

  };

First of all, we understand that no constants or methods change during the class operation. Therefore,

we will only store variables.

When declaring the class variables, the first variables we declared were those for storing pointers to the

internal neural layers. Of course, it makes absolutely no sense to save pointers to class objects.

However, we must save the contents of these objects because the trained weight matrices are stored

in them.

Next, we declared pointers to stacks of chronological data. The stacks themselves, as well as their

contents, are of no value to us when saving the data. Stacks are dynamic array objects that will be
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effortlessly recreated. Regarding their contents, the situation is as follows. For recurrent networks, the

sequence of data and the absence of gaps are crucial. At the time when the data is saved, we do not

understand when the data will be reused. Consequently, at the time of data loading, it is very likely that

there are gaps between the current state of the analyzed system and the data at the time of saving. In

such a situation, their use will not only be unhelpful but on the contrary will distort the results.

Therefore, saving this data would only increase the amount of stored information without providing any

benefit for later use.

The error gradient accumulation buffer m_ cInputGradient is an auxiliary object for accumulating data

and is overwritten with new data during each backpropagation pass. It does not contain information

important for subsequent iterations and is not appropriate for saving.

The last global variable we declared is the depth of the analyzed chronological iterations: m_ iDept. It is

a component of the architectural block design and is to be preserved.

After defining the scale of the work, we can proceed to its execution. First, we create the

CNeuronLSTM::Save method to save the data. In the parameters, the method gets the handle of the file

for saving the data. However, we will not organize a control unit to check the incoming parameters as

usual. Instead of that, we will pass the received parameter to a similar method in the base class, where

all the necessary controls are already implemented. Besides, earlier we analyzed only the variables

declared in the class of the LSTM block but did not evaluate the need to preserve the contents of the

parent class. However, we did this work when creating the method of saving data of the base class.

Therefore, by calling the method of the parent class, we perform both functionalities in one line of

code.

bool CNeuronLSTM::Save(const int file_handle)

  {

//--- calling a method of the parent class

   if(!CNeuronBase::Save(file_handle))

      return false;

After the successful execution of the parent class method, we save the value of the depth of the

analyzed chronological iterations.

//--- saving the constants

   if(FileWriteInteger(file_handle, m_iDepth) <= 0)

      return false;

After this, we only need to save the contents of the internal neural layers. For this purpose, we will also

utilize the functionality of the underlying neural layer. We just need to call the save method for each of

our internal layers, providing the file handle for writing data that we received as a parameter from the

external program. At the same time, we will not forget to control the process of operations at each

step.
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//--- call the same method for all inner layers

   if(!m_cForgetGate.Save(file_handle))

      return false;

   if(!m_cInputGate.Save(file_handle))

      return false;

   if(!m_cOutputGate.Save(file_handle))

      return false;

   if(!m_cNewContent.Save(file_handle))

      return false;

//---

   return true;

  }

After successful completion of all operations, we will exit the method with a positive result.

Now I suggest looking at the whole code of the data-saving method again and evaluating how concise

and readable it is. This effect is achieved through the use of object-oriented programming (OOP).

Creating classes significantly reduces code and speeds up the work of the programmer, while using

ready-made and tested libraries helps avoid many errors. Believe me, no matter how complex creating

our library might seem, using it will make it easy and without significant effort for the programmer to

create their own neural networks. Moreover, you don't need to be a highly qualified programmer to do

it.

But I digress. We have created a method to save the data. Now, we need to build the process of

restoring the functionality of our recurrent block from the saved data.

The data loading method CNeuronLSTM::Load is constructed in clear correspondence with the data

saving method. The saved data must be loaded from the file in the same sequence, otherwise, we could

encounter distorted data or loading errors. 

In the parameters, the method gets the handle of the data file to load. Just like when saving data,

instead of setting up a control block, we call the method of the parent class. It already implements all

the necessary controls and data loading of the parent class.

bool CNeuronLSTM::Load(const int file_handle)

  {

//--- call a method of the parent class

   if(!CNeuronBase::Load(file_handle))

      return false;

Next, we load the depth of the analyzed chronological iterations and the contents of the internal neural

layers from the file. We will also use the methods of the neural layer base class to perform the latter

operations. And, as always, we will check the results of the operations.

But here, we need to pay attention to one significant detail. The method for saving the base neural

layer CNeuronBase::Save begins with writing the type of object to be saved. We read its value in the

neural network loading dispatcher method to determine the type of object to be created. Hence, in the

neural layer loading method, we start reading the file from the next element. In this case, to maintain

the sequence of loading data from the file, we must first read the type of the next neural layer and only

then call the loading method of the corresponding internal neural layer. Besides, this can be an

additional point of control for loading the correct type of internal neural layer.
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//--- read the constants

   m_iDepth = FileReadInteger(file_handle);

//--- call the same method for all inner layers

   if(FileReadInteger(file_handle) != defNeuronBase || 

      !m_cForgetGate.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronBase || 

      !m_cInputGate.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronBase || 

      !m_cOutputGate.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronBase ||

      !m_cNewContent.Load(file_handle))

      return false;

After loading the data from the file, we need to initialize the remaining objects with the initial values.

First, we initialize the memory stack and add a buffer with initial values to it. To do this, we will use the

CreateBuffer method we already know. I'd like to remind you that this method only creates a buffer

with zero values for an empty stack. Otherwise, the method will return the last buffer written.

Therefore, before calling the method, we check the size of the stack: if the stack contains data, we

clear the stack and set all buffer values to zero.

//--- initialize Memory

   if(m_cMemorys.Total() > 0)

      m_cMemorys.Clear();

   CBufferType *buffer =  CreateBuffer(m_cMemorys);

   if(!buffer)

      return false;

   if(!m_cMemorys.Add(buffer))

      return false;

After all operations are completed, we will add the newly created buffer to the stack. Then we will

repeat the same operations for the stack and the hidden state buffer.

//--- initialize HiddenStates

   if(m_cHiddenStates.Total() > 0)

      m_cHiddenStates.Clear();

   buffer =  CreateBuffer(m_cHiddenStates);

   if(!buffer)

      return false;

   if(!m_cHiddenStates.Add(buffer))

      return false;

We built the forward pass method in such a way that it is not critical for us to create and initialize the

other stacks now. However, we acknowledge that the data loading operation might be performed on a

working neural network, where the stacks already hold some information. In such cases, using data

from stacks created with different weights would be incorrect. Therefore, we will clear all previously

created stacks.
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//--- clear the rest of the stacks

   if(!m_cInputs)

      m_cInputs.Clear();

   if(!m_cForgetGateOuts)

      m_cForgetGateOuts.Clear();

   if(!m_cInputGateOuts)

      m_cInputGateOuts.Clear();

   if(!m_cNewContentOuts)

      m_cNewContentOuts.Clear();

   if(!m_cOutputGateOuts)

      m_cOutputGateOuts.Clear();

//---

   return true;

  }

Once all operations of the method have been successfully executed, we terminate the method with a

positive result.

At this point, we complete the construction of recurrent LSTM block by means of MQL5 and move on to

complementing the methods of our class with the ability to perform multi-threaded operations.

4.2.3 Organizing parallel computing in the LSTM block

In previous chapters, we looked at the implementation of an LSTM block using MQL5. However, a new

stage in the development of neural networks came precisely with the development of parallel computing

technologies. This is especially important for resource-intensive tasks such as recurrent neural

networks. Therefore, it is especially important for us to add the ability to use multi-threaded parallel

computing tools in the LSTM block class.

As mentioned when creating a block algorithm using MQL5, our class already has an implementation of

multi-threaded calculations of individual blocks thanks to the use of objects of the previously discussed

class of the base neural layer as gates in the LSTM block algorithm. Therefore, within the framework of

this chapter, we only have to implement the missing part:

· Thread consolidating and processing data from internal neural layers within the forward pass.

· Propagating the error gradient from the output of the LSTM block to the internal neural layers

within the backpropagation pass.

This gives us an understanding of the task. We already have an MQL5 implementation of the process.

This gives an understanding of the process and the algorithm for executing operations.

Therefore, we can proceed with the work. Let me remind you of the architecture for constructing a

multi-threaded computing process. The actual execution of the computation process in parallel threads

is carried out in an environment different from the main program – in the OpenCL context. To perform

operations, three main components are required:

1. Program of performed operations.

2. Initial data for performing operations.

3. Process control commands (moment of program launch, number of threads created, etc.)

Let's look at the implementation of these points.
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4.2.3.1 Making additions to the OpenCL program 

The first item we indicate is the program of the operations being performed. This means that we need

to augment our OpenCL program with new kernels to perform the additional operations we require. We

collected all the code of the OpenCL program in the file opencl_ program.cl. Open this file and add two

new kernels to it: LSTMFeedForward and LSTMCalcHiddenGradient. The names of the kernels

correspond to the names of the methods of our classes. Therefore, it is easy to guess that the first will

complement the feed-forward pass method, and the second will complement the error gradient

backpropagation method.

Recurrent LSTM block diagram

We start with the feed-forward pass kernel LSTMFeedForward. In the parameters, this buffer will

receive pointers to six data buffers (four source data buffers and two result buffers) and one constant:

· forgetgate: pointer to the forget gate buffer (source data)

· inputgate: pointer to the input gate buffer (source data)

· outputgate: pointer to the result gate buffer (source data)

· newcontent: pointer to the new content buffer (source data)

· memory: pointer to a memory stream (result buffer)

· hiddenstate: pointer to the hidden state stream (result buffer)

· outputs_ total: number of elements in the data stream (constant)
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__kernel void LSTMFeedForward(__global TYPE *forgetgate,

                              __global TYPE *inputgate,

                              __global TYPE *outputgate,

                              __global TYPE *newcontent,

                              __global TYPE *memory,

                              __global TYPE *hiddenstate,

                              int outputs_total)

At the beginning of the method, as before, we receive the thread index, which serves as a pointer to the

data being processed. Also, we immediately determine the shift in the data buffers to access the data

we need.

  {

   const int n = get_global_id(0);

   const int shift = n * 4;

To improve the performance of our program, we will use vector arithmetic. Let's use vector variables of

type TYPE4. Let me remind you that we use the TYPE macro substitution to quickly switch the double or

float data type used, depending on the requirements for calculation accuracy and the OpenCL device

used. But before we begin performing operations, we will transfer the data from our global data buffers

to local vector variables.

   TYPE4 fg = ToVect4(forgetgate, shift, 1, outputs_total, 0);

   TYPE4 ig = ToVect4(inputgate, shift, 1, outputs_total, 0);

   TYPE4 og = ToVect4(outputgate, shift, 1, outputs_total, 0);

   TYPE4 nc = ToVect4(newcontent, shift, 1, outputs_total, 0);

   TYPE4 mem = ToVect4(memory, shift, 1, outputs_total, 0);

Now, by analogy with the MQL5 program code, we will perform arithmetic operations to update the

state of the memory stream. According to the algorithm of the LSTM block, we must first adjust the

incoming memory stream to the value of the oblivion gate, and then add a new context, adjusted by the

value of the input gate, to the resulting value. After completing the operations, we return the value of

the updated memory stream back to the buffer.

   TYPE4 temp = mem * fg;

   temp += ig * nc;

   D4ToArray(memory, temp, shift, 1, outputs_total, 0);

Next, we need to define a new hidden state flow value. It will also be supplied to the output of the LSTM

block for transmission to the next neural layer. Here we need to first normalize the current memory

state using the hyperbolic tangent function and then adjust the resulting value by the result gate value.

The result of the operations is written to the data buffer.

   temp = tanh(temp) * og;

   D4ToArray(hiddenstate, temp, shift, 1, outputs_total, 0);

  }

The operations of the feed-forward kernel are now completed. From the results of the work of the

internal layers of our recurrent LSTM block, we updated the state of the memory stream and obtained

values that will be provided at the output of the recurrent block.

In the second kernel LSTMCalcHiddenGradient, we need to perform the reverse operation, that is, carry

out the error gradient in the opposite direction, from the output of the recurrent block to the output of

each internal neural layer. The specific operation of the backpropagation kernel requires an increase in

the number of used data buffers to 10:
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· outputs: pointer to the result vector buffer (source data)

· gradients: pointer to the gradient vector buffer of the current layer (source data)

· inputgate: pointer to the input gate buffer (source data)

· outputgate: pointer to the result gate buffer (source data)

· newcontent: pointer to the new content buffer (source data)

· memory: pointer to a memory stream (source data)

· fg_ gradients: pointer to the oblivion gate gradient buffer (result buffer)

· ig_ gradients: pointer to the input gate gradient buffer (result buffer)

· og_ gradients: pointer to the result gate gradient buffer (result buffer)

· nc_ gradients: pointer to the new content gradient buffer (result buffer)

· outputs_ total: number of elements in the data stream (constant)

__kernel void LSTMCalcHiddenGradient(__global TYPE *outputs_

                                     __global TYPE *gradients,

                                     __global TYPE *inputgate,

                                     __global TYPE *outputgate,

                                     __global TYPE *newcontent,

                                     __global TYPE *memory,

                                     __global TYPE *fg_gradients,

                                     __global TYPE *ig_gradients,

                                     __global TYPE *og_gradients,

                                     __global TYPE *nc_gradients,

                                     int outputs_total)

At the beginning of the kernel, we determine the thread ID and the offset in the data buffers to the

values being processed.

  {

   const int n = get_global_id(0);

   int shift = n * 4;

As in the forward pass kernel, we will use operations with vector variables of type TYPE4. Therefore, in

the next step, we transfer the original data from global buffers to local vector variables.

   TYPE4 out = ToVect4(outputs, shift, 1, outputs_total, 0);

   TYPE4 grad = ToVect4(gradients, shift, 1, outputs_total, 0);

   TYPE4 ig = ToVect4(inputgate, shift, 1, outputs_total, 0);

   TYPE4 og = ToVect4(outputgate, shift, 1, outputs_total, 0);

   TYPE4 nc = ToVect4(newcontent, shift, 1, outputs_total, 0);

   TYPE4 mem = ToVect4(memory, shift, 1, outputs_total, 0);

After completing the preparatory operations, we proceed to execute the mathematical part of the

kernel. Formulas for carrying out operations and their explanation are presented when describing the

construction of a process using MQL5. Therefore, in this section, only the implementation of the

process in OpenCL will be given.

When implementing this part in MQL5, we decided that it was inappropriate to create an additional data

buffer to store the normalized value of the memory stream. In the kernel parameters, we received a

pointer to a stream not of the current memory state, but of a recurrent block arriving at the input from

the previous iteration of the forward pass. Therefore, before proceeding with the error gradient

distribution operations, we need to find the value of the normalized state of the memory stream. We
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define it as the ratio of the result buffer value to the result gate value. To eliminate division by zero, we

add a small constant in the denominator.

   TYPE4 m = out / (og + 1.0e-37f);

Following the logic of the error gradient backpropagation algorithm, we first determine the error

gradient at the output of the oblivion gate neural layer. To do this, we need to multiply the error

gradient at the output of our LSTM block by the derivative of the product. In this case, it is equal to the

value of the normalized memory state. We will immediately write the resulting value into the

corresponding data buffer.

//--- OutputGate gradient

   TYPE4 temp = grad * m;

   D4ToArray(og_gradients, temp, shift, 1, outputs_total, 0);

Next, we must similarly determine the error gradient with another multiplier, which is the normalized

memory state. That is, we multiply the error gradient at the output of our recurrent block by the state

of the results gate.

Before continuing to propagate the gradient to the remaining neural layers, we need to pass it through

the hyperbolic tangent function. In other words, we multiply the previously obtained value by the

derivative of the hyperbolic tangent.

//--- Adjust the memory gradient to the derivative TANH

   grad = grad * og * (1 - pow(m, 2));

Now we only need to propagate the error gradient across the remaining internal layers. The algorithm

will be the same for all neural layers. The only difference is in the buffer used as a derivative of the

multiplication function. After determining the error gradient, we immediately write its value into the

appropriate buffer.

//--- InputGate gradient

   temp = grad * nc;

   D4ToArray(ig_gradients, temp, shift, 1, outputs_total, 0);

//--- NewContent gradient

   temp = grad * ig;

   D4ToArray(nc_gradients, temp, shift, 1, outputs_total, 0);

//--- ForgetGates gradient

   temp = grad * mem;

   D4ToArray(fg_gradients, temp, shift, 1, outputs_total, 0);

  }

After completing the operations, we exit the kernel.

Thus, we implemented the missing kernels to organize forward and backward passes as part of

performing operations for a recurrent LSTM block. This completes the modification of the OpenCL

program, and we move on to performing operations on the side of the main program.
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4.2.3.2 Implementing functionality on the side of the main program

After making changes to the OpenCL program, we must do the second part of the work and organize

the process on the side of the main program. The first thing we will do is create constants for working

with kernels. Here we need to create constants to identify kernels and their parameters. We will add

the specified constants to those previously created in the file defines.mqh.

#define def_k_LSTMFeedForward          26

#define def_k_LSTMHiddenGradients      27

//--- LSTM Feed Forward

#define def_lstmff_forgetgate          0

#define def_lstmff_inputgate           1

#define def_lstmff_outputgate          2

#define def_lstmff_newcontent          3

#define def_lstmff_memory              4

#define def_lstmff_hiddenstate         5

#define def_lstmff_outputs_total       6

When adding constants, we follow the previously defined naming rules. All kernel constants begin with

the prefix def_ k_ , and parameter constants contain the kernel abbreviation: def_ lstmff_  for feed-

forward kernel parameters and def_ lstmhgr_  for gradient backpropagation kernel parameters.

//--- LSTM Hidden Gradients

#define def_lstmhgr_outputs            0

#define def_lstmhgr_gradients          1

#define def_lstmhgr_inputgate          2

#define def_lstmhgr_outputgate         3

#define def_lstmhgr_newcontent         4

#define def_lstmhgr_memory             5

#define def_lstmhgr_fg_gradients       6

#define def_lstmhgr_ig_gradients       7

#define def_lstmhgr_og_gradients       8

#define def_lstmhgr_nc_gradients       9

#define def_lstmhgr_outputs_total      10

We then go to the neuronnet.mqh file, which contains the code for our neural network class. In the

CNet::InitOpenCL method, we need to change the number of used kernels and simultaneously open

buffers.
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   if(!m_cOpenCL.SetKernelsCount(28))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.SetBuffersCount(10))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Changing the last parameter is not critical since in our buffer creation method, we, if necessary,

change the size of the array for storing buffer handles. However, using the standard OpenCL.mqh

library, there is no such functionality. This may result in a runtime error.

Next, we declare the kernels for use within our program, while always controlling the process of

operations.

   if(!m_cOpenCL.KernelCreate(def_k_LSTMFeedForward, "LSTMFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_LSTMHiddenGradients, "LSTMCalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

This completes the preparatory work, and we move on to making changes directly to the code of the

executable methods of our recurrent LSTM block class.

According to the chronology of the execution of the algorithm of our neural network, we will be the first

to make changes to the feed-forward method. In it, we first organize a check for the presence of data

in the memory of the OpenCL context.
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bool CNeuronLSTM::FeedForward(CNeuronBase *prevLayer)

  {

   ....   

//--- Branching of the algorithm by the computing device

   CBufferType *fg = m_cForgetGate.GetOutputs();

   CBufferType *ig = m_cInputGate.GetOutputs();

   CBufferType *og = m_cOutputGate.GetOutputs();

   CBufferType *nc = m_cNewContent.GetOutputs();

   if(!m_cOpenCL)

     {

     // MQL5 Block is missing here

     }

   else // Block for working with OpenCL

     {

      //--- check buffers

      if(fg.GetIndex() < 0 || ig.GetIndex() < 0 || og.GetIndex() < 0 ||

         nc.GetIndex() < 0 || memory.GetIndex() < 0 || hidden.GetIndex() < 0)

         return false;

We then pass pointers to the created buffers to our kernel parameters. Here we indicate the constants

necessary for the correct execution of the program code. Again, we check the results of the

operations.

      //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_forgetgate,

 fg.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_inputgate,

 ig.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_newcontent,

                                                                      nc.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_outputgate,

 og.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_memory,

 memory.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMFeedForward, def_lstmff_hiddenstate,

 hidden.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_LSTMFeedForward, def_lstmff_outputs_total,

 m_cOutputs.Total()))

         return false;

This completes the preparatory work stage. Let's move on to launching the kernel to perform

operations. First, let's determine the number of required threads. In the kernel body, we use vector

operations and therefore the number of threads will be four times less than the size of the buffers.

We write the calculated number of threads into the NDRangearray and indicate the zero offset in the

data buffers in the off_ set array. The kernel is added in the execution queue. If an error occurs when
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queuing the kernel, the m_ cOpenCL.Execute function will return a false result, which we must check and

process.

      //--- launch the kernel

      int NDRange[] = {(int)(m_cOutputs.Total() + 3) / 4};

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_LSTMFeedForward, 1, off_set, NDRange))

         return false;

     }

This completes the work on the LSTM feed-forward method. Let's move on to making additions to the

backpropagation method.

As in the case of the feed-forward pass, we will begin work in the error gradient distribution method

CNeuronLSTM::CalcHiddenGradient by checking the presence of source data in the OpenCL context

memory.

bool CNeuronLSTM::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

   ....   

      //--- Branching the algorithm by the computing device

      if(!m_cOpenCL)

        {

         // MQL5 Block is missing here

        }

      else // Block for working with OpenCL

        {

         //--- check buffers

         if(hidden.GetIndex() < 0)

            return false;

         if(m_cGradients.GetIndex() < 0)

            return false;

         if(ig.GetIndex() < 0)

            return false;

         if(og.GetIndex() < 0)

            return false;

         if(nc.GetIndex() < 0)

            return false;

         if(memory.GetIndex() < 0)

            return false;

         if(fg_grad.GetIndex() < 0)

            return false;

         if(ig_grad.GetIndex() < 0)

            return false;

         if(og_grad.GetIndex() < 0)

            return false;

         if(nc_grad.GetIndex() < 0)

            return false;

Next, we completely repeat the algorithm for working with OpenCL kernels on the side of the main

program. After creating the necessary buffers in the OpenCL context memory, we pass the data buffer
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handles and variable values to the kernel parameters. And it is very important to monitor the execution

of all process operations.

         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                    def_lstmhgr_fg_gradients, fg_grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                  def_lstmhgr_gradients, m_cGradients.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                    def_lstmhgr_ig_gradients, ig_grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                            def_lstmhgr_inputgate, ig.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                           def_lstmhgr_memory, memory.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients, 

                                    def_lstmhgr_nc_gradients, nc_grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                           def_lstmhgr_newcontent, nc.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                    def_lstmhgr_og_gradients, og_grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                           def_lstmhgr_outputgate, og.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LSTMHiddenGradients,

                                          def_lstmhgr_outputs, hidden.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_LSTMHiddenGradients,

                                   def_lstmhgr_outputs_total, m_cOutputs.Total()))

            return false;

This concludes the stage of preparatory work. We move on to the procedure for launching the kernel.

First of all, here we write the number of threads to start in the NDRange array and the zero offset in

the off_ set array.

Thanks to the use of vector operations in the kernel body, we need four times fewer threads for the full

cycle of operations. Therefore, before we write the value to the NDRangearray, we need to calculate it.

After this, we will send our kernel to the execution queue.
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         //--- launch the kernel

         int NDRange[] = { (int)(m_cOutputs.Total() + 3) / 4 };

         int off_set[] = {0};

         if(!m_cOpenCL.Execute(def_k_LSTMHiddenGradients, 1, off_set, NDRange))

            return false;

        }

I might sound repetitive, but I want to stress the importance of checking the result of each operation.

This is a crucial point since any error in performing the operation can both distort the entire result of

our neural network and cause a critical error, resulting in the termination of the entire program.

With this, we have completed the work on the recurrent LSTM block class. We have organized the class

to work in two environments:

· Implemented operation on the CPU using standard MQL5 tools.

· Created the ability to implement multi-threaded parallel calculations using OpenCL.

Now, we can evaluate the results of our work by creating and testing a recurrent neural network model.

4.2.4 Implementing recurrent models in Python

In the previous sections, we reviewed the principles of organizing a recurrent model architecture, and

even built a recurrent neural layer using the LSTM block algorithm. Earlier, we used the Keras library for

TensorFlow to build previous neural network models in Python. The same library offers a number of

options for building recurrent neural layers. These include classes of basic recurrent neural layers as

well as more complex models. 

· AbstractRNNCell – abstract object representing an RNN cell

· Bidirectional – bidirectional shell for RNN

· ConvLSTM1D – 1D convolutional LSTM block

· ConvLSTM2D – 2D convolutional LSTM block

· ConvLSTM3D – 3D convolutional LSTM block

· GRU – recurrent block by Cho et al. (2014)

· LSTM – layer of long-term short-term memory by Hochreiter (1997)

· RNN – base class for the recurrent layer

· SimpleRNN – fully connected recurrent layer in which the output must be returned to the input

In the presented list, in addition to the basic recurrence layer class, you can find already familiar LSTM

and GRU models. It is also possible to create bidirectional recurrent layers, which are most often used

in text translation tasks. The ConvLSTM model is built based on the architecture of the LSTM block but

uses convolutional layers instead of fully connected layers as gates and a new content layer.

Additionally, there is an abstract recurrent cell class for creating custom architectural solutions for

recurrent models.

We won't go deep into the Keras library API right now. We will use the LSTM block to create our test

recurrent models. Exactly this kind of model we recreated using MQL5 and will be able to compare the

performance of our models created in different programming languages.
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The LSTM block class is designed to automatically choose between CuDNN or pure TensorFlow

implementations based on available hardware and environment constraints, ensuring optimal

performance. 

Users have access to an excessive range of parameters for fine-tuning the recurrent block:

· units – dimensionality of the output space

· activation – activation function

· recurrent_ activation – activation function for the recurrent step (gate)

· use_ bias – flag of using an offset vector

· kernel_ initializer – method to initialize the weights matrix for the new context layer

· recurrent_ initializer – method to initialize the weight matrix for gates

· bias_ initializer – initialization method for bias vector

· kernel_ regularizer – function to regularize the weight matrix for the new content layer

· recurrent_ regularizer – function to regularize the weight matrix for gates

· bias_ regularizer – bias vector regularization function

· activity_ regularizer – output layer regularization function

· kernel_ constraint – function of constraints for the weight matrix of the new content layer

· recurrent_ constraint – function of constraints for the weight matrix of gates

· bias_ constraint – function of vector constraints

· dropout – floating-point number from 0 to 1, defining the share of elements to be dropped out

during linear transformation of input data

· recurrent_ dropout – floating-point number from 0 to 1, determining the share of elements to be

dropped out during linear transformation of memory state

· return_ sequences – boolean flag to specify whether to return the last result in the output sequence

or the results of the whole sequence

· return_ state – boolean flag to indicate whether to return the last state in addition to the output

· go_ backwards – boolean flag to instruct the processing of the input sequence in the backward

order and return the reverse sequence

· stateful – boolean flag to indicate the use of the last state for each sample with the i index in the

batch as the initial state for the sample with the i index in the next batch

· time_ maj or – the format of the input and output sequence tensor shapes

· unroll – boolean flag used to indicate whether to unroll the recurrent network or use a simple loop;

unrolling can accelerate the training of the recurrent network, but it requires more memory

After acquainting ourselves with the control parameters of the LSTM layer class, we will proceed to the

practical implementation of various models using the recurrence layer.
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4.2.4.1 Building a test recurrent model in Python

To build test recurrent models in Python, we will use the previously developed template. Moreover, we

will take the script file convolution.py, which we used when testing convolutional models. Let's make a

copy of it with the file name lstm.py. In the created copy, we leave the perceptron model and the best

convolutional model, deleting the rest. This approach will allow us to compare the performance of the

new models with the architectural solutions discussed earlier.

# Creating a perceptron model with three hidden layers and regularization

model1 = keras.Sequential([keras.Input(shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

# Model with 2-dimensional convolutional layer

model3 = keras.Sequential([keras.Input(shape=inputs),

                           # Reformat the tensor to 4-dimensional.

   # Specify 3 dimensions, because the 4th dimension is determined by the size of the packet

                           keras.layers.Reshape((-1,4,1)), 

                           # Convolutional layer with 8 filters

                           keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),

                           # Pooling layer

                           keras.layers.MaxPooling2D((2,1),strides=1),                         

                 # Reformat the tensor to 2-dimensional for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

After that, we will create three new models using the recurrent LSTM block. Initially, we will take the

convolutional neural network model and replace the convolutional and pooling layers with a single

recurrent layer with 40 neurons at the output. Note that the input to the recurrent LSTM block should

be a three-dimensional tensor of the format [batch, timesteps, feature]. Just like in the case of a

convolutional layer, when specifying the dimensionality of a layer in the model, we don't explicitly

mention the batch dimension, as its value is determined by the batch size of the input data.
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# Add an LSTM block to the model

model2 = keras.Sequential([keras.Input(shape=inputs),

# Reformat the tensor to 3-dimensional.

# Specify 2 dimensions, because. The 3rd dimension is determined by the size of the packet

                           keras.layers.Reshape((-1,4)), 

# The LSTM block contains 40 elements and returns the result at each step  

                           keras.layers.LSTM(40, return_sequences=False,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),

In this model, we specified parameter return_ sequences=False which instructs the recurrent layer to

produce the result only after processing the full batch. In this version, our LSTM layer returns a two-

dimensional tensor in the format [batch, feature]. In this case, the dimension of the feature

measurement will be equal to the number of neurons that we specified during the creation of the

recurrent layer. A tensor of the same dimension is required for the input of a fully connected neural

layer. Therefore, we do not need additional reformatting of the data, and we can use a fully connected

neural layer.

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

                 kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

Structure of a recurrent model with four fully connected layers

In this implementation, we use the recurrent layer for preliminary data processing, while decision-

making in the model is carried out by several fully connected perceptron layers that follow the

recurrent layer. As a result, we got a model with 12,202 parameters.

We will compile all neural models with the same parameters. We use the Adam method for optimization

and the standard deviation for the network error. We also add an additional metric accuracy.
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model2.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

We compiled earlier neural network models with the same parameters.

One more point should be noted. Recurrent models are sensitive to the sequence of the input signal

being fed. Therefore, when training a neural network, unlike the previously discussed models, we cannot

shuffle the input data. For this purpose, when we start training the model, we will specify the False for

the shuffle parameter. The rest of the training parameters of the model remain unchanged.

history2 = model2.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.01,

                      shuffle=False)

In the first model, we used a recurrent layer for preliminary data processing before using a fully

connected perceptron for decision-making. However, it is also possible to use recurrent neural layers in

their pure form, without subsequent utilization of fully connected layers. It is this implementation that I

propose to consider as the second model. In this case, we simply replace all the fully connected layers

with a single recurrent layer, and we set the size of the layer to match the desired output size of the

neural network.

It's important to note that the recurrent neural layer requires a three-dimensional tensor as input,

whereas we obtained a two-dimensional tensor at the output of the previous recurrent layer. Therefore,

before passing information to the input of the next recurrent layer, we need to reshape the data. In this

implementation, we set the last adjustment to be equal to two, while leaving the size of the temporal

labels dimension for the model's calculation. We don't expect any data distortion from such reshaping,

as we're grouping sequential data, essentially just enlarging the time interval. At the same time, the

time interval between any two subsequent elements in the new time series remains constant.

# LSTM block model without fully connected layers

model4 = keras.Sequential([keras.Input(shape=inputs),

# Reformat the tensor to 3-dimensional.

# Specify 2 dimensions, because. The 3rd dimension is determined by the size of the packet

                           keras.layers.Reshape((-1,4)), 

#2 Serial LSTM Units

#1st contains 40 elements  

                           keras.layers.LSTM(40,

             kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5),

                           return_sequences=False),

# 2nd produces the result instead of a fully connected layer

                           keras.layers.Reshape((-1,2)), 

                           keras.layers.LSTM(targerts) 

                         ])

Now we have a neural network where the first recurrent layer performs preliminary data processing,

and the second recurrent layer generates the output of the neural network. By eliminating the use of a

perceptron, we've reduced the number of neural layers in the network and, consequently, the total

number of parameters, which in the new model amounts to 7,240 parameters.
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The structure of a recurrent neural network without the use of fully connected layers

We compile and train the model with the same parameters as all previous models.

model4.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

history4 = model4.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.01,

                      shuffle=False)

In the second recurrent model, to create the input tensor for the second LSTM layer, we reshaped the

tensor of results from the previous layer. The Keras library gives us another option. In the first LSTM

layer, we can specify the parameter return_ sequences=True, which switches the recurrent layer to a

mode that outputs results at each iteration. As a result of this action, at the output of the recurrent

layer, we immediately obtain a three-dimensional tensor of the format [batch, timesteps, feature]. This

will allow us to avoid reformatting the data before the second recurrent layer.
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# LSTM model block without fully connected layers

model5 = keras.Sequential([keras.Input(shape=inputs),

# Reformat the tensor to 3-dimensional.

# Specify 2 dimensions, because. The 3rd dimension is determined by the size of the packet

                           keras.layers.Reshape((-1,4)), 

# 2 Serial LSTM Units

#1st contains 40 items and returns the result at each step  

                           keras.layers.LSTM(40, 

               kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5),

                           return_sequences=True),

# 2nd produces the result instead of a fully connected layer

                           keras.layers.LSTM(targerts) 

                         ])

The structure of a recurrent neural network without the use of fully connected layers

As you can see, with this model construction, the dimensionality of the tensor at the output of the first

recurrent layer has changed. As a result, the number of parameters in the second recurrent layer has

slightly increased. This resulted in a total increase in parameters throughout the model, reaching 7,544

parameters. Nevertheless, this is still fewer parameters than the total number of parameters in the first

recurrent model that used a perceptron for decision-making.

Let's supplement the plotting block with new models.
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# Rendering model training results

plt.figure()

plt.plot(history1.history['loss'], label='Perceptron train')

plt.plot(history1.history['val_loss'], label='Perceptron validation')

plt.plot(history3.history['loss'], label='Conv2D train')

plt.plot(history3.history['val_loss'], label='Conv2D validation')

plt.plot(history2.history['loss'], label='LSTM train')

plt.plot(history2.history['val_loss'], label='LSTM validation')

plt.plot(history4.history['loss'], label='LSTM only train')

plt.plot(history4.history['val_loss'], label='LSTM only validation')

plt.plot(history5.history['loss'], label='LSTM sequences train')

plt.plot(history5.history['val_loss'], label='LSTM sequences validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics')

plt.legend(loc='upper right', ncol=2)

plt.figure()

plt.plot(history1.history['accuracy'], label='Perceptron train')

plt.plot(history1.history['val_accuracy'], label='Perceptron validation')

plt.plot(history3.history['accuracy'], label='Conv2D train')

plt.plot(history3.history['val_accuracy'], label='Conv2D validation')

plt.plot(history2.history['accuracy'], label='LSTM train')

plt.plot(history2.history['val_accuracy'], label='LSTM validation')

plt.plot(history4.history['accuracy'], label='LSTM only train')

plt.plot(history4.history['val_accuracy'], label='LSTM only validation')

plt.plot(history5.history['accuracy'], label='LSTM sequences train')

plt.plot(history5.history['val_accuracy'], label='LSTM sequences validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics')

plt.legend(loc='lower right', ncol=2)

Additionally, let's add the new models to the testing block to evaluate their performance on the test

dataset and display the results.
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# Check the results of models on a test sample

test_loss1, test_acc1 = model1.evaluate(test_data, test_target, verbose=2) 

test_loss2, test_acc2 = model2.evaluate(test_data, test_target, verbose=2) 

test_loss3, test_acc3 = model3.evaluate(test_data, test_target, verbose=2) 

test_loss4, test_acc4 = model4.evaluate(test_data, test_target, verbose=2) 

test_loss5, test_acc5 = model5.evaluate(test_data, test_target, verbose=2) 

print('LSTM model')

print('Test accuracy:', test_acc2)

print('Test loss:', test_loss2)

print('LSTM only model')

print('Test accuracy:', test_acc4)

print('Test loss:', test_loss4)

print('LSTM sequences model')

print('Test accuracy:', test_acc5)

print('Test loss:', test_loss5)

In this section, we have prepared a Python script that creates a total of 5 neural network models:

· Fully connected perceptron

· Convolutional model

· 3 models of recurrent neural networks

Upon executing the script, we will conduct a brief training of all five models using a single dataset and

then compare the performance of the trained models on a shared set of test data. This will give us the

opportunity to compare the performance of various architectural solutions on real data. The test

results will be provided in the next chapter.

4.2.5 Comparative testing of recurrent models

Finally we have reached the testing phase of recurrent models. Previously, we have already tested

various fully connected perceptron models and several convolutional models. You may notice that in

both sections devoted to testing models, there is a certain sequence of actions, that is, a specific

testing algorithm. In this section, we will follow this sequence.

As with the testing of previous models, we will start by checking the correctness of the gradient

distribution through our recurrent layer built in MQL5. To do this, we will create the

check_ gradient_ lstm.mq5 script based on previously created similar scripts for testing the correctness

of the performance of previous models. Basically, we will make a copy of the script

check_ gradient_ conv.mq5 from the convolutional model testing section and make changes to match the

new model.

The change we will make in the script is the block defining the model structure for testing. We will

remove the convolutional and pooling layers from the model. Instead, our model will feature one

recurrent layer.



4. Basic types of neural layers

427

4.2 Recurrent neural networks

//--- recurrent layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete layers;

      return false;

     }

   descr.type = defNeuronLSTM;

   descr.count = BarsToLine;

   descr.window_out = 2;

   descr.activation = AF_NONE;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete layers;

      delete descr;

      return false;

     }

The rest of the neural network building block remains unchanged.

When testing other architectural solutions of neural layer configurations, the modifications to the script

provided above in terms of defining the neural network structure would be sufficient for conducting the

test. But the LSTM recurrent block has its own peculiarities. First, it lacks a weight matrix in the

conventional sense. Instead, its functionality is assigned to the weight matrices of the inner layers. It

will be a little more difficult to organize access to them, but I do not see the point in doing this. For

inner layers, we utilize a previously validated fully connected layer class, the proper functioning of

which we are confident in. Therefore, there is no need for us to retest the functioning of the already

validated algorithm for gradient error distribution to the weight matrix. At the same time, we have a

question about the correctness of the new functionality for the distribution of the error gradient inside

the LSTM block. I believe that to answer this question, it is sufficient to verify the propagation of the

error gradient back to the level of the original data (input of the neural network). Hence, we are

removing the gradient error correctness checking block at the weight matrix level from the script.

The second feature of the recurrent layer is the use of its results as input for the new iteration, which is

the desired feature. We wanted the neural network to consider not only the current state of the

external environment but also its previous states, which we pass as hidden states to the new iteration.

While this approach yields a positive impact on the neural network performance, it does distort the data

for testing the correctness of gradient error distribution. The reason is that our entire algorithm for

testing the correctness of gradient error distribution is built on the principle of changing only one tested

parameter while keeping other values of the external environment constant. However, with a recurrent

layer, even when all parameters of the input data remain constant, we can obtain a different result due

to changes in the hidden state. To exclude this influence, we temporarily need to add a memory buffer

and hidden state clearing within the forward pass method of our recurrent LSTM block class

CNeuronLSTM::FeedForward.
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bool CNeuronLSTM::FeedForward(CNeuronBase *prevLayer)

  {

//--- Check the relevance of all objects

    ....

//--- Prepare blanks for new memory and hidden state buffers

   CBufferDouble *memory = CreateBuffer(m_cMemorys);

   if(!memory)

      return false;

   CBufferDouble *hidden = CreateBuffer(m_cHiddenStates);

   if(!hidden)

     {

      delete memory;

      return false;

     }

//--- Gradient check only

   memory.BufferInit(m_cOutputs.Total(), 0);

   hidden.BufferInit(m_cOutputs.Total(), 0);

//--- The following is the code of the method without changes

Don't forget to remove or comment out these lines after running the gradient propagation test.

After making all the necessary adjustments, we will compile and initiate the test execution using the

OpenCL multi-threaded computation technology and without it. The results obtained fully satisfy our

requirements and we can continue testing the models further.

Correctness Test of Error Gradient Distribution via LSTM Block

We have obtained confirmations of the correctness of the algorithm we built for propagating gradient

error through the recurrent LSTM block. Now we can proceed to the next stage of our tests. But once

again, before starting work on conducting tests, we need to remove the above code for resetting

memory buffers and hidden state from the code of the direct CNeuronLSTM::FeedForward method.

Script for testing recurrent models

Let's create the script lstm_ test.mq5 to test train the recurrent model. This script is created following

the template of scripts used for similar testing of previous models.

At the beginning of the script, we declare external parameters to control the process of creating and

training the neural network model. Almost all external parameters migrated from the script for testing

convolutional models without changes.
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//+------------------------------------------------------------------+

//| External parameters for script operation                         |

//+------------------------------------------------------------------+

// Name of the file with the training sample

input string   StudyFileName = "study_data.csv";

// Name of file for recording the error dynamics

input string   OutputFileName = "loss_study_lstm.csv";

// Number of historical bars in one pattern

input int      BarsToLine     = 40;

// Number of input layer neurons per 1 bar

input int      NeuronsToBar   = 4;

// Use OpenCL

input bool     UseOpenCL      = false;

// Packet size for updating the weights matrix

input int      BatchSize      = 10000;

// Learning rate

input double   LearningRate   = 0.00003;

// Number of hidden layers

input int      HiddenLayers   =  3;

// Number of neurons in one hidden layer

input int      HiddenLayer    =  40;

// Number of cycles of updating the weights matrix

input int      Epochs         =  1000;

In the CreateLayersDesc model architecture description function, we insert one LSTM block between

the source data layer and the block of hidden layers. The size of the result buffer for this recurrent

block will be equal to the number of analyzed neural layers. The depth of the analyzed history will be

set to five iterations. The architecture of the LSTM block defines the activation functions for all its

components, and the block itself does not have a top-level activation function. Consequently, in the

description of the block architecture, we will specify the absence of an activation function. We will use

Adam as a method of parameter optimization.
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//--- recurrent layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronLSTM;

   descr.count = BarsToLine;

   descr.window_out = 5;

   descr.activation = AF_NONE;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

The process of creating a recurrent neural network model can be considered completed, since the rest

of the function code has remained unchanged.

At this stage of script execution, we already have a constructed recurrent neural network model and

the training dataset loaded into memory. Now we can say that we are ready to train the model. And

here we will have a slight departure from the previously used template. The reason is that for training

the fully connected perceptron and the convolutional neural network, we used random patterns from

the overall training dataset. At the same time, we've mentioned multiple times that recurrent neural

networks require strict adherence to the chronological sequence of inputted raw data. Therefore, we

have to make small changes to the training function of the NetworkFit model.

We need a strict sequence of patterns when training a model. Therefore, we remove the generation of a

random pattern for each iteration. Instead, we will randomly determine the start of the next data batch

from the training dataset.

bool NetworkFit(CNet &net, const CArrayObj &data, const CArrayObj &target,

                                                               VECTOR &loss_history)

  {

//--- training

   int patterns = data.Total();

//--- loop through the eras

   for(int epoch = 0; epoch < Epochs; epoch++)

     {

      ulong ticks = GetTickCount64();

      //--- train in batches

      //--- select a random pattern

      int k = (int)((double)(MathRand() * MathRand()) / MathPow(32767.0, 2) *

                                                                  (patterns - 10));

      k = fmax(k, 0);

But there is a nuance here as well. During the feed-forward pass, the recurrent block takes into

account the results of previous iterations to the depth of the analyzed history. For the sake of data

comparability, we should fill the buffer with sequential data before training the model. Therefore, we

extend the loop of each batch before updating the parameters by the number of iterations required to



4. Basic types of neural layers

431

4.2 Recurrent neural networks

fill the buffer with the depth of the analyzed history. In this case, we will not call the backpropagation

method until the buffer is full.

      for(int i = 0; (i < (BatchSize + 10) && (k + i) < patterns); i++)

        {

         //--- check to see if the training has stopped

         if(IsStopped())

           {

            Print("Network fitting stopped by user");

            return true;

           }

         if(!net.FeedForward(data.At(k + i)))

           {

            PrintFormat("Error in FeedForward: %d", GetLastError());

            return false;

           }

         if(i < 10)

            continue;

         if(!net.Backpropagation(target.At(k + i)))

           {

            PrintFormat("Error in Backpropagation: %d", GetLastError());

            return false;

           }

        }

      //--- reconfigure the network weights

      net.UpdateWeights(BatchSize);

      printf("Use OpenCL %s, epoch %d, time %.5f sec", (string)UseOpenCL, epoch,

                                               (GetTickCount64() - ticks) / 1000.0);

      //--- report on a bygone era

      TYPE loss = net.GetRecentAverageLoss();

      Comment(StringFormat("Epoch %d, error %.5f", epoch, loss));

      //--- remember the epoch error to save to file

      loss_history[epoch] = loss;

     }

   return true;

  }

The rest of the script code remained unchanged.

I hope that everything is clear with the algorithm and the principle of constructing the script, and we

can proceed to the analysis of the results.

Testing the LSTM for the first time

First, I created a model similar to the convolutional models I tested: one recurrent layer, three hidden

fully connected layers, and one fully connected layer to display the results.

Based on the test results, it can be observed that using a recurrent layer alongside a convolutional

layer for data preprocessing significantly improves the performance quality of the fully connected

perceptron.
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Let me remind you that in the perceptron model we used three hidden fully connected layers and one

fully connected results layer. In the convolutional network model, we employed one convolutional layer,

one pooling layer, three hidden fully connected layers, and one fully connected layer for output results.

In the recurrent neural network model, we utilized one recurrent LSTM block, three hidden fully

connected layers, and one fully connected layer for output results.

Essentially, in the convolutional and recurrent models, we introduced a convolutional or recurrent block

before the previously tested perceptron for data preprocessing. The type of block used depends on the

model.

As a result, we see an improvement in neural performance due to an additional layer of preliminary data

processing.

Testing a Recurrent Neural Network Model

Comparing the convolutional and recurrent models, it can be observed that the error graph of the

recurrent model exhibits larger noisy fluctuations. This may be due to the peculiarities of model

training. To train the convolutional model, we used patterns randomly selected from the entire training

set. This approach provides the most representative sample for each gradient error accumulation batch

before updating the weights. At the same time, for training the recurrent model, we took patterns in

chronological order. Consequently, the updating of weights and the recording of the model average

error were done at different time intervals. This could not have gone unnoticed in the results, as each

local time interval is subject to its own local trends.
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Testing a Recurrent Neural Network Model

Despite the large graph noise, the overall trend of the recursive model has a large tendency to reduce

the error. True, throughout the training process, the model error value is slightly better for the

convolutional model. But after 700 iterations of updating the weight matrix of the model, there is a

noticeable trend towards a slowdown in the error reduction rate. This may indicate an approach to a

minimum. At the same time, the recurrent model does not have such a trend. The recurrent model has

a large number of parameters, and it takes more time to train. Potentially, it can improve the results in

further training.

Second test of the LSTM mode

In the previous testing of the recurrent model, we used an LSTM layer to preprocess the initial data

before a block of fully connected neural layers. But in practice, there is the possibility of using

recurrent layers without additional preprocessing. To assess the impact of the fully connected layer

block on the performance quality of the recurrent neural network, we conducted a second experiment

using the same script. However, now we have specified 0 in the number of hidden layers parameter.

Thus, we aim to compare the performance of two recurrent models and evaluate the necessity of using

a block of fully connected neural layers for further data processing after the recurrent layer.

The test results show a very interesting trend. At the beginning of training, the recurrent model without

hidden fully connected layers demonstrates a sharper drop in model error, surpassing all other models

depicted on the graph. When you zoom in on the graph, you can see a clear advantage of the model

without a block of hidden fully connected layers. 
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Testing a Recurrent Neural Network Model

Testing a Recurrent Neural Network Model

The results of the tests show the advantage of the operation of recurrent networks over the previously

considered models. In this case, the use of recurrent layers yields results even without the additional

processing of results by fully connected layers.
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Here it must be noted that the evaluation of models was carried out only to solve a specific problem of

working with time series. When solving other problems, it is possible to obtain absolutely opposite

results. Therefore, when tackling your tasks, it is recommended to experiment with various

architectural solutions for neural networks.

Results of testing recurrent models in Python

Earlier, we considered the implementation of a script with the construction of three recurrent models in

Python. Now I propose to consider the results of test training of the constructed models. 

The obtained testing results confirm the conclusions we made earlier based on the testing of models

created using MQL5 tools. All three recurrent models are significantly superior to other models in terms

of the quality of the neural network. In the graph depicting the change in error during the neural

network training process, we can observe that the recurrent models already demonstrate lower error

after 50 epochs of training compared to the fully connected perceptron and the convolutional model.

With further training, superiority only grows. At the same time, one can also notice an increase in the

error on the validation set, which indicates the tendency of the model to overfit.

Test training results for Python models
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Test training results for Python models

Comparing the recurrent models with each other, you can see that the recurrent model in which the

first recurrent layer returns values on each cycle is more prone to overfitting. It shows the smallest

error of all models on the training set and the maximum error on the validation set. At the same time,

the intersection of error curves on the testing and validation datasets for the mentioned model occurs

around 130 epochs with an error value of approximately 0.385. The intersection of the graphs of the

other two models is observed with an error level of about 0.395.

The graph of the dynamics of learning by the Accuracy metric fully confirms our conclusions made on

the error graph.

On the test set, all trained models showed fairly close results. The deviation in both the root-mean-

square error and the accuracy metric is minimal.
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Testing Trained Python Models on a Test Set

While the picture is quite mixed in terms of MSE values, a clear superiority of the recurrent models is

evident on the Accuracy metric graph.

Testing Trained Python Models on a Test Set
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Based on the conducted tests, it can be concluded that when dealing with time series tasks, recurrent

networks are capable of producing better results than the previously examined architectural solutions.

At the same time, to solve such problems, we can consider various architectural solutions. Among

these solutions, there could be neural networks consisting solely of recurrent layers, or mixed models

that combine layers of different types.

Despite the fact that our Python language model test resulted in the victory of a recurrent model

containing only recurrent neural layers, I recommend that when tackling your practical tasks, you

always experiment with different models. Often, the best results come from the most unconventional

architectural solutions.

5. Attention mechanisms

In the previous sections of the book, we have explored various architectures for organizing neural

networks, including convolutional networks borrowed from image processing algorithms. We also

learned about recurrent neural networks used to work with sequences where both the values

themselves and their place in the original data set are important.

Fully connected and convolutional neural networks have a fixed input sequence size. Recurrent neural

networks allow a slight extension of the analyzed sequence by transmitting hidden states from previous

iterations. Nevertheless, their effectiveness also declines as consistency increases.

All the models discussed so far spend the same amount of resources analyzing the entire sequence.

However, consider your behavior in a given situation. For example, even as you read this book, your

gaze moves across letters, words, and lines, turning the pages in sequence. At the same time, you

focus your attention on some specific component. Gradually reading the words written in the book, in

your mind you assemble a mosaic of the logical chain embedded in the written words. And again, in

your consciousness, there is always only a certain part of the overall content of the book.

Looking at a photograph of your loved ones, you first and foremost focus your attention on their

portraits. Only then might you shift your gaze to the background elements of the photograph. At the

same time, you focus your attention on photography. And the entire external environment surrounding

you remains outside of your cognitive activity at that moment.

I want to show you that human consciousness does not evaluate the entire environment. It constantly

picks out some details from it and shifts its attention to them. However, the neural network models we

have discussed do not possess such capability. 

Therefore, in 2014, in the field of machine translation, the first attention mechanism was proposed,

which was designed to programmatically identify and highlight blocks of the source sentence (context)

most relevant to the target translation word. This intuitive approach has greatly improved the quality of

text translation by neural networks.

Analyzing the financial symbol candlestick chart, we identify trends and determine trading zones. That

is, from the overall picture, we single out certain objects, focusing our attention specifically on them. It

is intuitive to us that objects influence future price behavior to different degrees. To implement exactly

this approach, the first proposed algorithm analyzed and identified dependencies between elements of

the input and output sequences. The proposed algorithm was called a generalized attention mechanism.

Initially, it was proposed for use in machine translation models using recurrent networks to address the

long-term memory challenges in translating long sentences. This approach significantly outperformed

the results of the previously considered recurrent neural networks based on LSTM blocks.
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The classic machine translation model using recursive networks consists of two units, the Encoder and

the Decoder. The first one encodes the input sequence in the source language into a context vector,

and the second decodes the obtained context into a sequence of words in the target language. As the

length of the input sequence increases, the influence of the first words on the final context of the

sentence decreases, and as a result, the quality of the translation deteriorates. The use of LSTM blocks

slightly enhanced the capabilities of the model, but they still remained limited.

Encoder-Decoder without the attention mechanism

Authors of the basic attention mechanism proposed using an additional layer that would accumulate the

hidden states of all recurrent blocks of the input sequence and then, during the decoding process,

evaluate the influence of each element of the input sequence on the current word of the output

sequence and suggest to the decoder the most relevant part of the context.

The algorithm for such a mechanism included the following iterations:

1. Creation of hidden states in the Encoder and their accumulation in the attention block.

2. Evaluation of pairwise dependencies between the hidden states of each element of the Encoder

and the last hidden state of the Decoder.

3. The resulting estimates are combined into a single vector and normalized using the Softmax

function.

4. Calculation of the context vector by multiplying all the hidden states of the Encoder by their

corresponding alignment scores.

5. Decoding of the context vector and merging the resulting value with the previous Decoder state.

All iterations are repeated until the signal of the sentence end is received.
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Encoder-Decoder with the attention mechanism

The proposed mechanism addressed the issue of the input sequence length limitation and enhanced the

quality of machine translation using the recurrent neural network. As a result, it gained widespread

popularity and various implementation variations. In particular, in August 2015, in their article Effective

Approaches to Attention-based Neural Machine Translation, Minh-Thang Luong presented their variation

on the method of attention. The main differences of the new approach were the use of three functions

to calculate the degree of dependencies and the point of using the attention mechanism in the

Decoder.

5.1 Self-Attention

The models described above utilize recurrent blocks, the training of which incurs significant costs. In

June 2017, in the article Attention Is All You Need the authors proposed a new neural network

architecture called the Transformer, which eliminated the use of recurrent blocks and proposed a new

Self-Attention algorithm. In contrast to the algorithm described above, the Self-Attention algorithm

analyzes pairwise dependencies within the same sequence. The Transformer performed better on the

tests, and today the model and its derivatives are used in many models, including GPT-2 and GPT-3. We

will consider the Self-Attention algorithm in more detail.

5.1.1 Description of architecture and implementation principles

The Transformer architecture is based on sequential Encoder and Decoder blocks with similar

architectures. Each of the blocks includes several identical layers with different weight matrices.

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1706.03762
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Transformer architecture

Each Encoder layer contains two internal layers: Self-Attention and Feed Forward. The Feed Forward

layer includes two fully connected layers of neurons with a ReLU activation function on the internal

layer. Each layer is applied to all elements of the sequence with the same weights, enabling

simultaneous independent calculations for all sequence elements in parallel threads.

Encoder

The Decoder layer has a similar structure with an additional layer called Self-Attention which analyzes

dependencies between the input and output sequences.
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Decoder

The Self-Attention mechanism includes several iterative actions applied to each element of the

sequence.

1. First, we compute the Query, Key, and Value vectors. The mentioned vectors are obtained by

multiplying each element of the sequence by the corresponding matrix, W
Q
, W

K
 and W

V
.

2. Next, we determine pairwise dependencies between elements of the sequence. To do this, we

multiply the Query vector with the Key vectors of all elements of the sequence. This iteration is

repeated for the Query vector of each element in the sequence. As a result of this iteration, we

obtain a matrix called Score with a size of N*N, where N is the sequence length.

3. The next step involves dividing the obtained values by the square root of the dimension of the Key

vector and normalizing using the Softmax function with respect to each Query. Thus, we obtain

coefficients representing the pairwise dependencies between the elements of the sequence.

4. By multiplying each Value vector by the corresponding attention coefficient, we obtain the

adjusted value of the element. The goal of this iteration is to focus attention on relevant elements

and reduce the influence of irrelevant values.
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5. Next, we summarize all the adjusted Value vectors for each element. The result of this operation

will be the vector of output values for the Self-Attention layer.

The results of iterations for each layer are added to the input sequence and normalized.

For data normalization, we first determine the mean value of the entire sequence. Then, for each

element, we calculate the quotient of its deviation from the mean divided by the standard deviation of

the sequence.

5.1.2 Building Self-Attention with MQL5 tools

The presented Self-Attention architecture may seem rather difficult to understand and to implement

after the first acquaintance. Let's not be pessimistic. We will try to break down the whole algorithm

into small components. Then, with the implementation of each individual block, we will assemble the

overall picture, and it will no longer be so complex to understand. At the same time, you will be amazed

at how we manage the work and build a functional mechanism for our library.

Now let's get to work. To implement our Self-Attention layer, let's create a new CNeuronAttention

class. As always, we will inherit from our base class of the neural layer, CNeuronBase.

class CNeuronAttention    :  public CNeuronBase

  {

public:

                     CNeuronAttention(void);

                    ~CNeuronAttention(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //--- methods of working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //---object identification method

   virtual int       Type(void) override  const { return(defNeuronAttention); }

  };

Let's consider the first action of the Self-Attention algorithm which is the computation of the Query,

Key, and Value vectors. At the input, we get a tensor of raw data containing features for each bar of

the analyzed sequence. Sequentially, we take the features of one candlestick and, by multiplying them

with a weight matrix, obtain a vector. Then we take the features of the second candlestick and multiply
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them by the same weight matrix so we get the second vector similar to the first one. Does this look

similar to the convolution layer created earlier? Here, the length of the result vector is equal to the

number of filters used in the convolution layer. Hence, to organize the above process, we declare three

nested convolutional layers CNeuronConv. We use the appropriate layer names to make the code easier

to read.

class CNeuronAttention    :  public CNeuronBase

  {

protected:

   CNeuronConv       m_cQuerys;

   CNeuronConv       m_cKeys;

   CNeuronConv       m_cValues;

   .....

  };

According to this algorithm, in the next step, we determine the Score matrix by multiplying the Query

and Key matrices. To write the matrix data, we will create a data buffer as an object of the CBufferType

class.

class CNeuronAttention    :  public CNeuronBase

  {

protected:

   .....

   CBufferType       m_cScores;

   .....

  };

After determining the Score dependency coefficient matrix, we will need to find the weighted values. To

do this, we multiply the Values vectors by the corresponding values of the Score matrix. After additional

processing, we obtain a tensor equal to the size of the initial data. We will talk about the reasons for

the same size during the implementation process. Right now, let's just note for ourselves the need for a

data warehouse. To collect data in the storage, we will need to set up a new process, so we require an

object with easy access for writing data. In the future, we plan to pass data as input to the internal

neural layer. So, the neural layer template of the raw data will be the most suitable for us. We use a

basic neural layer with zero input window as the input data layer.

class CNeuronAttention    :  public CNeuronBase

  {

protected:

   .....

   CNeuronBase       m_cAttentionOut;

   .....

  };

Here, it's important to note the difference between the output of the Self-Attention algorithm and the

output of the entire CNeuronAttention class. The first one is obtained after execution of the Self-

Attention algorithm by adjusting the values of Value vectors. We save it to the instance of the object of

the basic neural layer m_ cAttentionOut. The second one is obtained after processing in the Feed

Forward block. This one is saved to the result buffer of our class.

So, next, we need to organize the Feed Forward block. We will create it from two consecutive

convolution layers. It may seem unusual to use a convolutional layer when the solution architecture is

described as having fully connected layers. The situation here is similar to the first point of the

algorithm when we determined the value of Query, Key, and Value vectors. Looking at the block within
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the context of one element of the sequence, we can see two fully connected neural layers. However,

when considering the entire time series, it becomes evident that the same weight matrix is applied

sequentially to each element of the sequence. Furthermore, as the input data progresses sequentially,

the results are laid out in the same order. Doesn't this resemble the operation of a convolutional layer?

We just need to take the convolution layer and set the width of the source data window equal to the

vector size of one sequence element. The step of the initial data window is set equal to the window

width, and the number of filters used is determined by the size of the fully connected layer for one

element of the sequence.

Thus, we add two convolution layers to organize the Feed Forward block.

class CNeuronAttention    :  public CNeuronBase

  {

protected:

   .....

   CNeuronConv       m_cFF1;

   CNeuronConv       m_cFF2;

   .....

  };

We identified the objects we need to organize the Self-Attention mechanism in our class. To complete

the picture, let's add a few more variables:

· m_ iWindow – width of the initial data window (size of one sequence element vector)

· m_ iUnits – the number of units in the sequence

· m_ iKeysSize – width of the result vector size for Query and Key

· m_ dStd – during normalization of the layer, we will divide the value by the standard deviation and

will save the result to determine the derivative

Taking into account the standard set of functions for overriding, the class structure will have the

following form.
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class CNeuronAttention    :  public CNeuronBase

  {

protected:

   CNeuronConv       m_cQuerys;

   CNeuronConv       m_cKeys;

   CNeuronConv       m_cValues;

   CBufferType       m_cScores;

   int               m_cScoreGrad;

   int               m_cScoreTemp;

   CNeuronBase       m_cAttentionOut;

   CNeuronConv       m_cFF1;

   CNeuronConv       m_cFF2;

   //---

   int               m_iWindow;

   int               m_iUnits;

   int               m_iKeysSize;

   CBufferType       m_cStd;

public:

                     CNeuronAttention(void);

                    ~CNeuronAttention(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //--- methods for operations with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override  const { return(defNeuronAttention); }

  };

In the class constructor, we only set the initial values of the variables.

Please note that in this class, we are using static objects rather than pointers to objects as we did

previously. The lifetime of static objects, like variables, is equal to the lifetime of the object containing

them. By using such objects, we avoid the need to create object instances during class initialization and

to clean up memory when the class operation is completed. Also, we don't need to check the validity of

the object pointer every time. This saves some time in performing each method. However, in this case,

we cannot replace objects by copying only the object's pointer, which this property is actively used in

our activation class and in recurrent networks (using the same object pointers when analyzing the

entire depth of the history).
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CNeuronAttention::CNeuronAttention(void) :   m_iWindow(1),

                                             m_iUnits(0),

                                             m_iKeysSize(1)

  {

   m_cStd.BufferInit(1, 2, 1);

  }

Since we use static objects, we leave the class destructor empty.

CNeuronAttention::~CNeuronAttention(void)

  {

  }

Method of class initialization

After creating the class constructor and destructor, we move on to overriding the main methods of the

class. First, we will override the class initialization method CNeuronAttention::Init. The main task of this

method is to prepare the class to perform its functionality with user-defined parameters. Like similar

methods in other previously discussed classes, the method receives an instance of the

CLayerDescription object as a parameter, in which the parameters of the initialized neural layer are

specified. Therefore, in order to eliminate possible errors in future work, we organize the block of initial

data verification. In this method, we will check for the presence of the minimum required parameters in

the received data.

bool CNeuronAttention::Init(const CLayerDescription *desc)

  {

//--- check the initial data

   if(!desc || desc.type != Type() || desc.count <= 0 ||

       desc.window <= 0 || desc.window_out <= 0)

      return false;

After that, we will save the main parameters into specially prepared variables. Note the correlation

between the parameters of the neural layer description class and their functional purpose:

· CLayerDescription.window – the size of the source data window, a vector of source data of one

element of the sequence (in our case description of one bar)

· CLayerDescription.count – the number of elements in the sequence (the number of analyzed bars)

· CLayerDescription.window_ out – size of the result vector for Query and Key

   m_iWindow   = desc.window;

   m_iUnits    = desc.count;

   m_iKeysSize = desc.window_out;

As before, we start initializing the object by calling a similar initialization method of the parent class.

But there's a nuance here. We cannot simply transfer the resulting description of the neural layer. We

will create a new instance of the neural layer description object and CLayerDescription and enter the

corrected data into it.

In the count field, we specify the total number at the output of the layer, which is obtained by

multiplying the count and window fields of this object.
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Note that to obtain the total number of elements in the output of the neural layer, we multiply the

number of elements in the sequence (number of bars analyzed) by the size of the source window

(elements describing 1 bar), not the size of the results window. The reason is that we will use the

results window size only for Query and Key tensors. The size of the result vector for the Value tensors

and the second layer of the Feed Forward block will be equal to the size of the initial data window. This

is done to align the dimensionality of the initial data and the results. The algorithm involves adding the

tensors of the original data to the results of the Self-Attention block and then adding the tensors of the

results of the Feed Forward and Self-Attention blocks, as well. Thus, as a result of tensor addition, the

sequence at the output of our neural layer cannot be shorter than the initial data. And it doesn't make

any sense to increase it. Therefore, we align the dimensions of the vectors.

In addition to changing the number of elements, we will also change the size of the output window,

setting it to one. The size of the initial data window will be equal to zero. After that, we will call the

parent class initialization method.

//--- calling the parent class initialization method

   CLayerDescription *temp = new CLayerDescription();

   if(!temp)

      return false;

   temp.count = desc.count * desc.window;

   temp.window_out = 1;

   temp.window     = 0;

   temp.optimization = desc.optimization;

   temp.activation = desc.activation;

   temp.activation_params = desc.activation_params;

   temp.type = desc.type;

   if(!CNeuronBase::Init(temp))

     {

      delete temp;

      return false;

     }

Such a parameter substitution will allow the running of the parent class initialization method in the

neural layer mode of the source data. At the same time, no additional buffers will be created for the

weight matrix, as well as the corresponding optimization method buffers. As with the LSTM block, this

neural layer will not have a separate weight matrix. All weight factors will be stored in the inner neural

layers.

We specify a similar architecture for the inner data collection layer of the AttentionOut attention block.

We will simply change the type of neural layer and explicitly disable the activation function.

//--- initialize AttentionOut

   temp.type = defNeuronBase;

   temp.activation=AF_NONE;

   if(!m_cAttentionOut.Init(temp))

     {

      delete temp;

      return false;

     }

Next, to initialize our internal neural layers, we need to create a description for them. We fill the

previously created instance of the CLayerDescription class with the necessary data. Almost all of our
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internal neural layers are convolutional, so in the type parameter, we will specify defNeuronConv. The

rest of the parameters are transferred without changes from the obtained external description.

//--- create a description for the internal neural layers

   temp.type = defNeuronConv;

   temp.window = desc.window;

   temp.window_out = m_iKeysSize;

   temp.step = desc.window;

   temp.count = desc.count;

Next, we proceed to initialize the internal neural layers. We first initialize the convolution layer to define

Query vectors using a pre-built description. Don't forget to check the results of the operations.

//--- initialize Querys

   if(!m_cQuerys.Init(temp) || !m_cQuerys.SetTransposedOutput(true))

     {

      delete temp;

      return false;

     }

Note that we use the new CNeuronConv::SetTransposedOutput method after initializing the

convolutional neural layer. The reasons for its appearance and its functionality will be discussed a bit

later.

We initialize the Keys layer using a similar algorithm.

//--- initializing Keys

   if(!m_cKeys.Init(temp) || !m_cKeys.SetTransposedOutput(true))

     {

      delete temp;

      return false;

     }

Next, initialize the Values layer. We use the above algorithm with a small addition. As mentioned earlier,

when initializing this object, the result window is set equal to the input data window. Therefore, we

make changes to the neural layer description object and call the initialization method. Let's check the

result of the operations.

//--- initialize Values

   temp.window_out = m_iWindow;

   if(!m_cValues.Init(temp) || !m_cValues.SetTransposedOutput(true))

     {

      delete temp;

      return false;

     }

Next, we initialize the Scores coefficient matrix. According to the Self-Attention mechanism algorithm,

this is a square matrix with a side length equal to the number of elements in the sequence. For us, it is

the number of bars analyzed.

In the discussion of this algorithm, it's important to understand the difference between the number of

elements in the sequence and the total number of elements at the output of the neural layer. If you

translate this to analyzing a candlestick chart of a change in a stock instrument, then:

· The number of elements in a sequence is the number of bars to be analyzed.
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· The length of a vector of one sequence element (input / output window) is the number of elements

describing 1 bar.

· The total number of elements at the input/output of the neural layer is the product of the first two

quantities.

Let's return to the initialization of the coefficient matrix buffer. For it, we have declared a data buffer.

We will initialize it with zero values by setting the buffer size as a square matrix.

//--- initialize Scores

   if(!m_cScores.BufferInit(temp.count, temp.count, 0))

     {

      delete temp;

      return false;

     }

The Self-Attention algorithm is followed by the base neural layer object for recording attention results,

which we have already initialized above.

All we have to do is initialize the Feed Forward block. As mentioned, it will consist of two convolutional

neural layers. According to the architecture proposed by the authors, in the first neural layer, the

tensor of results is four times larger than the input data. In addition, the authors used the ReLU

activation function in the first neuron layer. We'll replace it with Swish. We will make the specified

changes to the description of the neural layer and proceed with its initialization.

//--- initialize FF1

   temp.window_out *= 4;

   temp.activation = AF_SWISH;

   temp.activation_params[0] = 1;

   temp.activation_params[1] = 0;

   if(!m_cFF1.Init(temp) || !m_cFF1.SetTransposedOutput(true))

     {

      delete temp;

      return false;

     }

To initialize the second neural layer in the Feed Forward block, we need to increase the size of the input

data window and its stride. The size of the results window should be resized to match the size of the

attention block results tensor. It will also correspond to the tensor size of the previous layer.

For the second neural layer in the Feed Forward, we will use the activation function specified by the

user during the initialization of our class.

After making the necessary changes to the description object of the neural layer, we will use the

algorithm discussed earlier to initialize the last internal neural layer.
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//--- initialize FF2

   temp.window = temp.window_out;

   temp.window_out = temp.step;

   temp.step = temp.window;

   temp.activation = desc.activation;

   temp.activation_params = desc.activation_params;

   if(!m_cFF2.Init(temp) || !m_cFF2.SetTransposedOutput(true))

     {

      delete temp;

      return false;

     }

   delete temp;

After initializing all internal neural layers, we delete the temporary neural layer description object. We

don't need it anymore.

Now let's use a little trick. According to the algorithm, we obtain the result of the second neural layer

operation in the result buffer of the Feed Forward block's second layer. To transfer the data to the

subsequent neural layer, we need to transfer the data to the result buffer of our class. We will need

additional time and resources at each iteration for the data copy operation. To avoid this, we can

substitute pointers to objects. Remember that we discussed objects and pointers to them?

Initially, we delete the result buffer object of our class to avoid leaving unaccounted objects in memory.

Then, in the variable used to store the pointer to the buffer object, we assign the pointer to a similar

buffer in the second neural layer of the Feed Forward block. The same operation is performed for the

gradient buffer.

//--- to avoid copying the buffers we swap them

   if(m_cOutputs)

      delete m_cOutputs;

   m_cOutputs = m_cFF2.GetOutputs();

   if(m_cGradients)

      delete m_cGradients;

   m_cGradients = m_cFF2.GetGradients();

Thanks to this simple trick, we have been able to avoid constant data copying between buffers and

reduce the time required to perform operations within the class.

In conclusion, at the end of the initialization method, we call the SetOpenCL method to ensure that all

our internal objects work in the same context. Now we exit the method with a positive result.

//--- pass a pointer to the object of work with OpenCL before all internal objects

   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

The SetOpenCL method, called at the end of the initialization method, is designed to distribute the

pointer to the OpenCL context work object among all internal objects. This is necessary to ensure that

all objects work in the same space. This method was created as virtual in the base class of the neural

layer. It is redefined in each new class as needed.

The algorithm of the method is quite simple, and we have already discussed it in all the previous

classes. In the parameters, the method receives a pointer of the object of work with OpenCL context
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from an external program. We simply start by calling the method of the parent class and pass it the

obtained pointer. The validation of the obtained pointer is already implemented in the parent class's

method, so there is no need to repeat it here.

Then we pass the pointer to the OpenCL context to all internal objects stored in the variable of our

class. The trick is that the method of the parent class checks the obtained pointer and stores the

appropriate pointer in the variable. To ensure that all objects work in the same context, we propagate

the already processed pointer.

bool CNeuronAttention::SetOpenCL(CMyOpenCL *opencl)

  {

   CNeuronBase::SetOpenCL(opencl);

   m_cQuerys.SetOpenCL(m_cOpenCL);

   m_cKeys.SetOpenCL(m_cOpenCL);

   m_cValues.SetOpenCL(m_cOpenCL);

   m_cAttentionOut.SetOpenCL(m_cOpenCL);

   m_cFF1.SetOpenCL(m_cOpenCL);

   m_cFF2.SetOpenCL(m_cOpenCL);

   if(m_cOpenCL)

     {

      m_cScores.BufferCreate(m_cOpenCL);

      ulong size = sizeof(TYPE) * m_cScores.Total();

      m_cScoreGrad = m_cOpenCL.AddBuffer((uint)size, CL_MEM_READ_WRITE);

      m_cScoreTemp = m_cOpenCL.AddBuffer((uint)size, CL_MEM_READ_WRITE);

      m_cStd.BufferCreate(m_cOpenCL);

     }

   else

     {

      m_cScores.BufferFree();

      m_cStd.BufferFree();

     }

//---

   return(!!m_cOpenCL);

  }

Going a bit ahead, I want to draw attention to the creation of the m_ cScoreGrad and m_ cScoreTemp

buffers. They are used only in the OpenCL context for temporary data storage, so we did not create

mirror objects for them in the main memory. Also, we will not use them to exchange data between the

main program and the OpenCL context. In this case, we will create buffers in the OpenCL context, while

on the side of the main program, we use only pointers to work with them. When disabling multi-

threading technology, we immediately delete the mentioned buffers.

After completing the initialization method of the class, we can proceed to override the functional

methods of our class.
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5.1.2.1 Self-Attention feed-forward method

We have already created the structure of a class organization for implementing the attention

mechanism and even created an object initialization method. In this section, we will organize the

forward pass process.

As you know, in the base class of the neural network, we have created a virtual method

CNeuronBase::FeedForward which is responsible for organizing the feed-forward pass. In each new

class, we override this method to organize the relevant process according to the algorithm of the

implemented architectural solution. By doing so, we kind of personalize the method for each class. At

the same time, the external program does not need to know anything about the organization of the

process within the class. It doesn't even need to know the type of neural layer. It simply calls the

FeedForward method of the next object and passes it a pointer to the previous layer of the neural

network. In this way, we have shifted the functionality of dispatching and checking the required object

type from our program to the system.

Let's go back to our CNeuronAttention::FeedForward method. Just like the method of the parent class,

in parameters it receives a pointer to the object of the previous layer. This is consistent with the

principles of method inheritance and overriding. Since we receive a pointer to an object, it is customary

to begin the method with a block to check the validity of the received pointer. However, in this case,

we will omit it. The reason is that the use of static internal objects allows us to refuse to check their

pointers. Regarding the pointer to the previous neural layer, we will use it for the feed-forward pass of

the internal convolutional neural layers m_ cQuerys, m_ cKeys and m_ cValues. They already have the

relevant controls and thus we do not need to duplicate them.

In accordance with the Self-Attention algorithm, we need to define the Query, Key, and Value vectors

for each element of the sequence. As you remember, it was for this functionality that we created the

first three convolutional layers. Therefore, to solve this problem, we just need to call the FeedForward

methods for the named internal layers. With each call in the parameters, we pass a pointer to the

previous neural layer obtained in the parameters of our CNeuronAttention::FeedForward method.

   if(!m_cQuerys.FeedForward(prevLayer))

      return false;

   if(!m_cKeys.FeedForward(prevLayer))

      return false;

   if(!m_cValues.FeedForward(prevLayer))

      return false;

Next in the Self-Attention algorithm, we need to determine the dependency coefficients and fill in the

Score matrix. At this point, it's essential to recall our paradigm of creating classes capable of running

both on the CPU and using the GPU tools. Each time we build a new process, we create a branching of

the algorithm depending on the computing device in use. This method will not be an exception, and we

will continue to work in the same direction. Right now, we will create a similar branching of the process.

We will start with the process using MQL5 tools and will return to the OpenCL branch a little later.

For convenience, we copy the m_ cQuerys and m_ cKeys matrices which contain the results of the

convolutional layers.
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//--- branching of the algorithm by the computing device

   MATRIX out;

   if(!m_cOpenCL)

     {

      MATRIX querys = m_cQuerys.GetOutputs().m_mMatrix;

      MATRIX keys = m_cKeys.GetOutputs().m_mMatrix;

After completing the preparatory work, we need to "roll up our sleeves" and build a new process. The

Self-Attention method involves line-wise normalization of the dependency matrix using the Softmax

function.

The main feature of such normalization lies in obtaining a series of positive values that sum up to 1.

Thus, by multiplying the normalized dependency coefficients with the values of Value vectors of the

corresponding sequence elements and then summing up these vectors within one Query, we expect to

obtain new vectors within the same range of values.

Let's look at the implementation of this process. First, we organize the process of calculating the

dependency coefficients into the Score matrix. According to the Self-Attention algorithm, each element

of the matrix represents the product of the Query and Key vectors. In this case, the matrix row

indicates the position of the vector in the Queries matrix and its column indicates the position in the

Keys matrix.

Here, it is important to carefully consider the choice of elements to be multiplied. Let's recall how we

organized the output of the results to the buffer of the convolutional layer. To enable the operation of

the pooling layer in the context of filters, we have organized the sequential output of filters. First, in the

first row of the result buffer matrix, we output all the elements of the result of one filter. Then, in the

next row, we write the elements of the next filter, and so on. This organization of the buffer is

convenient for the transparent operation of the pooling layer within the filters. In this case, within the

vector of one element of the sequence, we need to use one value from each filter. In other words, we

need a transposed matrix.

Reorganizing the buffer data in such a way that the first elements of all filters come first, then the

second elements of all filters, and so on, would require additional resources on each feed-forward pass.

It would be much easier to organize a convenient record directly in the convolutional layer. However,

this would disrupt the operation of both the pooling layer and subsequent convolutional layers when

building convolutional models. Therefore, it was decided to introduce a flag into the operation of the

convolutional layer to determine whether the values should be arranged in the result buffer. You may

have already guessed this when I talked about the new SetTransposedOutput convolutional layer

method when describing the initialization method. I promised to return to the description of the

functionality of this method. Such a solution has helped us keep the structure of the feed-forward pass

method transparent and avoid additional time and resource costs for data reorganization. Let's finish

working with the feed-forward pass method, and then we can revisit the changes in the convolutional

layer.

Taking into account the transposition of the convolutional layer results, to obtain the values of the

matrix of dependency coefficients, we need to multiply the Querys matrix by the transposed matrix

Keys. It sounds a little strange to transpose the work of the convolutional layer method and then

transpose the Keys matrix. However, we will use the result of transposing the work of the convolutional

layer more than once. Of course, with the help of the entered flag, we could transpose the work of the
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convolutional layer m_ cQuerys, and leave the m_ cKeys layer unchanged. But in this case, there is a

possibility of confusion with the matrix dimensions. This will make the code more difficult to read and

understand. Therefore, I decided to unify the dimensions of the matrices used.

Please note that simultaneously with the calculation of the vector product, we will prepare data for

normalization according to the Softmax formula above. For this purpose, we will immediately divide the

obtained matrix by the square root of the Key vector size and take the exponent of the resulting value.

Then we will take the row-wise sum of the matrix values and divide the values by the resulting vector of

the matrix Scores. MQL5 matrix operations do not allow you to divide a matrix by a vector. Therefore,

we will organize a loop in which we will sequentially divide each row by the sum of its values.

      //--- define Scores

      MATRIX scores = MathExp(querys.MatMul(keys.Transpose()) / sqrt(m_iKeysSize));

      //--- normalize Scores

      VECTOR summs = scores.Sum(1);

      for(int r = 0; r < m_iUnits; r++)

         if(!scores.Row(scores.Row(r) / summs[r], r))

            return false;

      m_cScores.m_mMatrix = scores;

After normalizing the data in the matrix containing the dependencies coefficients of the elements in the

sequence, we will transfer these values to our data buffer buffer m_ cScores.

At this stage, we have computed and normalized the dependency coefficients between all elements of

the sequence. Now, according to the algorithm of the Self-Attention method, we need to calculate the

weighted sum of the Values vectors in terms of each Query. To do this, we just need to multiply the

matrix of dependency coefficients by the matrix of results of the convolutional layer m_ cValues. Again,

it is precisely because of the transposition of the work of the convolutional layer that we do not

transpose the matrix of the results of the m_ cValues layer.

      //--- the output of the attention block

      MATRIX values = m_cValues.GetOutputs().m_mMatrix;

      out = scores.MatMul(values);

The product of the matrices will give us the result of the Self-Attention mechanism. But we will go a

little further and build the entire Encoder block of the transformer. According to his algorithm, the

results of Self-Attention are added to the buffer of the original data. The obtained values are normalized

within the neural layer. The following formulas are used to normalize the data.

To perform this operation, we will first bring the format of the results matrix of the Self-Attention block

in accordance with the format of the matrix of the initial data and add the two matrices. The result is

normalized in a specially selected NormlizeBuffer method.
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      //--- add to initial data and normalize

      if(!out.Reshape(prevLayer.Rows(), prevLayer.Cols()))

         return false;

      m_cAttentionOut.GetOutputs().m_mMatrix = out + 

                                             prevLayer.GetOutputs().m_mMatrix;

      if(!NormlizeBuffer(m_cAttentionOut.GetOutputs(), GetPointer(m_cStd), 0))

         return false;

     }

With this, the first block of operations is completed. This concludes the section on dividing the

algorithm based on the execution of mathematical operations. For the block of operations using

OpenCL, we will temporarily set the return of an error value and come back to it later.

   else // OpenCL block

     {

      return false;

     }

Let's continue working with the encoder algorithm and move on to the second block of operations. Here

it is necessary to conduct the signal of each element of the sequence through two fully connected

layers. As you remember, we decided to organize this work through two convolutional layers. At first

glance, there is nothing complicated about it - we simply call the forward pass methods for each

convolutional layer sequentially.

--- call the feed-forward methods of the Feed Forward block layers

   if(!m_cFF1.FeedForward(GetPointer(m_cAttentionOut)))

      return false;

   if(!m_cFF2.FeedForward(GetPointer(m_cFF1)))

      return false;

Here, correct operation is possible only due to the transposition of the buffer of the convolutional neural

layers results. Only this approach allows the aligned operation on each individual element of the

sequence.

After conducting a forward pass through two convolutional layers, just as after determining the

attention results, it is necessary to propagate the obtained results to the data input into the first

convolutional layer and normalize the resulting sums. We have already considered such a task above.

Here we use the same algorithm, only the data buffers are different.

//--- add to the output of attention and normalize

   if(!m_cOutputs.SumArray(m_cAttentionOut.GetOutputs()))

      return false;

//--- normalize

   if(!NormlizeBuffer(m_cOutputs, GetPointer(m_cStd), 1))

      return false;

//---

   return true;

  }

It should be noted that thanks to the buffer substitution organized in the initialization method, we

obtain the results of the second convolutional layer from the result buffer of the current layer. In the

same buffer, we will save the results of data normalization.

After the completion of the operations, we exit the feed-forward method with a positive result.
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Now let's take a look at the changes made to the convolutional layer class. First, we'll add a variable to

store the flag of the m_ bTransposedOutput output structure. This will be a Boolean flag indicating the

need to transpose the result matrix for output to the buffer. By default, we will set the value to false,

which means working in normal mode.

class CNeuronConv    :  public CNeuronProof

  {

protected:

   bool              m_bTransposedOutput;

public:

   bool              SetTransposedOutput(const bool value);

   ....

  }

To control the value of the flag, let's create the SetTransposedOutput method. The functionality of the

method is quite simple. We resize the result matrices and error gradients.

bool CNeuronConv::SetTransposedOutput(const bool value)

  {

   m_bTransposedOutput = value;

   if(value)

     {

      if(!m_cOutputs.BufferInit(m_iNeurons, m_iWindowOut, 0))

         return false;

      if(!m_cGradients.BufferInit(m_iNeurons, m_iWindowOut, 0))

         return false;

     }

   else

     {

      if(!m_cOutputs.BufferInit(m_iWindowOut, m_iNeurons, 0))

         return false;

      if(!m_cGradients.BufferInit(m_iWindowOut, m_iNeurons, 0))

         return false;

     }

//---

   return true;

  }

However, as you understand, the presence of a flag and even a method that changes it will not affect

the results of data output to the buffer. To do this, we have to make some changes to the forward pass

method. We are not changing the algorithm or the calculation logic at all; our changes will only involve

rearranging matrices when multiplying the input data by the weight matrix, depending on the state of

the m_ bTransposedOutput flag.
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bool CNeuronConv::FeedForward(CNeuronBase *prevLayer)

  {

//--- control block

    ....

//--- branching the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

    ....

      //--- Calculating the weighted sum of the elements of the input window

      if(m_bTransposedOutput)

         m = m.MatMul(m_cWeights.m_mMatrix.Transpose());

      else

         m = m_cWeights.m_mMatrix.MatMul(m.Transpose());

      m_cOutputs.m_mMatrix = m;

     }

   else  // OpenCL block

     {

    ....

     }

//---

   if(!m_cActivation.Activation(m_cOutputs))

      return false;

//---

   return true;

  }

After making changes to the feed-forward method, we need to make similar adjustments to the

backpropagation methods because the error gradient should be propagated back to the point of error

occurrence. Otherwise, the results of training the neural network will be unpredictable. First, we make

changes to the gradient distribution method in the hidden layer CNeuronConv::CalcHiddenGradient.
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bool CNeuronConv::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- control block

    ....

//--- correction of error gradients to the derivative of the activation function

    ....

//--- branching the algorithm depending on the execution device

   CBufferType* input_gradient = prevLayer.GetGradients();

   if(!m_cOpenCL)

     {

      MATRIX g = m_cGradients.m_mMatrix;

      if(m_bTransposedOutput)

        {

         if(!g.Reshape(m_iNeurons, m_iWindowOut))

            return false;

        }

      else

        {

         if(!g.Reshape(m_iWindowOut, m_iNeurons))

            return false;

         g = g.Transpose();

        }

    ....

     }

   else  // OpenCL block

     {

    ....

     }

//---

   return true;

  }

Then we make the relevant changes in the CNeuronConv::CalcDeltaWeights method for distributing the

gradient to the weight matrix level.
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bool CNeuronConv::CalcDeltaWeights(CNeuronBase *prevLayer)

  {

//--- control block

    ....

//--- branching the algorithm depending on the execution device

   CBufferType *input_data = prevLayer.GetOutputs();

   if(!m_cOpenCL)

     {

    ....

      //---

      MATRIX g = m_cGradients.m_mMatrix;

      if(m_bTransposedOutput)

        {

         if(!g.Reshape(m_iNeurons, m_iWindowOut))

            return false;

         g = g.Transpose();

        }

      else

        {

         if(!g.Reshape(m_iWindowOut, m_iNeurons))

            return false;

        }

      m_cDeltaWeights.m_mMatrix += g.MatMul(inp);

     }

   else  // OpenCL block

     {

    ....

     }

//---

   return true;

  }

As you can see, the changes are not so crucial, but they provide enhanced flexibility in settings.
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5.1.2.2 Self-Attention backpropagation methods

In the previous section, we discussed the feed-forward method in the Encoder block of the Transformer

architectural solution. This block includes a Self-Attention mechanism, followed by processing by two

fully connected neural layers. The peculiarity of the Self-Attention mechanism lies in determining the

dependencies between elements of the sequence. Moreover, each element of the sequence is

represented as a vector of properties of a fixed length. Each sequence element within one neural layer

is processed by an Encoder block with one set of weighting factors. This allowed us to use previously

developed convolutional layers to solve a number of problems. The organization of a forward pass is a

very important part of the algorithm for the operation of neural networks. We use it both when training

our neural network models, and during practical application. But neural network training is impossible

without going back. So now we'll look at organizing the backward pass in our attention mechanism

class.

Just to remind you, we have created our own class as a successor to the neural layer base class.

Several methods are responsible for organizing the backward pass:

· CNeuronBase::CalcOutputGradient: method for calculating the error gradient of the result layer.

· CNeuronBase::CalcHiddenGradient: method for calculating the error gradient through a hidden

layer.

· CNeuronBase::CalcDeltaWeights: method for calculating the error gradient to the level of the weight

matrix.

· CNeuronBase::UpdateWeights: method for updating weights.

All methods were made virtual to allow overriding in descendant classes. In our class, we're not going

to override only the first method.

We will work on the methods in accordance with the logic of the backward propagation of error gradient

method. We will be the first to redefine the error gradient calculation method via the hidden

CNeuronAttention::CalcHiddenGradient layer. Of the three redefined methods, this one is probably the

most difficult to understand and organize. After all, it is in this method that we will need to repeat the

entire path of the feed-forward pass, but in reverse order. At the same time, we will have to find

derivatives of all operations used in the feed-forward pass.

In the method parameters, we get a pointer to an object in the previous layer, in whose buffer we will

save the result of operations. Next, in the body of the method, we organize a block of checks on the

relevance of pointers to objects. Here, I decided not to dwell on checking all objects but only checked

those objects that are not verified when calling methods of internal classes. This decision was made in

an attempt to avoid redundant validity checks of objects during the execution of method operations.

bool CNeuronAttention::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- checking the relevance of all objects

   if(!m_cOutputs || !m_cGradients ||

      m_cOutputs.Total() != m_cGradients.Total())

      return false;

This is followed by the most interesting part in which the error gradient is propagated in the reverse

order of the feed-forward algorithm. Let's look at the forward pass algorithm. It ends with the

normalization of results, which is carried out using formulas.
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What is the normalization process? This is the process of changing the statistical variables in a

sampling and bringing it closer to some specified parameters. Most often this is the mean and standard

deviation, as in our case. We equate the mean value to zero and reduce the standard deviation to one.

As a result of this operation, the function graph is shifted and scaled, as shown in the figure.

Effect of normalization on the function graph

In essence, as part of the Self-Attention algorithm, the process of data normalization is used as a

function of activating the neural layer. However, unlike the latter, it does not change the data

structure.

But we are not going to dig into the details of calculating the derivative of the complex data

normalization function now. We have implemented the process of correcting the error gradient as a

separate method.

//--- adjust the gradient for normalization

   if(!NormlizeBufferGradient(m_cOutputs, m_cGradients, GetPointer(m_cStd), 1))

      return false;

Next, we can use the FeedForward methods of our internal block layers and draw an error gradient to

the internal layer for storing the results of the attention block.
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//--- propagate a gradient through the layers of the Feed Forward block

   if(!m_cFF2.CalcHiddenGradient(GetPointer(m_cFF1)))

      return false;

   if(!m_cFF1.CalcHiddenGradient(GetPointer(m_cAttentionOut)))

      return false;

In the feed-forward method, before normalizing the results layer, we added the values of two buffers

(the results of the FeedForward and Self-Attention blocks). Therefore, the error gradient should also be

propagated along both branches of the algorithm. So, let's add the two gradient buffers together. To

facilitate access to the buffer of the internal Self-Attention results storage layer, we create a local

pointer to objects.

   CBufferType *attention_grad = m_cAttentionOut.GetGradients();

   if(!attention_grad.SumArray(m_cGradients))

      return false;

Let's adjust the error gradient by the standard deviation.

//--- adjust the gradient for normalization

   if(!NormlizeBufferGradient(m_cAttentionOut.GetOutputs(), attention_grad,

                                                     GetPointer(m_cStd), 0))

      return false;

After adding the two error gradient tensors, we need to distribute the error gradient between the

internal layers m_ cQuerys, m_ cKeys, and m_ cValues. When we passed forward, we fully recreated the

data flow algorithm block from the specified neural layers to the Self-Attention results buffer.

Therefore, we will also have to create a backpropagation process. As always, here we will create a

branching of the algorithm depending on the computing device. We start with considering the process

of algorithm creation using standard MQL5 tools and will get back to the implementation of the multi-

threaded computing mechanism using OpenCL a little later.

//--- branching the algorithm by the computing device

   if(!m_cOpenCL)

     {

      MATRIX values, gradients;

At the beginning of the MQL5 block, we will create two matrices for storing intermediate data: values

and gradients.

We will be the first to transfer the error gradient to the neural layer of m_ CValues values. It was the

values of the results buffer of this neural layer that we multiplied by the dependency coefficients of the

Score matrix to determine the results of the Self-Attention block during a direct pass. Now we are

performing the reverse operation. As we have already said, the derivative of the multiplication operation

is equal to the second factor. In our case, these are the Score matrix coefficients.

The data tensors have the following dimensions:

· The Score matrix is square with a side equal to the number of elements in the sequence.

· The m_ CValues and m_ CattentionOut buffers of neural layers have the number of rows equal to the

number of sequence elements and the number of elements in each row equal to the size of the

vector describing one element of the sequence.

To prevent potential mismatches in matrix sizes, we will reshape the error gradient matrix to the

required format.
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      if(attention_grad.GetData(gradients, false) < (int)m_cOutputs.Total())

         return false;

      if(!gradients.Reshape(m_iUnits, m_iWindow))

         return false;

Each sequence element from m_ CValues affects all elements of the m_ CattentionOut sequence with the

corresponding coefficient from the m_ cScores matrix.

To organize the process of propagating the error gradient to the m_ CValues neural layer buffer, we

need to multiply the transposed m_ cScores matrix of dependence coefficients by the gradients error

matrix.

      //--- gradient propagation to Values

      m_cValues.GetGradients().m_mMatrix = 

                                  m_cScores.m_mMatrix.Transpose().MatMul(gradients);

Next, we'll propagate the error gradients to m_ cQuerys and m_ cKeys. Both neural layers participated in

creating the m_ cScores matrix of dependence coefficients. Therefore, we first need to determine the

error gradient on the matrix of dependence coefficients.

During the feed-forward pass, to obtain the Self-Attention result, we multiplied the m_ cScores  matrix

by the results tensor of the neural layer m_ CValues. We have already determined the error gradient for

the neural layer. Now we need to propagate the error gradient along the second branch of the

algorithm and distribute it to the values of the dependency coefficient matrix. Therefore, we will need

to multiply the error gradient by the transposed results buffer of the m_ cValues neural layer.

       gradients = gradients.MatMul(values.Transpose());

Let me remind you that during a direct pass, the matrix values were normalized by the Softmax

function as part of Query queries. The complexity of calculating this function and its derivative lies in

the need to compute the entire normalization array at once. Unlike other functions, the derivative of a

vector of values will be a matrix. This is due to the nature of the Softmax feature itself. A change in one

element of the source data vector leads to a change in the entire sequence of the normalized result

because the sum of all elements of the result vector is always equal to one. Therefore, in order to

distribute the error gradient correctly, we need to work in the context of queries Query.

The mathematical formula for the derivative of the Softmax function is:

We'll use its matrix representation:

where E is a single square matrix with a size equal to the number of elements in the sequence.

The implementation of this approach is described below. In a loop, we determine the derivative of each

individual row of the dependency coefficient matrix. After multiplying the resulting matrix by the

gradient vector of the corresponding row, we get a vector of corrected error gradients. Let's not forget

that before normalizing the dependency coefficient matrix Score, we divided its values by the square

root of the dimension of the vector describing one element in the Key tensor. Accordingly, we will

repeat this procedure for the error gradient as well. The logic of this operation is simple: dividing by a
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constant is equivalent to multiplying by the reciprocal of that constant, and the derivative of a

multiplication operation is equal to its second multiplier.

The result of the above operations will replace the analyzed row of the gradient matrix.

      for(int r = 0; r < m_iUnits; r++)

        {

         MATRIX ident = MATRIX::Identity(m_iUnits, m_iUnits);

         MATRIX ones = MATRIX::Ones(m_iUnits, 1);

         MATRIX result = MATRIX::Zeros(1, m_iUnits);

         if(!result.Row(m_cScores.m_mMatrix.Row(r), 0))

            return false;

         result = ones.MatMul(result);

         result = result.Transpose() * (ident - result);

         VECTOR temp = result.MatMul(gradients.Row(r));

         if(!gradients.Row(temp / sqrt(m_iKeysSize), r))

            return false;

        }

After obtaining an adjusted error gradient for each individual dependency coefficient, we distribute it to

the corresponding Query and Key tensor vectors. To this end, we will multiply the matrix of adjusted

gradients of dependence coefficients by the opposite matrix.

      m_cQuerys.GetGradients().m_mMatrix =

                                      gradients.MatMul(m_cKeys.GetOutputs().m_mMatrix);

      m_cKeys.GetGradients().m_mMatrix =

                        gradients.Transpose().MatMul(m_cQuerys.GetOutputs().m_mMatrix);

     }

   else // OpenCL block

     {

      return false;

     }

This completes the block for branching the algorithm by the computing device. In the OpenCL block,

we will leave the return of a negative result for now and will come back to it a little later. Now let's

move on with our error backpropagation algorithm. After obtaining the error gradient at the output of

the internal neural layers, we need to propagate it back to the previous layer.

As you remember, in the feed-forward pass, the source data is used in four branches of the algorithm:

· At the input of the internal m_Cquerys layer

· At the input of the internal m_CKeys layer

· At the input of the internal m_CValues layer

· Added to the output of the Self-Attention block before the layer is normalized

Therefore, in the buffer for the error gradients of the previous layer, we should accumulate the error

gradient from all 4 directions. The operating algorithm is similar to the previously constructed process

of adding buffers in a recurrent LSTM block. However, we will not create a separate buffer to

accumulate data; we will use the existing one instead. The error gradient at the output of the Self-
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Attention block has already been calculated in the neural layer buffer m_ CattentionOut. This is where

we will accumulate intermediate error gradients.

We will alternately call the method of transferring the gradient to the previous  CalcHiddenGradient

layer for each inner layer, giving it a pointer to the previous neural layer. After successfully executing

the method, we will add the obtained result to the previously accumulated error gradient in the gradient

buffer of the m_ CattentionOut neural layer. 

//--- transfer the error gradient to the previous layer

   if(!m_cValues.CalcHiddenGradient(prevLayer))

      return false;

   if(!attention_grad.SumArray(prevLayer.GetGradients()))

      return false;

   if(!m_cQuerys.CalcHiddenGradient(prevLayer))

      return false;

   if(!attention_grad.SumArray(prevLayer.GetGradients()))

      return false;

   if(!m_cKeys.CalcHiddenGradient(prevLayer))

      return false;

   if(!prevLayer.GetGradients().SumArray(attention_grad))

      return false;

//---

   return true;

  }

Note that in the first two cases, we recorded the sum of two error gradient buffers into the internal

neural layer buffer. In the last case, we saved the sum of the two buffers into the buffer for the error

gradients of the previous neural layer. The reason is that the CalcHiddenGradient method of the internal

neural layer overwrites the values in the gradient buffer of the neural layer specified in the parameters.

So, we needed to accumulate intermediate gradients in a different buffer. However, at the end of the

method, we need to propagate the error gradient to the previous layer. Therefore, during the last

summation of the buffers, we immediately write the sum to the buffer of the previous neural layer,

thereby avoiding unnecessary copying of data.

A method for correcting the error gradient for the NormlizeBufferGradient data normalization process

was announced above. What is the normalization process and why is it difficult to determine the

derivative of a function? At first glance, we subtract the arithmetic mean from each element of the

normalized array and divide the resulting difference by the standard deviation.

If we were subtracting and dividing by constants, there would be no difficulties. When a constant is

subtracted, the derivative does not change.

The derivative of dividing by a constant is equal to the ratio of 1 to the constant.
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But the problem is that both the average ones are functions. When changing any single value in the

input tensor, the values of the means change, and consequently, all the values in the output tensor of

the normalization block are affected. This makes it much more difficult to calculate the derivative of

the entire function. We will not present them now and will instead use the ready-made result.

 

Let's implement the above formulas in code using MQL5 matrix operations. In parameters, the method

receives pointers to 3 data buffers:

· output – buffer with the results of normalizing feed-forward data

· gradient – error gradient buffer. It is used both for obtaining initial data and for recording results

· std – standard deviation buffer calculated during a forward pass.

As you can see, the parameters do not include the data buffer before normalization and the value of the

arithmetic mean calculated during the forward pass. We simply replaced the difference between the

non-normalized data and the arithmetic mean with the product of the normalized data and the standard

deviation.

Of course, we don't expect zero standard deviation. Let's add a check to prevent a critical error of

division by zero.
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bool CNeuronAttention::NormlizeBufferGradient(CBufferType *output,

                                              CBufferType *gradient, 

                                              CBufferType *std,

                                              uint std_shift)

  {

//---

   if(!m_cOpenCL)

     {

      if(std.At(std_shift) <= 0)

         return true;

      MATRIX ScG = gradient.m_mMatrix / std.m_mMatrix[0, std_shift];

      MATRIX ScOut = output.m_mMatrix * std.m_mMatrix[0, std_shift];

      TYPE dSTD = (gradient.m_mMatrix * output.m_mMatrix / (-2 * MathPow(std.m_mMatrix[0, std_shift], 2))).Sum();

      TYPE dMean = -1 * ScG.Sum() - 2 * dSTD / (TYPE)output.Total() * ScOut.Sum();

      gradient.m_mMatrix = ScG + (ScOut * dSTD * 2 + dMean) / (TYPE)output.Total();

     }

    else // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

In addition to the method of distributing the gradient through a hidden layer, the algorithm for the

backward distribution of the error gradient in all previously considered neural layers is usually

represented by two more methods:

· CalcDeltaWeights – method for calculating the error gradient to the level of the weight matrix

· UpdateWeights – method for updating weights

The CNeuronAttention class under consideration will be no exception. We will also use it to redefine

these two methods. Their algorithm is straightforward: we will simply call the methods of all internal

neural layers of the same name one by one, while constantly checking the results of the operations.
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bool CNeuronAttention::CalcDeltaWeights(CNeuronBase *prevLayer)

  {

   if(!m_cFF2.CalcDeltaWeights(GetPointer(m_cFF1)))

      return false;

   if(!m_cFF1.CalcDeltaWeights(GetPointer(m_cAttentionOut)))

      return false;

   if(!m_cQuerys.CalcDeltaWeights(prevLayer))

      return false;

   if(!m_cKeys.CalcDeltaWeights(prevLayer))

      return false;

   if(!m_cValues.CalcDeltaWeights(prevLayer))

      return false;

//---

   return true;

  }

bool CNeuronAttention::UpdateWeights(int batch_size, TYPE learningRate,

                                     VECTOR &Beta, VECTOR &Lambda)

  {

   if(!m_cQuerys.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

   if(!m_cKeys.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

   if(!m_cValues.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

   if(!m_cFF1.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

   if(!m_cFF2.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

//---

   return true;

  }

In this way, we have implemented three methods that make up the backpropagation algorithm for our

attention block.
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5.1.2.3 File operations

We have already built the feed-forward and backpropagation methods for our attention layer. We can

add the layer to our model and train it, but we don't really want to retrain our model from scratch

every time we want to use it. We need to be able to save a once-trained model to a file and, if

necessary, load a ready-to-use neural network from the file. Two methods are responsible for working

with files in our basic neural layer: Save and Load. To ensure the proper functioning of your new layer,

you need to override the specified methods.

We perform a similar iteration when creating each new type of neural layer. Now we will follow the

known path: we will focus on the structure of our class and determine what needs to be saved to a file,

and which variables and objects we will simply create and initialize with initial values.

First of all, it is necessary to save the internal neural layers containing the weight matrices m_ cQuerys,

m_ cKeys, m_ cValues, m_ cFF1, and m_ cFF2. In addition, we need to save the values of the variables

that define the architecture of the neural layer: m_ iWindow, m_ iUnits, and m_ iKeysSize.

We do not need to save any information from the m_ cScores buffer to the file, since it contains only

intermediate data that is overwritten on each forward pass. Its size is easy to determine based on the

number of elements in the sequence recorded in the variable m_ iUnits.

The m_ cAttentionOut inner layer does not contain the matrix weights, while its data, similarly to the

data of the m_ cScores buffer, are overwritten at each iteration of the forward and reverse passes.

However, let's look at the situation from the other side. Recall the procedure for initializing the neural

layer:

· Create a neural layer description object

· Fill in the neural layer description object with the necessary information

· Call the method that initializes the neural layer with the transfer of a description

· Delete the neural layer description object

At the same time, calling the save method for the base neural layer without weight matrices will write

only 3 integers to the file, with a total size of 12 bytes. So, by sacrificing 12 bytes of disk space, we

reduce our efforts in writing the initialization code for the neural layer in the data loading method.
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class CNeuronAttention    :  public CNeuronBase

  {

protected:

   CNeuronConv       m_cQuerys;

   CNeuronConv       m_cKeys;

   CNeuronConv       m_cValues;

   CBufferType       m_cScores;

   int               m_cScoreGrad;

   int               m_cScoreTemp;

   CNeuronBase       m_cAttentionOut;

   CNeuronConv       m_cFF1;

   CNeuronConv       m_cFF2;

   //---

   int               m_iWindow;

   int               m_iUnits;

   int               m_iKeysSize;

   CBufferType       m_cStd;

   //---

   virtual bool      NormlizeBuffer(CBufferType *buffer, CBufferType *std,

                                                                uint std_shift);

   virtual bool      NormlizeBufferGradient(CBufferType *output,

                       CBufferType *gradient, CBufferType *std, uint std_shift);

public:

                     CNeuronAttention(void);

                    ~CNeuronAttention(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override  const { return(defNeuronAttention); }

  };

Once we have decided on the objects to write data to the file, we can start working on our methods.

Let's start with the Save method that writes data to the file. In the parameters, the method receives

the handle of the file to write the data. However, we will not immediately check the received handle.

Instead, we will call the analogous method of the parent class, where all checkpoints and the saving of

inherited objects are already implemented. The result of the parent class method will indicate the result

of the control block execution.
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bool CNeuronAttention::Save(const int file_handle)

  {

   if(!CNeuronBase::Save(file_handle))

      return false;

After executing the parent class method, we call the save method for internal objects one by one. At

the same time, we check the results of the operations.

   if(!m_cQuerys.Save(file_handle))

      return false;

   if(!m_cKeys.Save(file_handle))

      return false;

   if(!m_cValues.Save(file_handle))

      return false;

   if(!m_cAttentionOut.Save(file_handle))

      return false;

   if(!m_cFF1.Save(file_handle))

      return false;

   if(!m_cFF2.Save(file_handle))

      return false;

After saving the data of internal objects, we'll save the values of variables that define the architecture

of the neural layer. Quite obviously, we check the result of the operations.

   if(FileWriteInteger(file_handle, m_iUnits) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iWindow) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iKeysSize) <= 0)

      return false;

//---

   return true;

  }

After successfully saving all the necessary data, we complete the method with a positive result.

After creating a data writing method, we move on to work on the Load data reading method. In the

parameters, the method receives the file handle to read the data. Just like in the case of writing data,

we do not create a new control block in our method. Instead, we call the method of the parent class

where all controls, reading of inherited objects, and variables are already implemented. Checking the

result of the parent class method immediately informs us about both the completion of the control

block and the loading of data from inherited objects and variables.

bool CNeuronAttention::Load(const int file_handle)

  {

   if(!CNeuronBase::Load(file_handle))

      return false;

After successfully executing the data loading method of the parent class, we will sequentially read the

data of internal objects. Recall that reading data from a file is carried out in strict accordance with the

sequence of writing data. When writing data to a file, we first saved information from the m_ cQuerys

internal neural layer. Therefore, we will be loading data into this object first. However, don't forget

about the nuance of loading internal neural layers: we first check the type of the loaded object and only

then call the loading method for the corresponding object.
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   if(FileReadInteger(file_handle) != defNeuronConv || !m_cQuerys.Load(file_handle))

      return false;

We repeat the same algorithm for all previously saved objects.

   if(FileReadInteger(file_handle) != defNeuronConv || !m_cKeys.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronConv || !m_cValues.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronBase ||

      !m_cAttentionOut.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronConv || !m_cFF1.Load(file_handle))

      return false;

   if(FileReadInteger(file_handle) != defNeuronConv || !m_cFF2.Load(file_handle))

      return false;

After loading the data of the internal neural layer objects, we read the values of the variables that

determine the architecture of our attention neural layer from the file.

   m_iUnits = FileReadInteger(file_handle);

   m_iWindow = FileReadInteger(file_handle);

   m_iKeysSize = FileReadInteger(file_handle);

Then we need to initialize the m_ cScores buffer of dependency coefficients with zero values. We do not

change the size of the buffer beforehand, since the buffer initialization method provides for changing its

size to the required level.

   if(!m_cScores.BufferInit(m_iUnits, m_iUnits, 0))

      return false;

We have loaded all the data and initialized the objects. It is worth remembering that to avoid

unnecessary data copying, we replaced the pointers to the result and gradient buffers of the internal

layer m_ cFF2 and the attention layer itself. Without this substitution of pointers, all the work of our

neural layer will be incorrect. But if for some reason we re-create the object of the m_ cFF2 inner layer,

then new objects of buffers of the specified inner neural layer will be created. In this case, we need to

perform such a substitution of pointers again. At the same time, if both variables contain pointers to

the same object, then by deleting the object through one pointer, we will end up with an invalid pointer

in the second variable. This is a tricky moment that you need to be careful with.

We will, of course, add buffer replacement, but we will first check the correspondence of the pointers.
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   if(m_cFF2.GetOutputs() != m_cOutputs)

     {

      if(m_cOutputs)

         delete m_cOutputs;

      m_cOutputs = m_cFF2.GetOutputs();

     }

   if(m_cFF2.GetGradients() != m_cGradients)

     {

      if(m_cGradients)

         delete m_cGradients;

      m_cGradients = m_cFF2.GetGradients();

     }

//---

   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

After the successful completion of all operations, we exit the method with a positive result.

At this point, we can consider working on creating a neural layer of attention using the standard tools

of the MQL5 language to be completed. In this version, we can insert a neural layer of attention into

our model and check its performance. To make the most efficient use of the created class, we need to

enhance its methods with multithreading capabilities. 

5.1.3 Organizing parallel computing in the attention block

In the previous sections, we built a working attention block algorithm using standard MQL5 language

capabilities. Now you can add an attention block to your model and test the quality of the Self-

Attention mechanism. However, look at the block structure. In its operation, we used five internal

layers and created an algorithm for transferring data between them in both the forward and backward

directions. It's also important to note that each element of the sequence, described by a value vector,

is processed using shared weight matrices, but independently of each other. This allows us to easily

distribute operations across parallel threads, enabling us to perform a full set of operations in shorter

time intervals. And yes, from the beginning, we decided to create a library with the capability to use

two technologies. By doing so, we provide users with the opportunity to independently test and choose

the most suitable technology for their specific use case.

As before, we organize the parallel computing unit using OpenCL. To use this technology, we will need

to complete two stages of work:

· Create an OpenCL program

· Make changes to the main program

We will add the OpenCL program code to the previously created file opencl_program.cl. It is in this file

that we collected all the kernels of the OpenCL program used in the work of the previous classes. To

organize the operation of our attention class, we will need to create six kernels. In these kernels, we

will need to organize the flow of information between the internal neural layers used in both the forward

and backward directions.

First, we'll create the AttentionFeedForward kernel. Below is a brief recap on the sequence of

operations during the feed-forward pass through the Self-Attention block:
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1. The source data is fed into three internal convolutional neural layers: m_ cQuery, m_ cKeys,

m_ cValues.

2. The m_ cQuery and m_ cKeys result tensors are multiplied to obtain the m_ cScores dependency

matrix.

3. The values of the m_ cScores matrix are divided by the square root of the size of the description

vector of one element of the m_ cKeys sequence and normalized by the Softmax function in terms

of rows (m_ cQuery queries).

4. The normalized matrix m_ cScores is multiplied by the neural layer results tensor m_ cValues to

obtain the Self-Attention results.

5. The results of the Self-Attention block are added to the original data and normalized.

6. The obtained tensor serves as the input data for a block of two convolutional layers: m_ cFF1 and

m_ cFF2.

Points 1 and 6 are covered by using the previously discussed convolutional layer class, which already

implements a multi-threaded computation block. So, we will need to implement the remaining points in

a new kernel. 

To organize the specified operations, we will need to pass six data buffers and two parameters to the

kernel. To make the program code more readable, the names of buffers and variables will be aligned

with the names of the corresponding matrices in the algorithm description.

__kernel void AttentionFeedForward(__global TYPE *querys,

                                   __global TYPE *keys,

                                   __global TYPE *scores,

                                   __global TYPE *values,

                                   __global TYPE *outputs,

                                   int window,

                                   int key_size)

  {

As you may have noticed from the description of the Self-Attention algorithm, the primary analytical

unit in this method is an element of the sequence, described by a value vector. For language models,

this is usually a word. In the case of financial market analysis, we use a bar. It is precisely between

these elements of the sequence that the coefficients of mutual dependencies are determined. Taking

into account these coefficients, the values of the element description vectors are adjusted. Therefore,

it is quite logical to divide the operations into threads based on the elements of the sequence.

Therefore, in the body of the kernel, the first thing we will do is determine the element of the sequence

being analyzed based on the identifier of our thread. At the same time, the total number of running
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threads will indicate the number of elements in the sequence. Here, we will also immediately determine

the offset in the query tensor and the dependency coefficient matrix to the first analyzed value.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   int shift_query = key_size * q;

   int shift_scores = units * q;

   TYPE summ = 0;

To normalize data with the Softmax function, we need the sum of the exponents of all normalized

values. To calculate it, we add a variable with an initial zero value.

After completing the preparatory work, we will determine the values of one vector from the dependency

coefficient matrix, which is related to the calculations for the dependencies of the analyzed element of

the sequence. For this, we create a loop with the number of iterations equal to the number of elements

in the sequence. In the body of the loop, we will alternately multiply the Query vector of the analyzed

sequence element with all vectors of the Key tensor. For each vector multiplication result, we will take

an exponential value and write it into the corresponding element of the Score matrix. Of course, we will

add the values of the vector to our accumulator sum of all vector values for subsequent normalization.

   for(int s = 0; s < units; s++)

     {

      TYPE score = 0;

      int shift_key = key_size * s;

      for(int k = 0; k < key_size; k ++)

         score += querys[shift_query + k] * keys[shift_key + k];

      score = exp(score / sqrt((TYPE)key_size));

      summ += score;

      scores[shift_scores + s] = score;

     }

After the loop completes, our variable summ will accumulate the sum of all elements of our vector from

the dependency coefficients tensor. To complete the normalization of the given vector values, all we

have to do is divide the value of each of its elements by the total sum of all the values of the vector.

   for(int s = 0; s < units; s++)

      scores[shift_scores + s] /= summ;

In the analyzed vector, we obtained the coefficients of dependencies of the analyzed element of the

sequence on the rest of its elements. The sum of all coefficients will be equal to one.

Next, according to the algorithm, we need to multiply each vector of the Value tensor by the

corresponding element of the resulting vector of dependency coefficients. The resulting vectors need to

be added up. The final vector of values will be the result of the Self-Attention block.

Before passing the data further, we need to add the obtained data to the tensor of input data and

normalize them. In the body of the kernel, I propose focusing on determining the results of the Self-

Attention block. It will be more efficient to perform matrix addition and data normalization separately

across the entire neural layer.

Let's look at the implementation of such a solution. To avoid recalculating at each iteration, we first

determine the offset in the tensors of the initial data and results. The tensors have the same dimension,

so the offset will be the same for both cases. Then, we will set up a system of two nested loops: in the

outer loop, we will iterate over the elements of the vector of the analyzed element of the sequence, and

in the inner loop, we will perform the actual computation of the values for each element of the result
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vector. For this purpose, the number of iterations in the inner loop will be equal to the number of

elements in the sequence. In the body of this loop, we will multiply the values of the Value tensor

elements by the corresponding dependency coefficients from the Score matrix. We will accumulate the

resulting products in the local variable query. After completing the iterations of the inner loop, we will

write the result into the corresponding element of the result tensor.

   shift_query = window * q;

   for(int i = 0; i < window; i++)

     {

      TYPE query = 0;

      for(int v = 0; v < units; v++)

         query += values[window * v + i] * scores[shift_scores + v];

      outputs[shift_query + i] = query;

     }

  }

With this, we will complete work on the first feed-forward kernel. The next step is to create a kernel for

adding up two tensors. It is sometimes more economical to do such work using matrix operations on

the side of the main program. The operation is straightforward, and the overhead of data transfer is

unlikely to be justified. We now have the opposite situation. We organize the entire process on the

OpenCL context side. All the information is already in the context memory, and to perform the

operation on the main program side, we will need to copy the data. We do not need to transfer data if

computations are performed within the context. Therefore, we have created a kernel called Sum, in

which we simply add elements from two buffers with the same index and store the result in an element

of the third buffer with the same index.

__kernel void Sum(__global TYPE *inputs1,

                  __global TYPE *inputs2,

                  __global TYPE *outputs)

  {

   const int n = get_global_id(0);

//---

   outputs[n] = inputs1[n] + inputs2[n];

  }

The data normalization process has a more complex architecture. As you know, its process is

expressed by the following mathematical formulas:

As you can notice, to calculate the normalized value of each element in the sequence, you need the

arithmetic mean and the root mean square deviation of the entire sequence. To calculate them, we

need to organize data transfer between individual threads. We will solve this problem in a way similar to

the multi-threaded implementation of the Softmax activation function, that is, via an array in local

memory. We will need to organize two summation blocks for values across the entire vector because
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before calculating the arithmetic mean, we cannot compute the variance. Furthermore, we cannot

calculate the normalized value until we determine the variance.

The normalization process is organized in the LayerNormalize kernel. In the parameters, the kernel

receives pointers to 3 buffers:

· Source data buffer

· Results buffer

· Buffer for recording standard deviation parameters

We needed the last standard deviation buffer to save and transmit data to the backpropagation kernel.

Additionally, we will pass two parameters to the kernel: the total number of elements in the buffer being

normalized and the offset in the buffer for root mean square deviations. I would like to remind you that

within one attention neural layer, we perform data normalization twice. Let's normalize the results of

the Self-Attention and FeedForward blocks.

__kernel void LayerNormalize(__global TYPE* inputs,

                             __global TYPE* outputs,

                             __global TYPE* stds,

                             const int total,

                             const int std_shift)

  {

In the kernel body, we define thread identifiers and initialize a local data array.

   uint i = (uint)get_global_id(0);

   uint l = (uint)get_local_id(0);

   uint ls = min((uint)get_local_size(0), (uint)LOCAL_SIZE);

   __local TYPE temp[LOCAL_SIZE];

First, we will determine the arithmetic mean of the buffer elements. To do this, we organize a loop in

which each thread sums its values and stores the result in its own element of the local array. Since we

are calculating the arithmetic mean of the entire buffer, we will divide the obtained value by the number

of elements in the buffer.

   uint count = 0;

   do

     {

      uint shift = count * ls + l;

      temp[l] = (count > 0 ? temp[l] : 0) + (shift < total ? inputs[shift] : 0);

      count++;

     }

   while((count * ls + l) < total);

   temp[l] /= (TYPE)total;

   barrier(CLK_LOCAL_MEM_FENCE);

We will synchronize the work of threads using the barrier function. Since the calculations of the threads

do not overlap, we only need one barrier at the end of the block.

Next, we need to collect parts of the total amount into a single whole. We will organize another loop in

which we will collect the arithmetic mean of the buffer into one element of the local array with index 0.

The result will be saved in a local variable.
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   count = ls;

   do

     {

      count = (count + 1) / 2;

      temp[l] += (l < count ? temp[l + count] : 0);

      barrier(CLK_LOCAL_MEM_FENCE);

     }

   while(count > 1);

//---

   TYPE mean = (TYPE) temp[0];

I would like to draw your attention once again to the arrangement of barriers. Here you need to pay

special attention to the operation of the algorithm because all threads must reach each barrier.

Moreover, the sequence of their visits must also be observed.

After determining the arithmetic mean, we repeat the loops and calculate the standard deviation.

   count = 0;

   do

     {

      uint shift = count * ls + l;

      temp[l] = (count > 0 ? temp[l] : 0) + (shift < total ? (TYPE)pow(inputs[shift] - mean, 2) : 0);

      count++;

     }

   while((count * ls + l) < total);

   temp[l] /= (TYPE)total;

   barrier(CLK_LOCAL_MEM_FENCE);

   count = ls;

   do

     {

      count = (count + 1) / 2;

      temp[l] += (l < count ? temp[l + count] : 0);

      barrier(CLK_LOCAL_MEM_FENCE);

     }

   while(count > 1);

//---

   TYPE std = (TYPE)sqrt(temp[0]);

   if(l == 0)

      stds[std_shift] = std;

We save the obtained standard deviation into a buffer. To avoid simultaneous writes by all threads, we

will save the value in only one thread. To achieve this, we will perform a thread index check before the

operation of writing a value to the buffer.

Now that we have calculated the averages, we can normalize the original data. It's important to note

that the limitation of the workgroup size may not allow us to allocate a separate thread for each

element of the input data buffer. Therefore, we will also implement data normalization in a loop.
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   count = 0;

   while((count * ls + l) < total)

     {

      uint shift = count * ls + l;

      outputs[shift] = (inputs[shift] - mean) / (std + 1e-37f);

      count++;

     }

  }

This concludes our work with feed-forward kernels. Continuing our work on making additions to the

OpenCL program, we move on to building a reverse pass. Its algorithm completely mirrors the path

taken above but in the reverse direction. In it, we have to propagate the error gradient from the output

of the Self-Attention block to the internal neural layers m_ cQuery, m_ cKeys, m_ cValues.

The simplest seems to be the calculation of the error gradient for the internal neural layer, m_ cValues.

Let me remind you that to obtain the result of the Self-Attention block, we multiplied the matrix of

dependence coefficients m_ cScores by the tensor of the results of the neural layer m_ cValues  .

Therefore, to obtain the error gradient at the output level of the specified neural layer, we need to

multiply the gradient obtained from previous operations by the derivative of the last operation. In this

case, we have to multiply the matrix of dependency coefficients by the tensor of error gradients from

previous operations.

After determining the error gradient on the internal neural layer m_ cValues, we need to distribute the

error gradient to two more internal neural layers, m_ cQuerys and m_ cKeys. However, in order to bring

the error gradient to the level of the specified neural layers, it is necessary to pass it through the

matrix of dependency coefficients.

However, when implementing in MQL5, we do not create an additional buffer for error gradients at the

level of the dependency coefficient matrix. But in OpenCL there is difficulty in allocating a dynamic

array for recording intermediate data about the error gradient values at the dependency coefficient

matrix level. Therefore, here we will create two temporary data buffers: the first for the error gradient

of the normalized data, and the second for the error gradients corrected by the derivative of the

Softmax function.

Note that when we recalculate the error gradient to the level of the m_ cQuerys and m_ cKeys neural

layers, the same elements of the dependency coefficient error gradient matrix are used in different

operation threads. Therefore, we will divide the entire backpropagation algorithm within the attention

layer into two blocks. In the first block, we will propagate the error gradient to the level of the internal

neural layer of m_ cValues value and the m_ cScores coefficient matrix. In the second block, we will

propagate the error gradient to two other neural layers: m_ cQuerys and m_ cKeys.

We implement the first block of operations in the AttentionCalcScoreGradient kernel. In the parameters

of this kernel, we pass pointers to five data buffers and one parameter:

· scores – dependency coefficient matrix buffer

· scores_ temp – buffer of error gradients at the level of the normalized dependency coefficient

matrix
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· scores_ grad – buffer of error gradients at the level of the dependency coefficient matrix, adjusted

to the derivative of the normalization function

· values – tensor buffer Values   (buffer of neural layer results m_ cValues  )

· values_ grad – error gradient tensor buffer at the level of results of the m_ cValues   neural layer

· outputs_ grad is the buffer of error gradients at the output level of the Self-Attentionblock;

· window is the size of the description vector of one element of the sequence in the Values   tensor.

Please note that the scores_ temp and scores_ grad buffers have no counterparts on the main program

side. The reason is that we only need error gradients at the level of the dependency coefficient matrix

to perform the operations of the current backward pass. However, OpenCL does not have the ability to

create dynamic arrays. We created the specified buffers instead.

__kernel void AttentionCalcScoreGradient(__global TYPE *scores,

                                         __global TYPE *scores_grad,

                                         __global TYPE *values,

                                         __global TYPE *values_grad,

                                         __global TYPE *outputs_grad,

                                         __global TYPE *scores_temp,

                                         int window)

  {

The feed-forward algorithm involves normalizing the dependency coefficient matrix Score with the

Softmax function in the context of Query requests. So, after determining the error gradients at the

coefficient matrix level, it is necessary to adjust these values based on the derivative of the data

normalization operation. Therefore, it would be logical to divide the operations into threads in the same

manner. Moreover, such a distribution of operations into threads would be entirely appropriate for

propagating the error gradient to the level of values within the internal neural layer.

At the beginning of the kernel, we do a little preparatory work. We determine the serial number of the

analyzed vector of values and rows of the matrix of dependency coefficients by the identification

number of the thread. The total number of running threads will tell us the dimensions of the tensors.

Let's immediately determine the offset in the data buffers to the first element of the analyzed vectors

of values.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   int shift_value = window * q;

   int shift_score = units * q;

Next, we will propagate the error gradient to the level of the internal neural layer m_ cValues. As

mentioned above, to determine the error gradient, we need to multiply the transposed matrix of

dependency coefficients by the gradient tensor at the output of the Self-Attention block.

Within the kernel, we will define the error gradient for only one vector of element description. As you

know, with a feed-forward pass, each element of the sequence in the Value tensor leaves its mark in

the formation of all elements of the sequence of results of the Self-Attention block. Consequently, each

element of the Value tensor must receive its share of the error gradient from all elements of the results

tensor of the Self-Attention block. The measure of influence will be the corresponding dependence

coefficient from the Score matrix. Thus, each element of the sequence of the Value tensor corresponds

to one column in the dependency coefficient matrix Score. This explains the use of the transposed

Score matrix in the formula above.
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To organize this process, we will create a system of two nested loops. The number of iterations in the

first loop is equal to the size of the vector describing one element of the sequence in the Value tensor.

It should be noted that the error gradient tensor at the output of the Self-Attention block has the same

dimensions. In the nested loop with a number of iterations equal to the number of elements in the

sequence, we will iterate over the values of the corresponding column of the dependency coefficient

matrix Score and the gradient vector of errors at the level of the Self-Attention block results. In this

case, we will multiply the corresponding elements and sum the resulting products into a private

variable. After completing the iterations of the inner loop, copy the accumulated sum of products to the

error gradient buffer of the internal convolutional layer m_ cValues.

//--- Distributing the gradient on Values

   for(int i = 0; i < window; i ++)

     {

      TYPE grad = 0;

      for(int g = 0; g < units; g++)

         grad += scores[units * g + q] * outputs_grad[window * g + i];

      values_grad[shift_value + i] = grad;

     }

After the execution of the loop system the first part of our task, in which we propagate the error

gradients to the internal neural layer m_ cValues, can be considered complete.

The second part of our kernel is devoted to determining the error gradient at the level of the

dependency coefficient matrix.

In the feed-forward pass, each element of the Query sequence is multiplied with all the elements of the

Key sequence to form a single dependency coefficient matrix vector Score. Each such vector is

normalized by the function Softmax. After that, we multiply it by the Value tensor. As a result of these

operations, we obtain the corrected vector representation of one element of the sequence in the tensor

of the Self-Attention block results. Thus, one element of the Query sequence interacts with all elements

of the Key and Value tensors to form a vector describing one element of the result sequence.

Therefore, to distribute the error gradient to a specific vector from the Query tensor, we need to take

one corresponding error gradient vector of one element of the sequence at the level of the Self-

Attention block and first multiply it by the transposed tensor of Value. Thus, we obtain an error vector

at the level of the dependency coefficient matrix Score. Next, we need to adjust the resulting vector to

the derivative of the Softmax function. It is this part of the error gradient distribution that we

implement in this kernel. To further propagate the error gradient to the level of the internal neural

layers m_ cQuerys and m_ cKeys, we will create another kernel a little later.

The error gradient distribution algorithm described above in matrix form can be represented as follows:

1. Error gradient at the Score matrix level.

2. Adjusting the error gradient to the derivative of the Softmax function.

Let's summarize the entire calculation into one formula:

First, let's propagate the error gradient to the level of the dependency coefficient matrix Score. Since,

thanks to the division of operations into parallel threads within the kernel, we will be determining the
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error gradient for only one row, to calculate this error gradient vector, we need to take the error

gradient vector for one element of the sequence at the level of the Self-Attention block results and

multiply it by the transposed tensor of the internal layer's results, m_ cValues. In practice, we will use

the algorithm described above when calculating error gradients for the m_ cValues layer. We will create

a system of two nested loops. But this time, the number of iterations of the outer loop will be equal to

the number of elements in the sequence. The nested loop will repeat its operations for the number of

elements in the vector describing one element of the sequence. This difference is explained by the

magnitude of the vector of results and is confirmed by the logic of the operations performed.

Remember, with a forward pass, each element in the row of the dependency coefficient matrix

corresponds to one vector describing the sequence element in the Values tensor.

//--- Gradient distribution on Score

   for(int k = 0; k < units; k++)

     {

      TYPE grad = 0;

      for(int i = 0; i < window; i++)

         grad += outputs_grad[shift_value + i] * values[window * k + i];

      scores_temp[shift_score + k] = grad;

     }

After transferring the error gradient to the level of the dependency coefficient matrix, we need to

adjust the obtained values using the derivative of the Softmax normalization function. Just like with the

forward pass, when in order to obtain one normalized value it was necessary to process the entire

vector of normalized values, to calculate one adjusted value we need to use all the elements of both

vectors (error gradients at the level of the matrix of dependence coefficients and the normalized vector

of coefficients itself).

The matrix expression of the process of adjusting for the derivative of the Softmax function is given

above. For practical implementation, we will create a system of two nested loops. Both loops have the

same number of iterations, which is equal to the size of the vector being normalized. In this case, it is

equal to the number of elements in the sequence. When performing operations, it will be necessary to

accumulate the sum of error gradients from each element of the normalized vector. To do this, we will

create a private variable in the body of the outer loop grad. Besides, to reduce the number of accesses

to global memory, we will store the repeated element in the private variable score. Let me remind you

that accessing global memory is more time-consuming. So, by reducing the number of accesses to

global memory buffers, we reduce the overall time spent on operations. In the body of the nested loop,

we will perform operations of multiplying elements and adding the resulting products into a previously

created private variable grad.

Please note that we have replaced the identity matrix with the expression (int)(i==k). The logical

expression will give us the true value only on the diagonal of the matrix. Translating a boolean value into

an integer will substitute 1 for true values and 0 for false values. Thus, such a short notation allows us

to obtain the values of the identity matrix directly in the operation thread, without the need to first

generate and save it.
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//--- Adjust for the Softmax derivative

   for(int k = 0; k < units; k++)

     {

      TYPE grad = 0;

      TYPE score = scores[shift_score + k];

      for(int i = 0; i < units; i++)

         grad += scores[shift_score + i] *

                     ((int)(i == k) - score) * scores_temp[shift_score + i];

      scores_grad[shift_score + k] = grad;

     }

  }

After completing the iterations of the loop system, we will obtain the error gradients at the level of the

dependency coefficient matrix, adjusted for the derivative of the Softmax function.

With that, we conclude the first backpropagation kernel and move on to creating the second kernel

AttentionCalcHiddenGradient, in which we will propagate the error gradient to the internal neural layers

m_ cQuerys and m_ cKeys. To do this, in the kernel parameters we need to pass pointers to five data

buffers and one constant:

· querys – buffer of results of the internal neural layer m_ cQuerys

· queries_ grad – buffer of error gradients of the internal neural layer m_ cQuerys

· keys – buffer of results of the internal neural layer m_ cKeys

· keys_ grad – buffer of error gradients of the internal neural layer m_ cKeys

· scores_ grad – buffer of error gradients of dependency coefficient matrix m_ cScores

· key_ size – size of the key vector of one element

__kernel void AttentionCalcHiddenGradient(__global TYPE *querys,

                                          __global TYPE *querys_grad,

                                          __global TYPE *keys,

                                          __global TYPE *keys_grad,

                                          __global TYPE *scores_grad,

                                          int key_size)

  {

Following the analogy with all the kernels discussed earlier, we will distribute the operations into

threads in the context of a single element of the sequence. At the beginning of the kernel, we will

perform preparatory work and determine the offsets in the data buffers to the first element of the

vector of the analyzed element.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   int shift_query = key_size * q;

   int shift_score = units * q;

In the AttentionCalcScoreGradient kernel discussed above, we have already adjusted the error gradient

of the dependency coefficient matrix to the derivative of the Softmax normalization function. However,

during the feed-forward pass, before normalizing the matrix, we divided all its elements by the square

root of the dimension of the key vector. Now we need to adjust the error gradient for the derivative of

the mentioned operation. Similar to the multiplication operation, we will need to divide all the values of

the error gradient buffer of the dependency coefficient matrix by the same constant.
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Let's determine the value of the constant and store it in a private variable.

//--- Distribute the gradient on Querys and Keys

   const TYPE k = 1 / sqrt((TYPE)key_size);

This concludes the preparatory work. Now we can proceed directly to recalculating the error gradients.

To obtain dependency coefficients, we multiplied two tensors (Query  and Keys). We have already

encountered derivatives of multiplication operations more than once. To obtain error gradients for one

of the tensors, we need to multiply the error gradient tensor at the level of the dependency coefficient

matrix by the second tensor. Since the Query and Key tensors have the same dimensions, we can

calculate the error gradients for both tensors in the same loop system.

Let's create a system of two nested loops. The outer loop has a number of iterations equal to the size

of the key vector of one sequence element. In the nested loop, we iterate through the vectors of the

opposite tensor and the corresponding error gradients of the dependency coefficient matrix. Therefore,

the number of its iterations will be equal to the number of elements in the analyzed sequence.

As a result, the number of iterations in the nested loop will be equal to the number of elements in the

analyzed sequence. The results of these products will need to be summarized. To accumulate this

amount, we will create two private variables grad_ q and grad_ k before declaring the nested loop.

Also, please note the following. To reduce the number of calculation operations, we will not add our

previously calculated coefficient to adjust the error gradient to the products of the nested loop. We will

use the mathematical properties of functions and take the constant factor out of brackets.

Thus, there is no need to multiply the value each time by a correction factor in the body of the nested

loop. Instead, we can simply multiply the total amount once by the correction factor before writing it to

the data buffer.

   for(int i = 0; i < key_size; i++)

     {

      TYPE grad_q = 0;

      TYPE grad_k = 0;

      for(int s = 0; s < units; s++)

        {

         grad_q += keys[key_size * s + i] * scores_grad[shift_score + s];

         grad_k += querys[key_size * s + i] * scores_grad[units * s + q];

        }

      querys_grad[shift_query + i] = grad_q * k;

      keys_grad[shift_query + i] = grad_k * k;

     }

  }

At the output of the loop system, we get error gradients for two nested internal neural layers

m_ cQuerys and m_ cKeys. That is, the task of this kernel is solved. Considering the previously discussed

AttentionCalcScoreGradient kernel, we have distributed the error gradient to all internal neural layers,

and further distribution of the error gradient to the previous layer will be carried out using the well-

tested methods of internal neural layers, as implemented by standard MQL5 means.
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The backpropagation kernels discussed above bypassed the processes of adding result buffers and data

normalization that we carried out during the feed-forward pass. The derivative of two functions is equal

to the sum of the derivatives of these functions. So, for the operation of adding gradients, we can use a

similar feed-forward kernel. We just need to specify the correct data buffers.

In the case of adjusting the error gradient to the data normalization function, we will have to create an

additional kernel. Below is the error gradient correction formulas.

 

As you can see, in the formulas provided above, when calculating derivatives with respect to the means,

the sum of values across the entire value buffer is used. However, unlike the forward pass, we have the

ability to calculate all three sums in parallel.

In the kernel parameters, we pass pointers to four data buffers:

· outputs – buffer of forward pass normalization results

· out_ gradient – buffer of gradients at the output of the normalization block

· inp_ gradient – buffer for writing adjusted gradients

· stds – buffer of standard deviations calculated during the feed-forward pass

Also, in the parameters we will indicate the size of the buffers and the offset in the standard deviation

buffer.

__kernel void LayerNormalizeGradient(__global TYPE* outputs,

                                     __global TYPE* out_gradient,

                                     __global TYPE* inp_gradient,

                                     __global TYPE* stds,

                                     const int total,

                                     const int std_shift)

  {

   uint i = (uint)get_global_id(0);

   uint l = (uint)get_local_id(0);

In the kernel body we define thread identifiers and at the same time declare local data arrays. There

will be three of them. In one, we will collect the derivative of the root mean square deviation, and the

other two are intended for the terms in the derivative formula of the arithmetic mean.
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   uint ls = min((uint)get_local_size(0), (uint)LOCAL_SIZE);

   __local TYPE dSTD[LOCAL_SIZE];

   __local TYPE dMean1[LOCAL_SIZE];

   __local TYPE dMean2[LOCAL_SIZE];

As with the feed-forward pass, each thread will first collect its share of the total.

   uint count = 0;

   do

     {

      uint shift = count * ls + l;

      dSTD[l] = (count > 0 ? dSTD[l] : 0) - 

                (shift < total ? out_gradient[shift] * outputs[shift] /

                (2 * (pow(stds[std_shift], (TYPE)2) + 1e-37f)) : 0);

      dMean1[l] = (count > 0 ? dMean1[l] : 0) - 

                (shift < total ? out_gradient[shift] /

                (stds[std_shift] + 1e-37f) : 0);

      dMean2[l] = (count > 0 ? dMean2[l] : 0) -

                  (shift < total ? 2 * outputs[shift] * stds[std_shift] /

                  (TYPE)total : 0);

      count++;

     }

   while((count * ls + l) < total);

   barrier(CLK_LOCAL_MEM_FENCE);

In the next loop, we will collect the sum in the first elements of the array.

   count = ls;

   do

     {

      count = (count + 1) / 2;

      dSTD[l] += (l < count ? dSTD[l + count] : 0);

      dMean1[l] += (l < count ? dMean1[l + count] : 0);

      dMean2[l] += (l < count ? dMean2[l + count] : 0);

      barrier(CLK_LOCAL_MEM_FENCE);

     }

   while(count > 1);

//---

   TYPE dstd = dSTD[0];

   TYPE dmean = dMean1[0] + dstd * dMean2[0];

We will transfer the resulting values to private variables. When calculating the derivative of the

arithmetic mean deviation, we multiply the value of the right term by the derivative of the standard

deviation and add it to the left term.

At this stage, we have enough data to adjust the error gradient for each buffer element. Let's organize

another loop, in the body of which this work will be performed.
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//---

   count = 0;

   while((count * ls + l) < total)

     {

      uint shift = count * ls + l;

      inp_gradient[shift] = out_gradient[shift] / (stds[std_shift] + 1e-32f) + 

                (2 * dstd * outputs[shift] * stds[std_shift]  + dmean) / total;

      count++;

     }

  }

This concludes our work with the OpenCL program. Now we need to proceed with the second part and

set up the preparatory work for launching multi-threaded computations on the main program side.

First, let's add constants for working with kernels to the defines.mqh file. We need to add constants for

identifying the kernels themselves and their variables. To name the constants, we use the previously

agreed rules that apply to all constants within our project:

· All constants begin with the prefix def.

· Kernels begin with the prefix def_ k.

· Parameter constants after the def prefix contain a pointer to the kernel.
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#define def_k_AttentionFeedForward     28

#define def_k_AttentionScoreGradients  29

#define def_k_AttentionHiddenGradients 30

#define def_k_Sum                      31

#define def_k_LayerNormalize           32

#define def_k_LayerNormalizeGradient   33

//--- feed-forward pass of the attention block

#define def_attff_querys               0

#define def_attff_keys                 1

#define def_attff_scores               2

#define def_attff_values               3

#define def_attff_outputs              4

#define def_attff_window               5

#define def_attff_key_size             6

//--- determine the gradient on the matrix of dependence coefficients of the attention block

#define def_attscr_scores              0

#define def_attscr_scores_grad         1

#define def_attscr_values              2

#define def_attscr_values_grad         3

#define def_attscr_outputs_grad        4

#define def_attscr_scores_temp         5

#define def_attscr_window              6

//--- gradient distribution through the attention block

#define def_atthgr_querys              0

#define def_atthgr_querys_grad         1

#define def_atthgr_keys                2

#define def_atthgr_keys_grad           3

#define def_atthgr_scores_grad         4

#define def_atthgr_key_size            5

//--- sum of vectors 

#define def_sum_inputs1                0

#define def_sum_inputs2                1

#define def_sum_outputs                2
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//--- vector normalization

#define def_layernorm_inputs           0

#define def_layernorm_outputs          1

#define def_layernorm_std              2

#define def_layernorm_vector_size      3

#define def_layernorm_std_shift        4

//--- vector normalization gradient

#define def_layernormgr_outputs        0

#define def_layernormgr_out_grad       1

#define def_layernormgr_inp_grad       2

#define def_layernormgr_std            3

#define def_layernormgr_vector_size    4

#define def_layernormgr_std_shift      5

After that, we will need to add the declaration of the new kernels to the code of the main neural

network dispatcher class. Like all previously created kernels, we will add the declaration of new kernels

to the CNet::InitOpenCL method. In it, we will first update the total number of kernels used in the

program.

   if(!m_cOpenCL.SetKernelsCount(34))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

After this, we will declare the kernels themselves.
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   if(!m_cOpenCL.KernelCreate(def_k_AttentionFeedForward,

                                        "AttentionFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_AttentionScoreGradients,

                                        "AttentionCalcScoreGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_AttentionHiddenGradients,

                                        "AttentionCalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_Sum, "Sum"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_LayerNormalize, "LayerNormalize"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_LayerNormalizeGradient

                                             "LayerNormalizeGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Then we move on to the attention mechanism class CNeuronAttention and make changes to its

methods in terms of working with OpenCL technology.

Let's first add the feed-forward pass method CNeuronAttention::FeedForward. In this method, we need

to organize a procedure for calling the feed-forward kernel AttentionFeedForward. We have created

similar processes multiple times. So, its algorithm is as follows:

1. Check the presence of data buffers in the OpenCL context.



5. Attention mechanisms

492

5.1 Self-Attention

2. Pass parameters to the kernel, including pointers to data buffers.

3. Queue the kernel to perform operations.

While doing so, we must ensure proper control of the operations to avoid potential critical errors during

the program execution.

bool CNeuronAttention::FeedForward(CNeuronBase *prevLayer)

  {

//--- calculation of vectors Query, Key, Value

   .....

//--- Branching the algorithm on the computing device

   MATRIX out;

   if(!m_cOpenCL)

     {

   // MQL5 block

   .....

     }

   else // OpenCL block

     {

      //--- checking data buffers

      if(m_cQuerys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cKeys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cValues.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cScores.GetIndex() < 0)

         return false;

      if(m_cAttentionOut.GetOutputs().GetIndex() < 0)

         return false;

With all the necessary buffers in the OpenCL context, we will set up the transfer of pointers to them as

kernel parameters.
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      //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_keys,

                                                   m_cKeys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_outputs,

                                            m_cAttentionOut.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_querys,

                                                  m_cQuerys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_scores,

                                                               m_cScores.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_values,

                                                  m_cValues.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward, def_attff_key_size,

                                                                        m_iKeysSize))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward, def_attff_window,

                                                                          m_iWindow))

         return false;

Next comes the procedure for placing the kernel in the execution queue. First, let's indicate the

number of required threads to launch and the offset. Only after that, we will call the kernel launch

function, providing it with information about the number of instances to be launched.

      //--- put the kernel into the execution queue

      int off_set[] = {0};

      int NDRange[] = {m_iUnits};

      if(!m_cOpenCL.Execute(def_k_AttentionFeedForward, 1, off_set, NDRange))

         return false;

     }

This concludes the algorithm for launching the kernel of the Self-Attention block. However, we still need

to add the contents of two buffers and normalize the data in the result buffer. Following the algorithm,

first, we find the sum of two vectors (initial data and Self-Attention results). This operation is quite

general and can be widely used outside of our neural attention layer class CNeuronAttention. Therefore,

I decided to add it as a separate method to the data buffer class CBufferType::SumArray.

In the parameters to the SumArray method, we will pass a pointer to the buffer to be added.

Immediately in the body of the method, we check the received pointer and the size of the received

buffer. To successfully complete the operation, the size of the current buffer, which will be the first

addend, and the resulting buffer (the second addend) must be equal.
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bool CBufferType::SumArray(CBufferType *src)

  {

//--- check the source data array

   if(!src || src.Total() != Total())

      return false;

Like all the methods discussed earlier, the algorithm of this method is split into two threads depending

on the execution device. In the block of performing operations using means MQL5 we will first match

the matrix formats of both buffers. Then we perform the matrix addition operation. The result of the

operation will be saved in the current buffer matrix.

   if(!m_cOpenCL)

     {

      //--- change the matrix size

      MATRIX temp = src.m_mMatrix;

      if(!temp.Reshape(Rows(), Cols()))

         return false;

      //--- add matrices

      m_mMatrix += temp;

     }

The algorithm for the block of multi-threaded operations is similar to that discussed above. First, we

check for the presence of data in the context of OpenCL and, if necessary, load the data from the

resulting buffer. Please note that we only check the received buffer. Earlier, when dividing the algorithm

depending on the computing device, we already checked the pointer to the current OpenCL context of

the buffer. Therefore, we consider the data of the current buffer to have already been transferred to

the OpenCL context.

The control block is followed by passing parameters to the kernel and placing it in the execution queue.

   else

     {

      if(src.GetIndex() < 0 && !BufferCreate(m_cOpenCL))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_Sum, def_sum_inputs1, m_myIndex))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_Sum, def_sum_inputs2, src.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_Sum, def_sum_outputs, m_myIndex))

         return false;

      uint off_set[] = {0};

      uint NDRange[] = {(uint)Total()};

      if(!m_cOpenCL.Execute(def_k_Sum, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

The data normalization process is organized in the CNeuronAttention::NormlizeBuffer method. However,

while following the general rules for constructing the algorithm, there are two exceptions in this

method. First, we eliminated the block for checking the presence of buffers in the OpenCL context. In

this case, the risk of using unloaded buffers is minimal. The reason is that before calling this method,
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the used buffers have already been checked multiple times, and rechecking them would be

unnecessary.

bool CNeuronAttention::NormlizeBuffer(CBufferType *buffer,

                                      CBufferType *std, 

                                      uint std_shift)

  {

   if(!m_cOpenCL)

     {

    // MQL5 block

   .....

     }

   else

     {

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LayerNormalize,

                                     def_layernorm_inputs, buffer.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LayerNormalize,

                                    def_layernorm_outputs, buffer.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_LayerNormalize,

                                           def_layernorm_std, std.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_LayerNormalize,

                              def_layernorm_vector_size, (int)buffer.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_LayerNormalize,

                                          def_layernorm_std_shift, std_shift))

         return false;

The second point is related to the use of a local data array and thread synchronization. The reason is

that thread synchronization is only available within a work group. We need to explicitly specify its size.

The normalization algorithm in the kernel is structured in such a way that the workgroup size cannot be

greater than the size of the local array. Let me remind you that the size of the local array is

determined by the LOCAL_ SIZE constant. At the same time, the number of threads cannot be greater

than the size of the normalized buffer. Therefore, in the array indicating the dimension of the task

space, we will indicate the smaller of the two values. Since we normalize the values of the entire buffer

in one batch, the dimensions of the global and local task space will be the same.

Once we have determined the problem dimensions, we enqueue the kernel for execution.

      int NDRange[] = {(int)MathMin(buffer.Total(), LOCAL_SIZE)};

      int off_set[] = {0};

      if(!m_cOpenCL.Execute(def_k_LayerNormalize, 1, off_set, NDRange, NDRange))

         return false;

     }

//---

   return true;

  }

This concludes the block of using OpenCL technology in the feed-forward method of our attention

engine class, and we are finished working on this method. Further along, its code remains unchanged.
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The complete code is given in the description section of constructing a method using standard MQL5

tools.

We are now moving on to working on one of the backpropagation methods – the method of distributing

the error gradient through a hidden layer CNeuronAttention::CalcHiddenGradient. The algorithm of our

actions remains the same. We will only make an adjustment for the use of two kernels sequentially.

I would like to remind you that when creating backpropagation kernels, we determined the need to use

two additional buffers for storing intermediate values of error gradients of the dependency coefficient

matrix. So let's take a step back and declare additional buffers: m_ cScoreGrad and m_ cScoreTemp.

class CNeuronAttention    :  public CNeuronBase

  {

protected:

   .....

   int               m_cScoreGrad;

   int               m_cScoreTemp;

   .....

  };

However, in this case, we will not declare instances of buffer objects in main memory. We will not use

these buffers to exchange data between the OpenCL context and the main program. They are needed

only for temporary storage of data transferred between kernels. This means that their presence in the

OpenCL context memory is enough for us. In the main program, we will only declare variables to store

pointers to buffers.

Let's get back to working on the CNeuronAttention::CalcHiddenGradient method. First, we check the

availability and, if necessary, create new data buffers in the OpenCL context, used in the first kernel.

We intentionally do not create data buffers for the second kernel right away to ensure more efficient

memory usage. This will allow us to use larger data buffers when OpenCL context memory resources

are limited.
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bool CNeuronAttention::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

   .....

//--- branching the algorithm across the computing device

   if(!m_cOpenCL)

     {

   // MQL5 block

   .....

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cValues.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cValues.GetGradients().GetIndex() < 0)

         return false;

      if(m_cScores.GetIndex() < 0)

         return false;

      if(m_cAttentionOut.GetGradients().GetIndex() < 0)

         return false;

      if(m_cScoreGrad < 0)

         return false;

      if(m_cScoreTemp < 0)

         return false;

After checking all the necessary buffers, we will pass pointers to them to the kernel.

      //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, 

              def_attscr_outputs_grad, m_cAttentionOut.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                         def_attscr_scores, m_cScores.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                            def_attscr_scores_grad, m_cScoreGrad))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                            def_attscr_scores_temp, m_cScoreTemp))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                            def_attscr_values, m_cValues.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                     def_attscr_values_grad, m_cValues.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionScoreGradients,

                                                    def_attscr_window, m_iWindow))

         return false;

In addition to the pointers to data buffers, we pass the size of the vector describing one element of the

sequence to the kernel.



5. Attention mechanisms

498

5.1 Self-Attention

After passing all the parameters, specify the number of required parallel threads and invoke the

function to enqueue the kernel.

      //--- Place the kernel in the execution queue

      int off_set[] = {0};

      int NDRange[] = {m_iUnits};

      if(!m_cOpenCL.Execute(def_k_AttentionScoreGradients, 1, off_set, NDRange))

         return false;

Now we move on to working on the next kernel. Let's check the availability of buffers required for the

new kernel.

      if(m_cQuerys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cQuerys.GetGradients().GetIndex() < 0)

         return false;

      if(m_cKeys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cKeys.GetGradients().GetIndex() < 0)

         return false;

After checking all the necessary data buffers, we will pass pointers to them to the kernel.

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, 

                                 def_atthgr_keys, m_cKeys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                          def_atthgr_keys_grad, m_cKeys.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                             def_atthgr_querys, m_cQuerys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                      def_atthgr_querys_grad, m_cQuerys.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                                             def_atthgr_scores_grad, m_cScoreGrad))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionHiddenGradients,

                                                 def_atthgr_key_size, m_iKeysSize))

         return false;

In addition to the pointers to data buffers, we pass the size of the key vector for one element of the

sequence to the kernel parameters.

After finishing the transfer of all the necessary data to the kernel, we initialize the enqueuing of its

execution. The arrays with the specified offset and the number of required kernel instances for

execution are already prepared after launching the previous kernel, and we don't need to set them

again. Therefore, we simply invoke the function to enqueue the kernel.
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       if(!m_cOpenCL.Execute(def_k_AttentionHiddenGradients, 1, off_set, NDRange))

         return false;

At this point, we conclude our work on building the methods of our attention class and can proceed to

test its functionality.

5.1.4 Testing the attention mechanism

Unlike the LSTM recurrent block discussed earlier, the attention block works only with current data.

Therefore, to create a more representative sample between weight updates during the training of a

neural network, we will use random patterns from the general training dataset. We used this approach

when testing the fully connected perceptron and the convolutional model. In such a situation, it will be

quite logical to take the convolution_test.mq5 script we used for testing the convolutional mode, re-

save it with a new name attention_ test.mq5, and make changes to the description of the created model

accordingly.

Note that many changes were required to create the test script. We have removed the description

blocks of the convolutional and pooling layers from the script. Instead of them, right after the input

data, we will add a description of our attention block. To do this, as with any other neural layer, we will

create a new instance of the CLayerDescription neural layer description class and immediately check

the result of the operation based on the obtained pointer to the object. Next, we need to provide

descriptions for the created neural layer.

In the type field, we will pass the defNeuronAttention constant, which corresponds to the attention

block to be created.

In the count field, we must specify the number of elements of the sequence to be analyzed. We request

it from the user when running the script and save it to the BarsToLine variable. Therefore, in the

description of the neural layer, we can pass the value of the variable.

The window parameter was used to specify the size of the source data window when describing the

convolutional layer. Here we will use it to specify the size of the description vector for one element of

the input data sequence. Even though the descriptions are slightly different, the functions are similar.

However, unlike the convolutional layer, we will not specify the step of the window, since in this case, it

will be equal to the window itself. The number of neurons used to describe one candlestick is also

requested from the user in the script parameters. This value is stored in the NeuronsToBar variable. As

in the previous field case, we simply pass the value from the variable to the specified field.

The Self-Attention algorithm does not provide data resizing. At the output of the block, we obtain a

tensor of the same size as the original data. It turns out that the window_ out field in the description of

the neural layer will remain unclaimed. But we'll use it to specify the size of the key vector of a single

element in the Key tensor. In practice, the size of the key is not always different from the size of the

vector describing one element. Dimensionality reduction is employed when the size of the description

vector for a single element is large to conserve computational resources during the calculation of the

dependency coefficient matrix. In our case, when the description vector of one candlestick is only four

elements, we will not lower the dimension and pass to the window_ out field the value of the

NeuronsToBar variable.

Additionally, we will specify the optimization method and its parameters. In the test case, I used the

Adam method, as I did in all previous tests.
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bool CreateLayersDesc(CArrayObj &layers)

  {

   CLayerDescription *descr;

//--- create a source data layer

   .....

//--- attention layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronAttention;

   descr.count = BarsToLine;

   descr.window = NeuronsToBar;

   descr.window_out = NeuronsToBar;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

//---hidden layer

   .....

//--- Results layer

   .....

//---

   return true;

  }

After specifying all the parameters, we add the object to the dynamic array of neural layer

descriptions. And, of course, we check the results of the operations. The rest of the script code

remained unchanged.

As you can see, when using our library, changing the model configuration is not a very complex

procedure. Thus, you will always be able to configure and test various architectural solutions to solve a

specific task without making changes to the logic of the main program.

Testing the new model using the attention block was carried out while preserving all the other

conditions used to test the previous models. This approach allows the accurate evaluation of how

changes in the model architecture affect the training result.

The very first testing showed the superiority of the model with the attention mechanism over the

previously considered models. On the training graph, the model using a single attention layer shows

faster convergence compared to models using a convolutional layer and a recurrent LSTM block.   
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Testing the model using the attention block  

Testing the model using the attention block  

When we scale up the learning curve graph, we can see that the model using the attention method

demonstrates lower error throughout the entire training process.
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At the same time, it should be noted that using an attention block in this form is rarely encountered in

practice. The architecture that has gained the most widespread use is the multi-head attention, which

we will explore in the next section.

5.2 Multi-Head attention

In the previous section, we got acquainted with the mechanism of Self-Attention mechanism, which was

introduced in June 2017 in the article Attention Is All You Need. The key feature of this mechanism is

its ability to capture dependencies between individual elements in a sequence. We even implemented it

and managed to test it on real data. The model demonstrated its effectiveness.

Recall that the Self-Attention algorithm uses three trainable matrices of weights (W
Q
, W

K
, and W

V
). The

matrix data is used to obtain 3 three entities: Query, Key, and Value. The first two determine the

pairwise relationship between elements of the sequence, while the last one represents the context of

the analyzed element.

It's not a secret that situations are not always straightforward. The same situation can often be

interpreted from various perspectives. With different points of view, the conclusions can be completely

opposite. In such situations, it's important to consider all possible options and only draw a conclusion

after a comprehensive analysis. That's why in the same paper, the authors of the method proposed

using Multi-Head Attention to address such problems. This is the launch of several parallel Self-

Attention threads, with different weights. Here, each 'head' has its own opinion, and the decision is

made by a balanced vote. A solution like this should better identify connections between different

elements of the sequence.

https://arxiv.org/abs/1706.03762


5. Attention mechanisms

503

5.2 Multi-Head attention

Multi-Headed Attention architecture diagram

In the Multi-Head Attention architecture, several Self-Attention threads with different weights are used

in parallel, which simulates a versatile analysis of the situation. The results of the threads are

concatenated into a single tensor. The final result of the algorithm is determined by multiplying the

tensor by W
0
 matrix, the parameters of which are selected in the process of training the neural

network. This whole architecture replaces the Self-Attention block in the encoder and decoder of the

transformer architecture.

It is the Multi-Head Attention architecture that is most often used to solve practical problems.

5.2.1 Description of the Multi-Head Self-Attention architecture

The Self-Attention technology discussed earlier identifies dependencies between sequence objects in a

certain context and then ranks them using the Softmax function. However, when solving practical

problems, it is not always possible to give such an assessment unambiguously. Typically, dependency

coefficients between objects change greatly when the point of view or context of the element being

analyzed, changes. The final decision on element dependencies is always a compromise. The use of

Multi-Head Self-Attention is specifically designed to help discover dependencies between elements by

comprehensively considering the input data. The additional input trainable matrix of weights will help

the model learn to find this compromise.
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Perhaps the simplest solution to such a problem would be to expand our CNeuronAttention attention by

adding an array of Self-Attention blocks to it. This approach is possible, but it is irrational. It leads to

an increase in the number of objects proportionally to the increase in the number of attention heads.

Furthermore, the sequential execution of operations for each attention head does not allow the

organization of simultaneous parallel computation of attention for all heads. Additionally, the

subsequent operation related to the concatenation of results of attention heads will also require

resource and time overhead.

There is a solution, which lies in the realm of matrix operations in mathematics. Having knowledge and

understanding of matrix operations in mathematics greatly aids in comprehending the mathematics of

neural networks and provides a clear picture of the potential for dividing operations into parallel

threads.

Let's go through the Self-Attention algorithm and think about transforming operations to implement

Multi-Head Self-Attention.

1. First, we calculate vectors Query, Key, and Value. These vectors are calculated by multiplying

each element of the original sequence by the corresponding matrix W
Q
, W

K
, and W

V
.

To organize Multi-Head Self-Attention, we need to repeat this operation based on the number of

attention heads. Let's start with a simple example using three attention heads.

I think everything is clear here.

Now let's look at the dimensions of tensors. Remember that the architecture of the model provides for

the same number of sequence elements at all stages. Each element of the sequence is described by a

certain vector of values. Since the Self-Attention mechanism is applied in the same way to each

element of the sequence, we can analyze operations only with the description vector of one element, as

an example. Moreover, the size of this vector is the same for the tensors of the original data and values.

However, it may differ from the dimension of the description vector of one element of the sequence in

the query and key tensors. Let's use n
I
 for the size of the source data vector and n

K
 for the size of the

key vector. Then the tensors will have the following dimensions.

Tensor I Q W
Q K W

K V W
V

Size n
I

n
K

n
I
 * n

K
n

K
n

I
 * n

K
n

I
n

I
 * n

I

The specified tensor sizes are applicable to all attention heads. Let's try to combine the corresponding

weight matrices into one large one.

Such weight matrices will have size n
I
*3n

K
 for query matrices W

QC
 and W

KC
. The matrix W

VC
 will have

the size n
I
*3n

I
, where 3 is the number of attention heads.
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Let's substitute the concatenated matrices into the formulas for determining vectors.

According to the rules of matrix multiplication, we obtain the following tensor sizes.

Tensor I Q
C

W
QC

K
C

W
KC

V
C

W
VC

Size n
I

3n
K

n
I
 * 3n

K
3n

K
n

I
 * 3n

K
3n

I
n

I
 * 3n

I

Compare the tensor sizes in the two tables: they are very similar. The only difference is that they are

multiplied by the number of attention heads. What practical value does it have for us? It's all very

straightforward. Instead of creating multiple instances of objects for each attention head, we can

create just one object for computing each entity. As when organizing a similar process in the Self-

Attention mechanism, we can use our convolutional layers, but we will need to increase the window size

of the results proportionally to the number of attention heads.

2. Next, we define pairwise dependencies between the elements of the sequence. To do this, we will

multiply the Query vector with the Key vectors of all elements of the sequence. This iteration is

repeated for the Query vector of each element of the sequence. As a result of this iteration, we

obtain a Score matrix of size N*N, where N is the size of the sequence.

As a result of this operation, we expect to obtain one coefficient of dependency between a pair of

sequence elements for each attention head. However, the operation of multiplying two concatenated

vectors will return only one value. As in the case of single-headed Self-Attention.

We can change the dimensionality of vectors and convert them into two-dimensional matrices. This

makes sense, as we can allocate the data for each attention head into a separate row vector.

However, by adding them to the formula above, we will get a square matrix with a side length equal to

the number of attention heads, whereas we expected to obtain a vector with a size equal to the

number of heads.

There is still a way out. Let's remember the matrix multiplication rule.

We will substitute here our two-dimensional matrices of multi-head attention. Don't forget that the

second matrix is transposed before multiplication.

As you can see, the vector we expected to obtain forms the diagonal of the matrix of results. And all

other operations are just a waste of resources for us. But we can split this procedure into operations.
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For example, we will not transpose the key matrix and use the Hadamard product of matrices (element-

wise matrix multiplication).

After this, to obtain the expected result, all we need to do is add the elements of the matrix row by

row.

In the end, we got the result in two operations instead of one. However, it's important to note two

things:

· We use a transposed matrix In the Self-Attention formula, which is also an operation on a matrix,

although it is not highlighted separately. And its implementation also requires resources. When

splitting into operations, we abandoned this procedure.

· The vector of coefficients is determined in two operations, regardless of the number of attention

heads. 

3. The next step is to divide the resulting values by the square root of the dimension of the Key

vector and normalize it with the Softmax function in the context of each Query. In this way, we

obtain the coefficients of pairwise interdependence between sequence elements.

At this point, we will not complicate or simplify anything. Matrix division by a constant is always

performed element-wise regardless of the matrix size, but we will need to normalize the data on a

per-attention-head basis. 

4. We multiply each Value vector by the corresponding interdependence coefficient and obtain the

adjusted value of the element. The goal of this iteration is to focus on relevant elements and

reduce the influence of irrelevant values.

To solve this problem, we will use the techniques applied in paragraph 2. First, let's change the

dimension of the vector of values and reduce it to a two-dimensional matrix. In it, the rows will

correspond to each individual head of attention.

After this, we can use element-wise multiplication of the dependency coefficient vector by the matrix of

values.

5. Then we summarize all the adjusted Value vectors for each element. The result of this operation

will indeed be the vector of output values of the Self-Attention layer.

In the last point, there is nothing more to add. We will summarize the value of vector elements

separately in the context of Query queries and attention heads. We can easily parallelize the execution

of this task by creating a separate thread for finding each individual vector.
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After completing all the points of the Self-Attention mechanism in the mode with multiple attention

heads, we receive a vector of results for each attention head. Consequently, the overall size of the

tensor of results will exceed the size of the original data tensor proportionally to the number of heads.

To reduce the dimensionality, the Multi-Head Self-Attention algorithm provides for multiplying the

concatenated tensor of results by an additional weight matrix W
0
. As you can imagine, this procedure is

very similar to the operation of a fully connected neural layer without an activation function. We

performed similar operations in step 1 to determine Query, Key, and Values   vectors. This means that

we can use the same solution and use the previously created convolutional layers.

Here, we can also note another point. When describing the operation of the Self-Attention block, we

paid attention to the moment when the size of the vectors describing one element of the sequence of

Value tensors and the source data are equal. This requirement was based on the need for subsequent

addition of tensors of Self-Attention results and initial data. In the case of multi-head attention, we

always end up with a concatenated tensor of results that is larger than the tensor of the original data.

To align them, multiplication of the result tensor by the matrix W
0
 is used. Therefore, in order to save

resources, we can reduce the dimensionality of the description vector of a single sequence element in

the Value tensor without risking errors in subsequent data processing.

The rest of the algorithm of the transformer encoder remains unchanged, and we can leverage the

developments from the previous section.

Now that we have a complete understanding of the principles behind the algorithm, we can proceed to

its implementation.

5.2.2 Building Multi-Head Self-Attention in MQL5

When implementing the Multi-Head Self-Attention block, we can note its strong similarity with the

previously considered Self-Attention block. This is not surprising, because Multi-Head Self-Attention is a

logical development of Self-Attention technology. Therefore, when creating a new class, it would be

quite logical to inherit not from the neural layer base class CNeuronBase but from the attention block

class CNeuronAttention.

With this inheritance option, we inherit from the parent class, in addition to the methods and objects of

the base class, also objects of the CNeuronAttention class, including:

· m_ cQuerys – convolutional layer for the formation of the query tensor Query

· m_ cKeys – convolutional layer for the formation of the key tensor Key

· m_ cValues – convolutional layer for the formation of the value tensor Value

· m_ cScoresis – buffer of the matrix of dependency coefficients

· m_ cAttentionOut – base layer of the source data for recording the results of the Self-Attention

block operation

· m_ cFF1 and m_ cFF2 – convolutional layers of the Feed Forward block

As we defined in the section describing the architectural solution, all objects will be used for their

intended purpose. We will only increase their size in proportion to the number of attention heads. Thus,

to implement the Multi-Head Self-Attention algorithm, we just need to add the internal layer of the W
0

matrix and a variable for recording the number of attention heads.
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class CNeuronMHAttention    :  public CNeuronAttention

  {

protected:

   CNeuronConv       m_cW0;

   int               m_iHeads;

public:

                     CNeuronMHAttention(void);

                    ~CNeuronMHAttention(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //--- file operation methods

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override const { return(defNeuronMHAttention);  }

  };

Regarding the class methods, we will override the standard set of methods:

· Init – class initialization method

· SetOpenCL – method for specifying the handle of the OpenCL context to be used

· FeedForward – forward pass method

· CalcHiddenGradient – method of distributing the gradient error through the hidden layer

· CalcDeltaWeights – method of distributing the error gradient to the level of the matrix of weights of

the current neural layer

· UpdateWeights – method for updating the matrix of weights of the coefficients of the current neural

layer

· Save – method of saving neural layer data to a file

· Load – method of loading neural layer data from a file

· Type – method for identifying the type of neural layer

Well, let's start with the class constructor. In it, we create instances of objects necessary for the full

functioning of the class and initialize internal variables with default values. Above, we defined only one

new object, the convolutional layer m_ cW0. We will use static objects, just like in the parent class. So,

in the class constructor, we just have to specify the initial value for the number of attention heads. The

class destructor remains empty.

CNeuronMHAttention::CNeuronMHAttention(void) :  m_iHeads(8)

  {

  }

In the next step, we will deal with the method of initializing the class. Despite the fact that most of the

objects were inherited from the parent class, we cannot use its initialization method, since using them
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in the Multi-Head Self-Attention algorithm will require different tensor sizes. Therefore, we will have to

rewrite the initialization method completely. At the same time, to construct the initialization method,

we will use an algorithm similar to the corresponding method of the parent class.

Like the similar methods of all previously discussed classes, in the method parameters, we receive a

pointer to the object describing the configuration of the neural layer being created. We immediately

organize a block for checking the received data. First of all, we check the validity of the received

pointer. Only after confirming the validity of its relevance do we check its contents:

· The type of the neural layer to be created in the configuration description must match the type of

the class (the type parameter).

· The layer you create must have at least one element of the sequence to be analyzed (the count

parameter).

· The size of the description vector of one source data element must be greater than zero (the

window parameter).

· The size of the key vector of one element of the sequence must be greater than zero (the

window_ out parameter).

· There must be at least one attention head (the step parameter).

bool CNeuronMHAttention::Init(const CLayerDescription *desc)

  {

//--- check the initial data

   if(!desc || desc.type != Type() ||

      desc.count <= 0 || desc.window <= 0 || desc.window_out <= 0 ||

      desc.step <= 0)

      return false;

It probably looks strange to use the step parameter to specify the number of attention heads. But, as

you may recall, within the implementation of attention mechanisms, the step size of the input data

window is always equal to the size of the window itself. Therefore, this parameter is free. To avoid an

unnecessary increase in the size of the neural layer description object, we decided to make the most

efficient use of the existing class variables. However, if code readability is a higher priority for you, you

can always define the necessary number of variables to describe the architecture of the neural layer

being created and name them accordingly.

After successfully passing through the control block, we will save the key parameters of the description

of the neural layer being created into local variables.

//--- saving the constants

   m_iWindow = desc.window;

   m_iUnits = desc.count;

   m_iKeysSize = desc.window_out;

   m_iHeads = desc.step;

Like in similar methods of all previously discussed classes, the next step is to call the method of the

base neural layer, in which inherited objects will be initialized. We cannot call the method of the parent

class because it would create objects of different sizes, and we would need to modify those objects.

And we don't want to do the same job twice. Therefore, we "jump over the head" and directly access

the method of the base class.

Please note that before calling the method of the base class, we need to make some adjustments to

the description of the architecture of the neural layer being created. At the same time, we do not know

what plans the user has for the description object of the layer obtained in the parameters. Remember
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what we talked about objects and pointers to them. In the parameters, we got a pointer to the object.

When we make changes to the object, they will be reflected on the side of the main program by the

user. If the user applies a single object to describe multiple neural layers, there is a high probability

that they will encounter an error when creating subsequent neural layers. Also, layers can be created

with incorrect architecture. Therefore, we will create a new object to describe the architecture of the

neural layer and populate it with the necessary parameters. 

In the parent class, we have worked out a technology with the substitution of pointers to the object,

result buffers and error gradients. Therefore, it doesn't matter how these objects are created in the

base class method; you can specify any values for the layer size and result window in the parameters.

To avoid performing unnecessary operations, we will specify them at least greater than zero.

To eliminate the creation of unnecessary objects, set the size of the source data window to zero and

disable the activation function.

We leave the type of neural layer that we received in the description from the user. 

Next, we call the method of the base neural layer, passing it the correct description.

//--- call the initialization method of the parent class

   CLayerDescription* temp = new CLayerDescription();

   if(!temp)

      return false;

   temp.type = desc.type;

   temp.optimization = desc.optimization;

   temp.activation = AF_NONE;

   temp.count = desc.count;

   temp.window_out = 1;

   temp.window = 0;

   if(!CNeuronBase::Init(temp))

     {

      delete temp;

      return false;

     }

In the above description of the neural layer architecture, we will change the type of the created object

and its size. This is enough to create an object of concatenated results of the work of attention heads.

//--- initialize AttentionOut

   temp.type = defNeuronBase;

   temp.count = (int)(m_iUnits * m_iKeysSize * m_iHeads);

   if(!m_cAttentionOut.Init(temp))

     {

      delete temp;

      return false;

     }

   if(!m_cAttentionOut.GetOutputs().m_mMatrix.Reshape(m_iUnits, m_iKeysSize * m_iHeads) ||

      !m_cAttentionOut.GetGradients().m_mMatrix.Reshape(m_iUnits, m_iKeysSize * m_iHeads))

      return false;

After initializing the object, we will slightly change the format of the result buffers and error gradients.

Next, we have to create internal convolutional neural layers. First, we will create internal neural layers

to form the Query, Key, and Value tensors. All of them receive a sequence of initial data as input.
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Therefore, in the window and step parameters, we will specify the size of the vector describing one

element of the source data sequence.

The number of filters of the used convolutional layer, specified in the window_ out parameter, should

correspond to the size of the key vector of one element of the sequence. However, when discussing the

architectural solution of this class, we determined the use of concatenated tensors. Therefore, we will

increase the number of filters in proportion to the number of attention heads created.

The number of elements in the sequence at all stages remains constant. Therefore, we can write to the

count parameter the number of elements of the original sequence received from an external program.

The Multi-Head Self-Attention architecture does not provide an activation function for the neural layers

that are created. Therefore, in the activation parameter, we leave the constant AF_ NONE.

The optimization method for the parameters of all neural layers is the same, and we leave this

parameter unchanged.

//--- create a description for the inner neural layers

   if(!temp)

      return false;

   temp.type = defNeuronConv;

   temp.window = m_iWindow;

   temp.window_out = (int)(m_iKeysSize * m_iHeads);

   temp.step = m_iWindow;

   temp.count = m_iUnits;

First, we initialize the inner layer to create the query tensor Query. We check the result of the

operation in order to exclude possible critical errors in the further execution of the method code.

//--- initializing Querys

   if(!m_cQuerys.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cQuerys.SetTransposedOutput(true);

After successful initialization of the convolutional neural layer, we set the flag to transpose the result

tensor. I'd like to remind you that we introduced this flag to enable the retrieval of a result tensor in

which each row contains elements not from a single filter but from all filters for one sequence element.

Similarly, we initialize convolutional neural layer objects to create Key and Value tensors.

//--- initialize Keys

   if(!m_cKeys.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cKeys.SetTransposedOutput(true);

Please note that during the initialization of the convolutional neural layer object to form the Value

tensor, we do not align the number of used filters with the size of the input data window, as was done in

the single-attention head class CNeuronAttention. The use of the W
0
 matrix allows us to avoid this rule.
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Reducing the dimensionality of the vector can indeed help save resources and reduce the execution

time of operations. In turn, after recreating the complete algorithm of the Multi-Head Self-Attention

method, you will be able to assess the advantages and disadvantages of such an implementation

through practical examples.

//--- initialize Values

   if(!m_cValues.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cValues.SetTransposedOutput(true);

After initializing the first group of internal convolutional layers, following the algorithm of the Multi-Head

Self-Attention mechanism, we initialize the buffer for the dependency coefficient matrix m_ cScores. Fill

it with zero values, specifying the required buffer size. Again, let's draw a parallel with the

CNeuronAttention class. If previously we created a square matrix with a side length equal to the

number of elements in the sequence, now we need as many of these matrices as there are attention

heads. At the same time, we have agreed to use a concatenated matrix. Therefore, we will increase the

buffer size in proportion to the number of attention heads used. Unfortunately, MQL5 does not support

three-dimensional matrices. Within the two-dimensional matrix, we will use rows to distribute the buffer

across attention heads. 

//--- initialize Scores

   if(!m_cScores.BufferInit(m_iHeads, m_iUnits * m_iUnits))

     {

      delete temp;

      return false;

     }

Now it's time to initialize the additional convolutional layer that performs the functionality of matrix W
0

in the Multi-Head Self-Attention algorithm. Let's adjust the description of the architecture of the neural

layer being created.

The type of neural layer to be created has already been specified, so we don't need to specify it again.

We determine the size of the input data window as the product of the size of the description vector of

one sequence element in the Values tensor and the number of attention heads. In this implementation,

we changed the size of the specified vector to the same one in the Key tensor. So, the size of the input

data window is determined as the product of the size of the key vector of one sequence element and

the number of attention heads (m_ iKeysSize * m_ iHeads).

We will equate the size of the step of the source data window to the size of the window itself.

According to the Multi-Head Self-Attention algorithm, matrix W
0
 is used to align the sizes of the tensor

of results from the multi-head attention block with the tensor of input data. Therefore, we will specify

the number of filters in this convolutional layer equal to the size of the description vector of one

element of the sequence of initial data fed to the input of the Multi-Head Self-Attention block.

The Multi-Head Self-Attention algorithm does not provide an activation function for this matrix.

Therefore, in the appropriate field, we leave the AF_ NONE constant.
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The optimization method for the weight matrices of all layers in the neural network, including the

internal layers of individual blocks, is the same. Therefore, we leave the parameters indicating the

optimization method used unchanged.

//--- initialize W0

   temp.window = (int)(m_iKeysSize * m_iHeads);

   temp.step = temp.window;

   temp.window_out = m_iWindow;

   if(!m_cW0.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cW0.SetTransposedOutput(true);

After specifying all the necessary parameters for describing the created neural layer, we call the

initialization method of our convolutional neural layer m_ cW0.Init and check the results of the

operations.

At the end of the initialization block of the convolutional layer m_ cW0 we set the flag for transposing

the result tensor.

This concludes the work on initializing the objects of the Multi-Head Self-Attention block. Next, let's

move on to work on the Feed Forward block. The functionality and architecture of this block are

completely transferred from the CNeuronAttention class. However, since we had to completely redefine

the initialization method of the class, we will repeat the actions for initializing the internal layers

m_ cFF1 and m_ cFF2.

The algorithm for initializing the neural layer remains the same. We will prepare a description of the

neural layer to be created and call the method of its initialization. To describe the convolutional neural

layer m_ cFF1, we will use the description object of the convolutional neural layer which has already

been used more than once in this method. Therefore, we will only specify the parameters that are being

changed, as the rest are already contained in the neural layer description object.

· The size of the source data window (window) is equal to the size of the description vector of one

element of the source data tensor sequence fed to the input of our Multi-Head Self-Attention block.

We receive this parameter from an external program and save it in the m_ iWindow variable.

Consequently, we can pass the value of the specified variable as a parameter.

· We will set the step size of the input data window (step) equal to the size of the input data window

itself.

· Number of filters used (window_ out): according to the transformer architecture proposed by the

authors, the output size of the first layer of the Feed Forward block is four times larger than the

size of the original data. Let's use this coefficient. However, during the implementation of your

practical tasks, you can always modify this coefficient or even add it to the configuration

description of the created neural layer and conduct practical tests to determine the most suitable

coefficient for your specific tasks.

· The activation function (activation): for this layer, the authors suggest using ReLU as an activation

function. We replaced it with the close Swish function. The graph of this function is very close to

the graph of the function proposed by the authors. At the same time, it does not contain kinks and

is differentiated throughout the values.

· The optimization parameters of the balance matrix remain unchanged.
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//--- initialize FF1

   temp.window = m_iWindow;

   temp.step = temp.window;

   temp.window_out = temp.window * 4;

   temp.activation = AF_SWISH;

   temp.activation_params[0] = 1;

   temp.activation_params[1] = 0;

   if(!m_cFF1.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cFF1.SetTransposedOutput(true);

After we have specified all the parameters in the configuration description of the created convolutional

neural layer, we will call its initialization method and check the result of the operations.

Only upon successful initialization of the convolutional neural layer object, we will set the flag for

transposing the result tensor.

Now we can proceed to initialize the last object used in the class – the second convolutional layer of

the Feed Forward block m_ cFF2. As a result of this neural layer operation, we again return to the

dimension of the tensor of the original data. Therefore, in the description object of the structure of the

created neural layer, we will need to swap the values of the input data window and the number of used

filters. Typically, such an operation requires a local variable to temporarily store one of the values. But

in our case, the parameters of the source data window size and its pitch are equal. Hence, we will first

write the number of filters of the previous layer to the size parameter of the source data window. Next,

in the parameter of the number of filters, specify the value of the window step of the previous

convolutional layer. And finally, let's equate the size of the step of the source data window to its size.

The architecture of the transformer does not provide an activation function for this layer. But we will

provide an opportunity for the user to experiment. To do this, let's transfer the activation function and

its parameters from the architecture description provided by the user to the parameters of this

method.

//--- initialize FF2

   temp.window = temp.window_out;

   temp.window_out = temp.step;

   temp.step = temp.window;

   temp.activation = desc.activation;

   temp.activation_params = desc.activation_params;

   if(!m_cFF2.Init(temp))

     {

      delete temp;

      return false;

     }

   m_cFF2.SetTransposedOutput(true);

   delete temp;

Once all the necessary parameters for describing the structure of the created neural layer are

specified, we call its initialization method and set the flag for transposing the result tensor. At the same

time, do not forget to check the results of the operations.
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Now that all the necessary objects are initialized, we can safely delete the local neural layer description

object without any risk of error.

Next, we will apply the technique refined in the CNeuronAttention class and substitute pointers to result

and error gradient buffers of our multi-head attention class with similar buffers from the internal

convolutional neural layer,m_ cFF2. This will allow us to eliminate unnecessary costs for copying data

between buffers. Also, we do not need additional memory to store duplicate data. To do this, we first

check the pointers and, if necessary, delete previously created objects that are not needed. Then, we

pass pointers to the objects of the convolutional layer m_ cFF2 into the variables.

//--- to avoid copying buffers, replace them

   if(!SetOutputs(m_cFF2.GetOutputs()))

      return false;

   if(m_cGradients)

      delete m_cGradients;

   m_cGradients = m_cFF2.GetGradients();

//---

   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

In conclusion, to all objects in the method, we will pass a pointer to the used OpenCL context. After

that, we exit the method with a positive result.

This concludes our work on the class initialization method. However, we have an open question. At the

end of the initialization method, we called the method for passing the OpenCL context pointer. We

haven't overridden it yet, and a similar method of the parent class will be called as such. It is functional

enough but does not apply to objects declared in the body of this class. Among them, there is only one

object: the convolutional layer of m_ cW0. Therefore, the method will be relatively short.

Like the similar methods of all the previously discussed classes, the CNeuronMHAttention::SetOpenCL

method in the parameters receives a pointer to the object of working with the OpenCL context. We will

have to distribute it to all internal objects. First, it would be necessary to check the validity of the

received pointer. Instead, we'll call a similar method of the parent class, which already has all the

controls and pointer passing to inherited objects. Thus, after the completion of the parent class

method, we just have to pass the pointer to the new objects that were declared in the body of this

class. However, in this case, we will pass not the pointer received in the parameters but the pointer

from the local variable of the class inherited from the parent object. The reason is that the method of

the parent class checked the received pointer and saved it to a local variable. It also passed it to all the

objects that we inherited from the parent class. Therefore, in order for all objects to work in the same

context, we pass an already validated pointer to the internal objects. 
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bool CNeuronMHAttention::SetOpenCL(CMyOpenCL *opencl)

  {

//--- call a method of a parent class

   CNeuronAttention::SetOpenCL(opencl);

//--- call a similar method for the internal layer

   m_cW0.SetOpenCL(m_cOpenCL);

//---

   return(!!m_cOpenCL);

  }

After passing the pointer to all internal objects, in this case, it's a single convolutional layer, we exit the

method and return a result indicating the validity of the used context pointer.

With that, we conclude the process of creating and initializing our multi-head attention class object and

move on to the next stage, which is setting up the feed-forward pass.
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5.2.2.1 Multi-Head Self-Attention feed-forward method

We have already organized the process of creating and initializing the CNeuronMHAttention Multi-Head

attention class. And now, when we already have all the internal objects of our class, we can move on to

the organization of the forward pass.

The virtual method FeedForward is responsible for the implementation of the feed-forward pass in all

classes of our library. Adhering to the general system of organization of classes and their methods, as

well as the principles of inheritance, in this class we will retain the previously defined structure of

methods and override the FeedForward method. Like the similar method of the parent class, in the

parameters, the fed-forward method receives a pointer to the object of the previous neural layer.

According to the framework that has been tested more than once, at the beginning of the method we

organize a block of controls. In it, we check the relevance of pointers to all dynamic objects used in the

method. In this case, we check the pointer to the neural layer received in the parameters, its result

buffer, and the buffer of results from the internal layer of the concatenated output of the attention

block.

bool CNeuronMHAttention::FeedForward(CNeuronBase *prevLayer)

  {

--- check the relevance of all objects

   if(!prevLayer || !prevLayer.GetOutputs() ||

      !m_cAttentionOut.GetOutputs())

      return false;

After successfully passing the control block, we generate concatenated tensors of queries, keys, and

values: Query, Key, and Value. To do this, we call the methods of forward pass of the internal

convolutional layers m_ cQuerys, m_ cKeys, and m_ cValues. The correspondence of tensors in the Multi-

Head Self-Attention architecture and the invoke objects is not accidental: it makes the code more

readable and allows you to track the algorithm being built.

   if(!m_cQuerys.FeedForward(prevLayer))

      return false;

   if(!m_cKeys.FeedForward(prevLayer))

      return false;

   if(!m_cValues.FeedForward(prevLayer))

      return false;

Be sure to control the process of performing operations.

Next, according to the Multi-Head Self-Attention algorithm, we have to determine the coefficients of

dependence between the elements of the sequence and display the concatenated result of the work of

all attention heads. This functionality is the link between the internal neural layers. It does not cover

the use of other objects and will be built entirely within this method.

As you remember, when building all processes in the methods of our library classes, we create two

branches of the algorithm: standard MQL5 tools and multi-threaded calculations on the GPU using

OpenCL. As always, in this section, we will consider the implementation of the algorithm using standard

MQL5 tools. And we will return to the implementation of multi-threaded computing using OpenCL later.

Now we need to determine how to organize the work. We have three dimensions:

· Attention heads

· Sequence elements

· Vector with the description of one element of the sequence
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Matrix operations allow us to operate only with two-dimensional matrices. One of the dimensions used

will be a vector describing one element of the sequence. It's not hard to guess that in most cases, the

size of the sequence will be tens of times larger than the number of attention heads. Therefore, we will

create a loop for iterating through the attention heads, and within the loop, we will analyze the

sequences of each attention head.

Before organizing the loop, we need to do a little preparatory work. Let's divide the concatenated

results of the previous stage of the implemented algorithm into several attention heads matrices. For

this, we will use dynamic arrays of matrices, which will give us a semblance of three-dimensional

matrices. The index of an element in the array will indicate the attention head index. Each element in

the array will be represented as a tabular matrix, where rows represent individual elements of the

sequence. For the convenience of working with arrays, let's give them names that correspond to their

content.

--- branching of the algorithm by the computing device

   MATRIX out;

   if(!m_cOpenCL)

     {

      if(!out.Init(m_iHeads, m_iUnits * m_iKeysSize))

         return false;

      MATRIX querys[], keys[], values[];

      if(!m_cQuerys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, querys))

         return false;

      if(!m_cKeys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, keys))

         return false;

      if(!m_cValues.GetOutputs().m_mMatrix.Vsplit(m_iHeads, values))

         return false;

After completing the preparatory work, we can proceed directly to the operations of calculating

dependency coefficients. When solving such a problem, we used matrix operations in the forward pass

method of the parent class CNeuronAttention. Now we will use the same algorithm, but we need to

repeat it in a loop with the number of iterations equal to the number of attention heads.

According to the Multi-Head Self-Attention algorithm, the dependence coefficients are divided by the

square root of the dimension of the Key vector, and the obtained values are then normalized with the

Softmax function in the context of elements of Query queries.

Following the algorithm, we multiply the querys and transposed keys matrices, divide them by the

square root of their dimension, and immediately calculate the exponential value. In the resulting matrix,

we take line-by-line sums of values and organize a nested loop for data normalization.
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      for(int head = 0; head < m_iHeads; head++)

        {

         //--- define Scores

         MATRIX sc = exp(querys[head].MatMul(keys[head].Transpose()) /

                                                                sqrt(m_iKeysSize));

         VECTOR sum = sc.Sum(1);

         for(uint r = 0; r < sc.Rows(); r++)

            if(!sc.Row(sc.Row(r) / sum[r], r))

               return false;

As you can see, the algorithm completely repeats similar operations of the parent class.

Now that we already have a calculated matrix of coefficients of dependencies between elements, we

can move on using the Multi-Head Self-Attention algorithm and determine the values of the

concatenated tensor of the results in terms of the analyzed attention head. To do this, we just need to

calculate the products of two matrices containing the coefficients of dependence and the values of

Values.

         //--- output of the attention block

         MATRIX temp = sc.MatMul(values[head]).Transpose();

Special attention should be paid to gathering results into a single concatenated tensor. The entire logic

of constructing the algorithm assumes that the tensor of the concatenated result will be a tabular

matrix. Each row of the matrix will contain a vector of the concatenated result of a single element of

the sequence. I solved this problem as follows.

As a result of the multiplication operation, we obtained a tabular matrix where the number of rows

equals the number of elements in the sequence, and the number of columns equals the size of the

vector describing one element of the sequence. We transpose the matrix, reshape it into a row matrix,

and add this resulting row to the concatenated matrix. At this stage, in the concatenated matrix, each

attention head will have its own row.

We do the same with the matrix of dependency coefficients.

         if(!temp.Reshape(1, m_iUnits * m_iKeysSize))

            return false;

         if(!sc.Reshape(1, m_iUnits * m_iUnits))

            return false;

         if(!m_cScores.m_mMatrix.Row(sc.Row(0), head))

            return false;

         if(!out.Row(temp.Row(0), head))

            return false;

        }

Once the iterations of the loop are completed and the results of all the attention heads are obtained,

we will reformat the concatenated matrix. We will make the number of columns equal to the number of

elements of the sequence and transpose the matrix. As a result, we will have a number of rows equal to

the number of elements in the analyzed sequence. This is the format we need to pass to the next

convolutional layer of our multi-head attention block. We will save the matrix to the results buffer of the

inner layer m_ cAttentionOut.
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      if(!out.Reshape(m_iHeads * m_iKeysSize, m_iUnits))

         return false;

      m_cAttentionOut.GetOutputs().m_mMatrix = out.Transpose();

     }

   else // OpenCL block

     {

      return false;

     }

This concludes the section on splitting the algorithm depending on the device for executing operations.

Let's go back to using the methods of our internal neural layers. For a block of multi-threaded

operations using OpenCL, we will set a temporary stub in the form of a return of a false value for the

execution of method operations. We will return to it in the following sections.

We continue to move according to the Multi-Head Self-Attention algorithm. At the next stage, we will

need to reduce the dimensionality of the concatenated tensor of results from all attention heads to the

size of the original data tensor. For these purposes, the algorithm provides for the use of a trained

matrix W
0
. This matrix has a dual purpose. First, it serves to change the dimension of the tensor.

Second, it performs a weighted summation of all attention heads into a unified entity, thus determining

the influence of each attention head on the final result.

To accomplish this task, we will use the object of the convolutional layer. We have already created a

convolutional neural layer m_ cW0, and now we have to call its forward pass method. In the parameters,

we pass to the method a pointer to the object of the m_ cAttentionOut neural layer. Do not forget to

check the result of the operation.

   if(!m_cW0.FeedForward(GetPointer(m_cAttentionOut)))

      return false;

After the successful completion of the method operations, the result buffer of our neural layer will be

the result of the Multi-Head Self-Attention block. According to the Transformer algorithm, we will need

to add the obtained result to the original data into a single tensor and normalize the result using the

following formulas:

When working on the parent class CNeuronAttention we created separate methods for these

operations. Now let's make use of the results of the work done earlier.

//--- add to the initial data and normalize

   if(!m_cW0.GetOutputs().SumArray(prevLayer.GetOutputs()))

      return false;

   if(!NormlizeBuffer(m_cW0.GetOutputs(), GetPointer(m_cStd), 0))

      return false;

And, of course, don't forget to monitor the process of executing operations at every step.
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Monitoring the process of executing operations is very important and should become a good habit,

especially when dealing with such a large number of operations.

This concludes the Multi-Head Self-Attention block in the transformer encoder algorithm. Next comes

its second block – Feed Forward. Within this block, we need to propagate the signal through two neural

layers. We will do so by sequentially calling the feed-forward methods of each neural layer.

//--- FeedForward

   if(!m_cFF1.FeedForward(GetPointer(m_cW0)))

      return false;

   if(!m_cFF2.FeedForward(GetPointer(m_cFF1)))

      return false;

At the end of the forward pass algorithm, we will need to repeat the data normalization procedure. This

time we add the result buffers of the Multi-Head Self-Attention and Feed Forward blocks.

//--- add to the output of attention and normalize

   if(!m_cOutputs.SumArray(m_cW0.GetOutputs()))

      return false;

   if(!NormlizeBuffer(m_cOutputs, GetPointer(m_cStd), 1))

      return false;

//---

   return true;

  }

The normalization procedure completes the feed-forward method. After the specified process

completes successfully, we exit the method with a result of true. Let's move on to the implementation

of the backpropagation method.
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5.2.2.2 Multi-Head Self-Attention backpropagation methods

We are confidently moving forward in our learning path. Let's proceed with the implementation of our

Multi-Head Self-Attention class. In the previous sections, we have already implemented initialization

methods and feed-forward methods. However, the neural layer training algorithm is based on the error

gradient backpropagation algorithm. We now proceed to implement backpropagation methods.

We have already mentioned that the Multi-Head Self-Attention algorithm is a logical extension of Self-

Attention. That's why we created our class based on the CNeuronAttention class. And yes, the

processes are all very similar. However, there are still some minor differences in the implementation of

multi-head attention. To implement these differences, we created a new class CNeuronMHAttention.

As we progress in creating the methods of the class, let's take a look at the implementation of these

differences in the methods of the backpropagation algorithm.

In the parent class, we have overridden three virtual methods to implement the backpropagation

algorithm:

· CNeuronAttention::CalcHiddenGradient – method for calculating the error gradient through the

hidden layer

· CNeuronAttention::CalcDeltaWeights – method for calculating the error gradient to the level of the

weights matrix

· CNeuronAttention::UpdateWeights  – method for updating the weights

So, we will also need to override the corresponding methods to organize the multi-head attention

backpropagation pass. Let's start with the method of distributing the error gradient through the hidden

layer of the CalcHiddenGradient neural network. 

As in the parent class method, in the parameters of the method, we receive a pointer to the object of

the previous neural layer. It is in its error gradient buffer that we are going to record the result of the

work being done.

At the beginning of the CNeuronMHAttention::CalcHiddenGradient method body, there is the customary

and essential attribute of any method: a check of pointers to the objects used in the method. Here, as

in the similar method of the parent class, we will perform control checks only for pointers to objects

that will be directly accessed from this method without using the methods of internal neural layers. The

reason is that all inner neural layer methods have a similar block of controls. By calling them, we again

validate the passed pointers to objects. This is an additional cost in resources and time. We can't

disable the checks in the methods of the nested neural layers, so we will eliminate explicit duplication of

controls in the current method.

We should immediately point out that we only exclude explicit duplication, but not possible. It's a fine

line, but behind it lie great risks.

Explicit is the duplication that will happen anyway. If we see such duplication, we try to keep only one

control point before the first use of the object whenever possible.

Note, that there must be at least one control point before the object is accessed for the first time.

I call duplication possible when it can occur under certain circumstances. In some cases, it may not

happen. We do not eliminate such duplication because the risk of a critical error in the absence of

control outweighs the potential benefits of improving program performance.
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bool CNeuronMHAttention::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- check the relevance of all objects

   if(!m_cOutputs || !m_cGradients ||

      m_cOutputs.Total() != m_cGradients.Total())

      return false;

After successfully passing the control block, we proceed directly to the error gradient distribution

procedure. As you may recall, in the feed-forward pass, the data is normalized at the output of the

neural layer. Also, we need to adjust the error gradient by the derivative of the normalization function.

In the parent class, we derived this procedure in a separate method entitled

CNeuronAttention::NormlizeBufferGradient. Now we just need to call it with the appropriate parameters.

//--- scale the gradient to normalization

   if(!NormlizeBufferGradient(m_cOutputs, m_cGradients, GetPointer(m_cStd), 1))

      return false;

Next, we run the error gradient through the inner neural layers of the Feed Forward block. These are

the two convolutional layers: m_ cFF2 and m_ cFF1. To propagate the gradient through these neural

layers, we sequentially call the analogous methods of the mentioned neural layers. Don't forget to

check the results of the operations.

//--- propagate the error gradient through the Feed Forward block

   if(!m_cFF2.CalcHiddenGradient(GetPointer(m_cFF1)))

      return false;

   if(!m_cFF1.CalcHiddenGradient(GetPointer(m_cW0)))

      return false;

After passing the error gradient via the Feed Forward block, we recall that before normalizing the data

at the output of the neural layer, we added up the tensors of the results of the Multi-Head Self-

Attention and Feed Forward blocks. Hence, we must also propagate the error gradient along both

directions. For this purpose, after obtaining the error gradient from the Feed Forward block in the buffer

of the inner neural layer m_ cW0, we add up the two tensors.

   if(!m_cW0.GetGradients().SumArray(m_cGradients))

      return false;

Let's adjust it for the derivative of the data normalization process.

//--- adjust the gradient for normalization

   if(!NormlizeBufferGradient(m_cW0.GetOutputs(), m_cW0.GetGradients(),

                                                          GetPointer(m_cStd), 0))

      return false;

We continue utilizing internal neural layer methods. We will call the convolution layer gradient

distribution method m_ cW0 and check the result of the operations.

//--- distribution of the error gradient by attention heads

   if(!m_cW0.CalcHiddenGradient(GetPointer(m_cAttentionOut)))

      return false;

Next, we need to propagate the error gradient from the concatenated result of the Multi-Head Self-

Attention block to the internal neural layers m_ cQuerys, m_ cKeys, and m_ cValues. As you may recall, in

the feed-forward pass, the path to m_ cAttentionOut from the specified inner neural layers was
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completely recreated inside the method. Similarly, we will have to recreate the progression of the

reverse signal.

Since we are creating a new thread of operations, according to our concept, it is necessary to organize

two parallel threads of operations: using standard MQL5 tools and in the paradigm of multi-threaded

operations using OpenCL.

//--- branching of the algorithm by computing device

   if(!m_cOpenCL)

     {

      MATRIX gradients[];

      MATRIX querys[], querys_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);

      MATRIX keys[], keys_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);

      MATRIX values[], values_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);

      MATRIX attention_grad = m_cAttentionOut.GetGradients().m_mMatrix;

As always, in this section, we will consider the implementation using MQL5. We will proceed to the

organization of multi-threaded operations later.

So, first, we're going to do some preparatory work. As in the forward pass, in this block, we organize

the work separately for individual attention heads. As all the data is stored in concatenated buffers, we

will prepare local matrices and split the buffers into individual matrices according to the attention

heads.

      if(!m_cQuerys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, querys) ||

         !m_cKeys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, keys) ||

         !m_cValues.GetOutputs().m_mMatrix.Vsplit(m_iHeads, values) ||

         !attention_grad.Reshape(m_iUnits, m_iHeads * m_iKeysSize) ||

         !attention_grad.Vsplit(m_iHeads, gradients))

         return false;

Next, we will create a loop with the number of iterations equal to the number of attention heads used.

      for(int head = 0; head < m_iHeads; head++)

        {

During the feed-forward pass, the values of the concatenated buffer of results are assembled by

multiplying the values of the m_ cValues neural layer's tensor results with the corresponding elements of

the dependency coefficient matrix, followed by vector addition. Now we need to organize the reverse

process: propagating the error gradient along these two directions.

First, we transfer the error gradient to the inner neural layer m_ cValues. Before that, let's do some

preparatory work.

To propagate the gradient to the m_ cValues neural layer, it is necessary to multiply the error gradient

matrix by the dependency coefficient matrix. Hence, we first need to extract such a matrix for the

attention head we analyze.

We then multiply the matrices and add the result to a local copy of the concatenated gradient matrix of

the m_ cValues layer.



5. Attention mechanisms

525

5.2 Multi-Head attention

      //--- gradient propagation to Values

         MATRIX score = MATRIX::Zeros(1, m_iUnits * m_iUnits);

         if(!score.Row(m_cScores.m_mMatrix.Row(head), 0) ||

            !score.Reshape(m_iUnits, m_iUnits))

            return false;

         MATRIX temp = (score.Transpose().MatMul(gradients[head])).Transpose();

         if(!temp.Reshape(1, m_iUnits * m_iKeysSize) ||

            !values_grad.Row(temp.Row(0), head))

            return false;

After that, we will propagate the gradient along the second path of the algorithm, through the

dependency coefficient matrix to the neural layers m_ cQuerys and m_ cKeys. In essence, we first need

to determine the error gradient at the level of the dependency coefficient matrix and then propagate

the error gradient from there to the specified internal neural layers.

Here we should recall that the dependency coefficient matrix is normalized by the Softmax function in

the Query section. To properly adjust the error gradient for the derivative of the Softmax function, we

need at least the full vector of error gradients for the values involved in a single normalization

operation. We can write it into a local matrix.

The task is clear, and we can proceed to implementation. To propagate the error gradient to the

dependency coefficient matrix, it is sufficient to multiply the obtained gradient by the matrix of the

results from the last feed-forward pass of the m_ cValues neural layer.

After obtaining the error gradient vector at the dependency coefficient matrix level, we should adjust it

using the derivative of the Softmax function.

We will organize a loop in which we adjust the error gradient using the derivative of the Softmax

normalization function.

         //--- gradient distribution up to Score

         gradients[head] = gradients[head].MatMul(values[head].Transpose());

         //--- gradient correction by Softmax derivative

         for(int r = 0; r < m_iUnits; r++)

           {

            MATRIX ident = MATRIX::Identity(m_iUnits, m_iUnits);

            MATRIX ones = MATRIX::Ones(m_iUnits, 1);

            MATRIX result = MATRIX::Zeros(1, m_iUnits);

            if(!result.Row(score.Row(r), 0))

               return false;

            result = ones.MatMul(result);

            result = result.Transpose() * (ident - result);

            if(!gradients[head].Row(result.MatMul(gradients[head].Row(r)) / 

                                                          sqrt(m_iKeysSize), r))

               return false;

           }

In the next step, we distribute the error gradient to the result values of the m_ cQuerys and m_ cKeys

neural layers. However, we will not immediately write the values into the data buffers of the specified



5. Attention mechanisms

526

5.2 Multi-Head attention

neural layers. We will only accumulate the sums of the error gradients into the pre-prepared matrices

querys_ grad and keys_ grad.

Technically, we multiply the adjusted error gradient by the opposite matrix. Multiplying it by the Keys

matrix, we get the error gradient for Querys, and vice versa. We reformat the obtained matrices and

add them to the corresponding local matrices.

         //--- gradient propagation to Querys and Keys

         temp = (gradients[head].MatMul(keys[head])).Transpose();

         if(! temp.Reshape(1, m_iUnits * m_iKeysSize) ||

            !querys_grad.Row(temp.Row(0), head))

            return false;

         temp = (gradients[head].Transpose().MatMul(querys[head])).Transpose();

         if(! temp.Reshape(1, m_iUnits * m_iKeysSize) ||

            !keys_grad.Row(temp.Row(0), head))

            return false;

        }

After completing the iterations of the loop, we obtain concatenated matrices of error gradients for all

internal layers. Finally, we need to format the matrices as required and copy the values into the

respective data buffers.

      if(!querys_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits) ||

         !keys_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits) ||

         !values_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits))

         return false;

      m_cQuerys.GetGradients().m_mMatrix = querys_grad.Transpose();

      m_cKeys.GetGradients().m_mMatrix = keys_grad.Transpose();

      m_cValues.GetGradients().m_mMatrix = values_grad.Transpose();

     }

   else // OpenCL block

     {

      return false;

     }

As a result, we have propagated the error gradient to the level of internal neural layers. We have

successfully addressed the previously set task and are concluding the section on algorithm partitioning

based on the computational device. In the multi-threaded operations branch, we will temporarily set

the method exit with a false result. We will complete this part later.

We haven't propagated the error gradient to the previous layer yet. We will further propagate the error

gradient using internal neural layer methods.

We've already filled the error gradient buffers of all the inner layers. We only need to call the method

for error gradient propagation through the layer to obtain the error gradient at the level of the original

data. However, one question remains open: all three internal neural layers (m_ cQuerys, m_ cKeys,

m_ cValues) use the same tensor from the previous layer as their input data. This means that all three

layers must pass the error gradient to the previous layer's buffer. In addition, the result of the Multi-

Head Self-Attention block was added to the tensor of the original data before normalization. Hence, this

is the fourth thread of the error gradient that we need to pass to the previous layer level.

However, our gradient propagation methods are constructed in a way that when the error gradient is

saved in the buffer of the previous layer, it overwrites the previous values, erasing the prior information.

This is done intentionally to avoid unnecessary buffer-clearing operations before starting each iteration
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of the backpropagation pass. To address this issue, after running the CalcHiddenGradient method for

each internal neural layer, we will copy the error gradient data to a separate buffer, where we will

accumulate it with the previously stored values At this point we should recall that the error gradient at

the output of the Multi-Head Self-Attention block is already contained in the error gradient buffer of the

neural layer m_ cW0. It might seem that this buffer would be suitable for accumulating the error

gradient for the previous layer. But that's a misconception. If we were to accumulate the error gradient

in the mentioned buffer right now, it would distort the data during the subsequent error gradient

propagation to the weight matrix of that layer. At the same time, we can implement the error gradient

propagation to the matrix of the m_ cW0 layer right now. There's all the data you need to do that. We

call the CalcDeltaWeights method of the specified neural layer and then use its buffer to accumulate

the total error gradient.

//--- propagate the error gradient to the previous layer

   if(!m_cW0.CalcDeltaWeights(GetPointer(m_cAttentionOut), false))

      return false;

   CBufferType* attention_grad = m_cW0.GetGradients();

   if(!m_cValues.CalcHiddenGradient(prevLayer))

      return false;

   if(!attention_grad.SumArray(prevLayer.GetGradients()))

      return false;

   if(!m_cQuerys.CalcHiddenGradient(prevLayer))

      return false;

   if(!attention_grad.SumArray(prevLayer.GetGradients()))

      return false;

   if(!m_cKeys.CalcHiddenGradient(prevLayer))

      return false;

   if(!prevLayer.GetGradients().SumArray(attention_grad))

      return false;

//---

   return true;

  }

Attention should be paid to the last group of commands. During the previous operations, we copied data

from the gradient buffer of the previous layer, but at the end of the method, we reversed the process

by taking the cumulative error gradient from the internal neural layer's buffer and adding it to the

values of the buffer of the previous layer. It is in the buffer of the previous layer where we need to

obtain the result. From it, the methods of the previous layer will take the error gradient and distribute it

further through the neural network.

This completes the task set for this method. We complete the method with a positive result.

Next, we will work on two more methods that will continue the execution of the error backpropagation

algorithm in this class.

After propagating the error through all the neural layers of our network, we need to propagate the error

gradient to the level of each weight. Our CNeuronMHAttention class does not contain a separate buffer

for the weight matrix. All trained parameters are encapsulated in internal neural layers. Therefore, the

only thing we need to do in the method for propagating the error gradient to the CalcDeltaWeights

weight matrix is to consistently call the same method for all inner layers. At the same time, we should

check the results of the operations.

Recall that in the previous method, we have already passed the error gradient to the weight matrix of

the m_ cW0 inner layer. It is necessary to exclude it from this iteration.
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bool CNeuronMHAttention::CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

  {

//--- call the same method for all inner layers

   if(!m_cFF2.CalcDeltaWeights(GetPointer(m_cFF1), false))

      return false;

   if(!m_cFF1.CalcDeltaWeights(GetPointer(m_cW0), false))

      return false;

   if(!m_cQuerys.CalcDeltaWeights(prevLayer, false))

      return false;

   if(!m_cKeys.CalcDeltaWeights(prevLayer, false))

      return false;

   if(!m_cValues.CalcDeltaWeights(prevLayer, read))

      return false;

//---

   return true;

  }

After propagating the error gradients to the weight matrices, the only remaining step is to update the

weights of our internal neural layers. This functionality is assigned to the UpdateWeights method.

Despite the complexity of the class itself, the method for updating the weight matrices turns out to be

very concise and straightforward. It was object inheritance that helped us with this.

We created our CNeuronMHAttention class as a descendant of the CNeuronAttention class. We added

only one object of the inner m_ cW0 neural layer. During the operations of the UpdateWeights method of

the convolutional neural layers used, all operations are performed only on elements within the object,

without accessing data from other objects. That's why we can call a similar method from the parent

class, where this process is already implemented for inherited objects. After successfully executing the

method of the parent class, we only need to update the coefficient matrix of the m_ cW0 internal neural

layer.

bool CNeuronMHAttention::UpdateWeights(int batch_size, TYPE learningRate, 

                                            VECTOR &Beta, VECTOR &Lambda)

  {

//--- call the method of the parent class

   if(!CNeuronAttention::UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

//--- call the same method for all inner layers

   if(!m_cW0.UpdateWeights(batch_size, learningRate, Beta, Lambda))

      return false;

//---

   return true;

  }

Of course, we verify the result of all operations and return a boolean value indicating their execution to

the caller.

Thus, we are nearing the completion of the Multi-Head Self-Attention technology implementation class.

We have already implemented the whole algorithm using standard MQL5 tools. You can even create a

script and test how it works. However, we still need to supplement our class with file handling methods. 
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5.2.2.3 File operations

We already had good progress with our work on the implementation of the Multi-Head Self-Attention

algorithm. In the previous sections, we implemented the feed-forward and backpropagation operations

of our CNeuronMHAttention class using standard MQL5 tools. Now, in order to fully utilize it in our

models, we need to complement it with file methods. The proper functioning of these methods is just as

important for industrial use as the correct functioning of the feed-forward and backpropagation

methods.

True, we can create a model and test its performance without saving the training results. However, to

conduct a repeated test, we will have to retrain our model from scratch. In real-life operations, we

wouldn't want to repeat the training process each time. On the contrary, quite often significant efforts

are invested in developing and training a model on large datasets, which enables the creation of a truly

functional model. At the same time, it is expected that during practical application, it will be sufficient

to start the model, and it will be fully ready to operate on real data. Therefore, when approaching the

development of file handling methods, we must design their functionality in such a way that we can fully

restore the model's state with minimal effort. Well, we have done this work several times already, so

let's use the established algorithm once again.

First, let's look at the structure of our multi-head attention class CNeuronMHAttention.

class CNeuronMHAttention    :  public CNeuronAttention

  {

protected:

   CNeuronConv       m_cW0;

   int               m_iHeads;

public:

                     CNeuronMHAttention(void);

                    ~CNeuronMHAttention(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //--- methods of working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override const { return(defNeuronMHAttention);  }

  };

Seemingly, there's nothing complicated here. In the class body, we declare only one convolution layer

m_ cW0 and one variable m_ iHeads indicating the number of attention heads used. Most of the objects

are inherited from the parent class CNeuronAttention. We already created a similar method when

working on the parent class, and now we can use it. I suggest looking again at the

CNeuronAttention::Save parent class method and making sure it has a save of all the data we need.

After that, we can start working on the method for saving the current class data. This time, everything

here is indeed very simple.
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In the parameters, the CNeuronMHAttention::Save method gets the handle of the file to which it will

write the data. In the body of the method, we immediately pass the obtained handle to a similar

method of the parent class, where all the control logic is already implemented. In addition to controls,

the parent class method also implements the saving of inherited objects and their data. Therefore, by

checking the result of the parent class method, we immediately get a consolidated result of passing

through the control block and saving inherited objects. We only need to save the number of attention

heads used and the m_ cW0 convolutional layer data.

bool CNeuronMHAttention::Save(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronAttention::Save(file_handle))

      return false;

//--- save constants

   if(FileWriteInteger(file_handle, m_iHeads) <= 0)

      return false;

//--- call the same method for all inner layers

   if(!m_cW0.Save(file_handle))

      return false;

//---

   return true;

  }

The CNeuronMHAttention::Load method loads data from a file in accordance with the sequence of their

recording. Therefore, in the body of the method, we immediately pass the received file handle as a

parameter to the corresponding method of the parent class and check the result.

bool CNeuronMHAttention::Load(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronAttention::Load(file_handle))

      return false;

After executing the operations of the parent class method, we read the number of attention heads used

and the data of the m_ cW0 internal convolution layer from the file. Loading a constant is very simple:

we just read the value from the file and save it to our m_ iHeads variable. But before calling the load

method, we must check the type of the object to be loaded. Only if the object types match, we call the

data loading method and check the result.

   m_iHeads = FileReadInteger(file_handle);

   if(CheckPointer(m_cW0) == POINTER_INVALID)

     {

      m_cW0 = new CNeuronConv();

      if(CheckPointer(m_cW0) == POINTER_INVALID)

         return false;

     }

   if(FileReadInteger(file_handle)!=defNeuronConv ||

      !m_cW0.Load(file_handle))

      return false;

It is expected that after the successful execution of the parent class operations, we will have fully

restored inherited objects. However, we inherited the objects but initialized them in the corresponding

method of this class with parameters different from the parent class. In this class, we adjusted almost
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all objects for the number of attention heads used. In the data loading method of the parent class, we

not only load data from the file but also initialize unsaved objects. These are objects whose data are

only used within a single iteration of feed-forward and backpropagation passes.

So, let's return to the parent class method and critically evaluate all the operations once again. Pay

attention to the following lines of code.

bool CNeuronAttention::Load(const int file_handle)

  {

  ......

   m_iUnits = FileReadInteger(file_handle);

  ......

   if(!m_cScores.BufferInit(m_iUnits, m_iUnits, 0))

      return false;

  ......

//---

   return true;

  }

They initialize the m_ cScores dependency coefficient matrix buffer. As you can see, the initialization is

done with zero values with the size sufficient for only one attention head. However, this does not satisfy

the requirements of our Multi-Head Self-Attention algorithm. It would make sense to add a

reinitialization of the buffer in our class loading method, giving it the necessary size. 

//--- initialize Scores

   if(!m_cScores.BufferInit(m_iHeads, m_iUnits * m_iUnits))

      return false;

//---

   return true;

  }

After completing all the operations, we exit the method with a positive result.

This completes the implementation of the CNeuronMHAttention class using standard MQL5 tools. We

have implemented the Multi-Head Self-Attention algorithm. In the next section, we will add the ability to

perform multi-threaded operations using OpenCL.

5.2.3 Organizing parallel computing for Multi-Head Self-Attention

We continue our steady progress on the path of knowledge and building a library for creating machine

learning models within the MQL5 environment. In this section, we are planning to complete work on

CNeuronMHAttention which is another class of neural layers. This class implements the Multi-Head Self-

Attention algorithm. In the previous sections, we have already fully implemented the algorithm using

standard MQL5 tools. Now let's supplement its functionality with the ability to use OpenCL technology

to organize the computation process in multi-threaded mode using GPU resources.

We have already implemented similar work for each of the previously discussed neural layers. Let me

remind you of the general algorithm for constructing this process. First, we create an OpenCL program.

Next, we enhance the main program code with the functionality for calling this program and passing the

necessary data in both directions. We will need to send the input data to the program before its

execution and calculate the results after its execution.
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As usual, we start by creating an OpenCL program. Do we really need to create a new program? Why

do we need to create new kernels? The answer is obvious: we need to implement functionality. But let's

recall that we inherited our class from a similar class implementing the Self-Attention algorithm. We

have repeatedly talked about the continuity of these algorithms. Can we use the kernels created earlier

to implement processes in this class?

Considering the similarity of processes, it would be more advantageous for us to use the same kernels

for both implementations. Firstly, this reduces the number of OpenCL objects, and the system can only

handle a limited number of them. Secondly, it's always more convenient to maintain and optimize one

object rather than duplicating shared blocks across multiple similar objects, be it kernels or classes.

So, how can we implement this? The previously created kernels work within the same head of

attention. Of course, on the main program side, we can copy data into separate buffers and

sequentially invoke kernels for each attention head. This approach is possible, but it is irrational.

Excessive copying of data in itself is not the best solution. Moreover, calling kernels sequentially for

each attention head doesn't allow for the simultaneous calculation of all attention heads in parallel

threads.

In fact, we can use the previously created kernels without unnecessary copying, by implementing some

minor modifications.

One thing we have already done from the very beginning when creating the class is fully utilizing

concatenated data buffers. That is, all our data buffers contain data from all attention heads at once.

By transferring data to context memory, we transfer data from all attention heads. This means that on

the OpenCL side, we can work with all attention heads in parallel. We just need to correctly determine

the offset in the data buffer to the required values. These are the changes that we must make to the

kernel.

To determine this bias, we need to understand the total number of attention heads used and the ordinal

number of the working attention head. We can pass the total quantity in parameters but can't do the

same for the serial number of the current one. To implement the transfer of such data, we would need

to create a loop with a sequential kernel call for each attention head, which we try to avoid.

Let's remember how the function of queuing the kernel is organized. The CLExecute function has a

work_ dim parameter, which is responsible for the dimension of the task space. The function also

receives in parameters a dynamic array global_ work_ size[], which indicates the total number of tasks

being performed in each dimension.

bool  CLExecute( 

// handle to the OpenCL program kernel 

   int          kernel,

// dimension of the problem space  

   uint         work_dim,

// initial offset in task space 

   const uint&  global_work_offset[],

// total number of tasks 

   const uint&  global_work_size[]

   );

Earlier we used only one dimension, and now we can use two. We will continue to use one dimension for

iterating over the elements of the sequence and the other dimension for iterating over the attention

heads.
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Well, a solution has been found and we can begin implementation. But there is one more question: to

create a new kernel or not. Everything points towards modifying the previously created one. But in this

case, after finishing the work, we will have to take a step back and adjust the methods of the

CNeuronAttention class. Otherwise, we will get a critical error when trying to launch the kernel.

For my part, I decided to make changes to the previously created kernel and the methods of the main

program. You can choose your preferred options.

Now, let's look at the changes made to the feed-forward kernel.

In the kernel body, we request the identifiers of the launched thread and the total number of threads in

two dimensions. The first dimension will specify the index of the processed request and the length of

the sequence. The second dimension will indicate the number of the active attention head.

We also determine the offset to the beginning of the vector being analyzed in the query tensor and the

attention coefficient matrix.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   const int h = get_global_id(1);

   const int heads = get_global_size(1);

   int shift_query = key_size * (q * heads + h);

   int shift_scores = units * (q * heads + h);

As you can see, compared to the previous version, the kernel differs by having a second dimension that

accounts for attention heads. Accordingly, the calculation of offsets is also adjusted to account for

multi-head attention.

Next, we create a system of two nested loops to calculate one vector of the matrix of dependence

coefficients. This is due to the fact that to calculate one element of the sequence at the output of the

attention block, we need a whole vector of the matrix of dependence coefficients. Such calculation

applies to one attention head.

Also, before starting the loop system, we will prepare a local variable summ to sum all the values of the

vector. We will need this sum later to normalize the vector values.

The outer loop has a number of iterations equal to the number of sequence elements. It will

immediately indicate the analyzed element in the key tensor Key and the column number in the

attention coefficient matrix. In the body of the loop, we will determine the offset in the key tensor to

the beginning of the vector of the analyzed element in the sequence and prepare a variable for

calculating the result of multiplying two vectors.

In the nested loop with a number of iterations equal to the size of the key vector, we will perform the

operation of multiplying the query vector by the key vector.

After completing the iterations in the nested loop, we will take the exponential of the obtained result

from the vector multiplication, record the resulting value in the tensor of attention coefficient matrices,

and add it to our sum of vector values. 
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   TYPE summ = 0;

   for(int s = 0; s < units; s++)

     {

      TYPE score = 0;

      int shift_key = key_size * (s * heads + h);

      for(int k = 0; k < key_size; k ++)

         score += querys[shift_query + k] * keys[shift_key + k];

      score = exp(score / sqrt((TYPE)key_size));

      summ += score;

      scores[shift_scores + s] = score;

     }

After completing all iterations of the loop system, we will have a vector with computed but

unnormalized attention coefficients for one query vector with respect to all key vectors. To complete

the vector normalization process, we need to divide the contents of the vector by the sum of all its

values, which we have collected in the summ variable.

To perform this operation, we will create another loop with the number of iterations equal to the

number of elements in the sequence.

   for(int s = 0; s < units; s++)

      scores[shift_scores + s] /= summ;

As you can see, this block differs from the previous implementation only in terms of calculating the

offsets of elements in tensors. Now that we have the normalized attention vector for one query with

respect to all elements in the key tensor sequence, we can calculate the weighted vector for one

element of the sequence at the output of one attention head. To do this, we will create a system of two

nested loops.

First, we will determine the offset in the result tensor to the beginning of the vector for the analyzed

element.

Then we will create an outer loop based on the number of elements in the result vector. In the body of

the loop, we will first prepare a variable for accumulating the value of one element of the vector. We will

create a nested loop with the number of iterations equal to the number of sequence elements, in which

we will iterate through all the elements of the tensor of values. In each element of the description

vector of an element, we will take one value corresponding to the counter of the outer loop iteration

and multiply it by the element of the normalized attention coefficient vector according to the counter

of the nested loop iteration. After completing the full cycle of iterations in the nested loop, the query

variable will contain one value of the description vector for the analyzed element of the attention block

sequence. We will write it to the corresponding element of the kernel work results buffer.

   shift_query = window * (q * heads + h);

   for(int i = 0; i < window; i++)

     {

      TYPE query = 0;

      for(int v = 0; v < units; v++)

         query += values[window * (v * heads + h) + i] * scores[shift_scores + v];

      outputs[shift_query + i] = query;

     }

  }

After completing the iterations of the outer loop, we will obtain a complete description vector for one

element of the sequence in the result tensor buffer.
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As you can see, the operations of one kernel result in one description vector for an element of the

sequence in the result tensor of one attention head. To calculate the complete tensor, we need to

launch a task pool with a size equal to the product of the number of elements in the sequence and the

number of attention heads. This is what we do when running the kernel in a two-dimensional task

space.

To transform the kernel from the single-head attention plane to multi-head attention, we simply needed

to organize the kernel launch in a two-dimensional space and adjust the offset calculations in the data

buffers.

Let's do a similar job with backpropagation kernels. As you may recall, in the Self-Attention block, in

contrast to the implementation of other neural layers, we implemented the propagation of the error

gradient through the internal space of the hidden neural layer using two consecutive kernels. So, we

need to transfer both kernels into the area of multi-head attention. However, let's consider things in

order.

First, we will look at the AttentionCalcScoreGradient kernel. The kernel parameters remain unchanged.

Here we have the same data buffers and one constant size of the description vector of one element.

__kernel void AttentionCalcScoreGradient(__global TYPE *scores,

                                         __global TYPE *scores_grad,

                                         __global TYPE *values,

                                         __global TYPE *values_grad,

                                         __global TYPE *outputs_grad,

                                         __global TYPE *scores_temp,

                                         int window)

  {

In the kernel body, similar to the feed-forward kernel, we add the retrieval of thread identification in

the second dimension and adjust the calculation of offsets in data buffers accordingly.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   const int h = get_global_id(1);

   const int heads = get_global_size(1);

   int shift_value = window * (q * heads + h);

   int shift_score = units * (q * heads + h);

We do not change the kernel algorithm. As with the implementation of the Self-Attention algorithm, the

kernel can be logically divided into two blocks.

In the first algorithm, we distribute the error gradient to the tensor of values Values  . Here we create a

system of two nested loops. The outer loop will have a number of iterations equal to the size of the

description vector of one sequence element in the value tensor. In the loop body, we create a local

variable to collect the error gradient of the analyzed element.

It should be understood that during the feed-forward pass, each element in the sequence of the value

tensor has a significant influence on the value of each element in the sequence of the result tensor. The

strength of this influence is determined by the corresponding column of the attention coefficient matrix,

where each row corresponds to one element in the sequence tensor of results. Therefore, to obtain the

error gradient vector for one element in the sequence tensor of values, we need to multiply the

corresponding column of the attention coefficient matrix by the error gradient tensor at the level of the

attention block results.
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To perform this operation, we organize a nested loop with the number of iterations equal to the number

of elements in the sequence. In the body of this loop, we will multiply two vectors and write the result

to the corresponding element of the error gradient buffer of the value tensor.

//--- Distributing the gradient on Values

   for(int i = 0; i < window; i ++)

     {

      TYPE grad = 0;

      for(int g = 0; g < units; g++)

         grad += scores[units * (g * heads + h) + q] *

                 outputs_grad[window * (g * heads + h) + i];

      values_grad[shift_value + i] = grad;

     }

Here, we made changes only in terms of determining the offsets to the analyzed elements in the data

buffers.

The second block of this kernel is responsible for propagating the gradient to the level of the

dependency coefficient matrix. First, we create a system of two nested loops and calculate the error

gradient for one row of the dependency coefficient matrix. There is a very important moment here. We

calculate the error gradient specifically for a matrix row, not a column. The normalization of the matrix

with the Softmax function was performed row-wise, so we should also adjust it row-wise with respect to

the Softmax derivative. To determine the error gradient for one row of the matrix, we need to take the

corresponding vector from the error gradient tensor at the level of attention block results and multiply

it by the key tensor of the corresponding attention head.

To perform the multiplication operation, we organize a nested loop.

//--- Gradient distribution on Score

   for(int k = 0; k < units; k++)

     {

      TYPE grad = 0;

      for(int i = 0; i < window; i++)

         grad += outputs_grad[shift_value + i] * 

                 values[window * (k * heads + h) + i];

      scores_temp[shift_score + k] = grad;

     }

After running a full cycle of iterations of our tensor loop system, we will obtain a single row of error

gradients for the dependency coefficient matrix. Before passing the error gradient further, it is

necessary to correct it by the derivative of the Softmax function.
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//--- Adjust for the Softmax derivative

   for(int k = 0; k < units; k++)

     {

      TYPE grad = 0;

      TYPE score = scores[shift_score + k];

      for(int i = 0; i < units; i++)

         grad += scores[shift_score + i] *

                 ((int)(i == k) - score) * scores_temp[shift_score + i];

      scores_grad[shift_score + k] = grad;

     }

  }

The operation results are written into the corresponding elements of the error gradient tensor.

This completes the work with the first kernel of the backpropagation algorithm. As you may have

noticed, the changes affected only the definition of the offset in the data buffers and the additional

dimension of the task space.

Let's move on to the second kernel of the AttentionCalcHiddenGradient error backpropagation

algorithm. In this kernel, we need to propagate the error gradient from the dependency coefficient

matrix to the buffers of the m_ cQuerys and m_ cKeys internal neural layers.

This operation is not difficult from a mathematical point of view. We have already determined the error

gradient at the level of the dependency coefficient matrix in the previous kernel. Now we need to

multiply the dependency coefficient matrix by the opposite tensor.

As in the previous kernel, the kernel header and parameters have not changed at all. Here we see the

same set of buffers and parameters.

__kernel void AttentionCalcHiddenGradient(__global TYPE *querys,

                                          __global TYPE *querys_grad,

                                          __global TYPE *keys,

                                          __global TYPE *keys_grad,

                                          __global TYPE *scores_grad,

                                          int key_size)

  {

In the kernel body, we identify the thread in two dimensions of tasks. The second dimension has been

added for the identification of the active attention head. We adjust the offsets in the gradient buffers

accordingly, ensuring they are aligned with the elements of the sequence being analyzed.

   const int q = get_global_id(0);

   const int units = get_global_size(0);

   const int h = get_global_id(1);

   const int heads = get_global_size(1);

   int shift_query = key_size * (q * heads + h);

   int shift_score = units * (q * heads + h);

As mentioned earlier, in the kernel body, we need to distribute the error gradient to two internal neural

layers from a single source. The same algorithm is used for gradient error distribution in both

directions. And both recipient vectors have the same size. All of this allows us to calculate the error

gradient for both tensors in parallel within the body of a single loop system. The number of iterations in

the outer loop is equal to the size of the vector for which we are calculating the error gradient. In its

body, we prepare variables for accumulating the error gradients and create a nested loop with a
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number of iterations equal to the number of elements in the sequence. In the body of the nested loop,

we simultaneously calculate values from the product of two pairs of vectors.

//--- Propagate the gradient on Querys and Keys

   const TYPE k = 1 / sqrt((TYPE)key_size);

//---

   for(int i = 0; i < key_size; i++)

     {

      TYPE grad_q = 0;

      TYPE grad_k = 0;

      for(int s = 0; s < units; s++)

        {

         grad_q += keys[key_size * (s * heads + h) + i] *

                   scores_grad[shift_score + s];

         grad_k += querys[key_size * (s * heads + h) + i] *

                   scores_grad[units * (s * heads + h) + q];

        }

      querys_grad[shift_query + i] = grad_q * k;

      keys_grad[shift_query + i] = grad_k * k;

     }

  }

After exiting the nested loop, each variable has one value for the error gradient vectors of the required

tensors. We write them into the corresponding elements of the tensors. After completing the full

number of iterations of the loop system, we obtain the two desired vectors of error gradients.

We finish working with OpenCL program kernels. Here, we have only made slight changes to the kernels

of the Self-Attention algorithm to transfer them to the area of   multi-headed attention.

Now we have to supplement the main program with the functionality of calling kernel data from

methods of both the CNeuronAttention class and the CNeuronMHAttention class. We usually start this

work by creating constants for working with kernels. But in this case, the constants have already been

created.

Next, we created kernels in the OpenCL context. But this time we did not create new kernels. The ones

that we slightly adjusted are already declared in the body of the main program. Therefore, we skip this

step too.

Let's move on to making changes directly to class methods. For new kernels to work in the

CNeuronAttention class, we add a second element to the offset and task space arrays. For offset, we

specify 0 in both dimensions. For the task space, we leave the first value unchanged, and in the second

element of the array, we introduce 1 (indicating the use of a single attention head). Additionally, when

enqueueing the kernel for execution, we specify the two-dimensionality of the task space.

      int off_set[] = {0, 0};

      int NDRange[] = {m_iUnits, 1};

      if(!m_cOpenCL.Execute(def_k_AttentionFeedForward, 2, off_set, NDRange))

         return false;

After this, we can fully use the updated feed-forward kernel. 

We do such simple manipulations to call all three kernels in the methods of the CNeuronAttention class.
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So, we have restored the functionality of the methods of the CNeuronAttention class, which implements

the Self-Attention algorithm. There are also some changes on the main program side.

Let's move on to working on our CNeuronMHAttention class with the implementation of the Multi-Head

Self-Attention algorithm. As usual, we'll start with the feed-forward method. Before we queue the

kernel for operations, we need to do some preparatory work. First of all, we check the presence of the

necessary buffers in the OpenCL context memory.

bool CNeuronMHAttention::FeedForward(CNeuronBase *prevLayer)

  {

   ......

//--- branching of the algorithm across the computing device

   MATRIX out;

   if(!m_cOpenCL)

     {

   ......

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cQuerys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cKeys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cValues.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cScores.GetIndex() < 0)

         return false;

      if(m_cAttentionOut.GetOutputs().GetIndex() < 0)

         return false;

After checking all the necessary buffers, we pass pointers to the buffers to the kernel parameters.

There we also pass the constants necessary for the operation of the kernel.

Please note that when passing parameters to the kernel, we specified the m_ iKeysSize variable, which

contains the size of the key vector for one element of the sequence, twice. We specified it for both the

key vector size parameter and the value vector size parameter. Two parameters in the kernel are a

necessary measure. When using a single attention head, for the size of the value vector, we would need

to specify the size of the input data vector. This is a requirement of the Self-Attention algorithm.

However, when using multi-head attention, the W0 matrix allows us to use different sizes for the value

vector.
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      //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward,

                                 def_attff_keys, m_cKeys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward,

                      def_attff_outputs, m_cAttentionOut.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward,

                             def_attff_querys, m_cQuerys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward,

                                          def_attff_scores, m_cScores.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward,

                             def_attff_values, m_cValues.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward,

                                                 def_attff_key_size, m_iKeysSize))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward,

                                                   def_attff_window, m_iKeysSize))

         return false;

This concludes the preparatory work, and we can move on to organizing the kernel launch procedure.

To do this, we indicate the size of the problem space in two dimensions. In the first dimension, we

indicate the size of the sequence; in the second one, we indicate the number of attention heads. Let's

call the method for adding the kernel to the execution queue.

      //--- putting the kernel into the execution queue

      int off_set[] = {0, 0};

      int NDRange[] = {m_iUnits, m_iHeads};

      if(!m_cOpenCL.Execute(def_k_AttentionFeedForward, 2, off_set, NDRange))

         return false;

     }

Here, we conclude our work on the feed-forward method and transition to the CalcHiddenGradient

method that propagates the error gradient through the hidden layer. To implement the process of this

method, we have prepared two kernels, which we need to launch sequentially. First, we will run the

error gradient propagation kernel up to the AttentionCalcScoreGradient dependency coefficient matrix.

The algorithm for carrying out the preparatory work and launching the kernel is similar to what we used

above when launching the forward pass kernel.
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bool CNeuronMHAttention::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- branching of the algorithm across the computing device

   if(!m_cOpenCL)

     {

   ......

   // MQL5 block

     }

   else // OpenCL block

     {

      //--- check data buffers

      if(m_cValues.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cValues.GetGradients().GetIndex() < 0)

         return false;

      if(m_cScores.GetIndex() < 0)

         return false;

      if(m_cAttentionOut.GetGradients().GetIndex() < 0)

         return false;

      if(m_cScoreGrad < 0)

         return false;

      if(m_cScoreTemp < 0)

         return false;

After checking the buffers, we pass pointers to them and the necessary constants as parameters to the

kernel.
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      //--- passing parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

               def_attscr_outputs_grad, m_cAttentionOut.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                          def_attscr_scores, m_cScores.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                             def_attscr_scores_grad, m_cScoreGrad))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                                             def_attscr_scores_temp, m_cScoreTemp))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                             def_attscr_values, m_cValues.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients,

                      def_attscr_values_grad, m_cValues.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionScoreGradients,

                                                   def_attscr_window, m_iKeysSize))

         return false;

We place the kernel in the queue for performing operations. As with the feed-forward pass, we create a

two-dimensional task space. In the first dimension, we specify the number of elements being analyzed

in the sequence, and in the second dimension, we specify the number of attention heads.

      //--- place the kernel into the execution queue

      int off_set[] = {0, 0};

      int NDRange[] = {m_iUnits, m_iHeads};

      if(!m_cOpenCL.Execute(def_k_AttentionScoreGradients, 2, off_set, NDRange))

         return false;

We immediately begin the preparatory work before launching the second kernel. Checking the data

buffers in the OpenCL context memory. Only those buffers that we did not check when launching the

first kernel are subject to verification.

      //--- check data buffers

      if(m_cQuerys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cQuerys.GetGradients().GetIndex() < 0)

         return false;

      if(m_cKeys.GetOutputs().GetIndex() < 0)

         return false;

      if(m_cKeys.GetGradients().GetIndex() < 0)

         return false;

We pass pointers to data buffers to the parameters of the second kernel. We also add the necessary

constants there.
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      //--- pass arguments to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                                def_atthgr_keys, m_cKeys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                         def_atthgr_keys_grad, m_cKeys.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                            def_atthgr_querys, m_cQuerys.GetOutputs().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                     def_atthgr_querys_grad, m_cQuerys.GetGradients().GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients,

                                            def_atthgr_scores_grad, m_cScoreGrad))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_AttentionHiddenGradients, 

                                                def_atthgr_key_size, m_iKeysSize))

         return false;

After completing the preparatory work, we call the method for placing the kernel in the tasks execution

queue. Please note that this time we are not creating new arrays specifying the task space because it

has not changed, and we can use the existing arrays from the previous kernel launch.

      //--- place the kernel into the execution queue

      if(!m_cOpenCL.Execute(def_k_AttentionHiddenGradients, 2, off_set, NDRange))

         return false;

     }

This concludes our work on the implementation of the Multi-Head Self-Attention algorithm, including

general and multi-threaded calculations. We have implemented all the functionality of the

CNeuronMHAttention class. Now we can proceed with comprehensive testing of its performance using

training and testing datasets.

5.2.4 Building Multi-Head Self-Attention in Python

We have already implemented the Multi-Head Self-Attention algorithm using MQL5 and have even added

the ability to perform multi-threaded calculations using OpenCL. Now let's look at an option for

implementing such an algorithm in Python using the Keras library for TensorFlow. We had to deal with

this library when creating previous models. Indeed, up to this point, we have been using only pre-built

neural layers offered by the library, and with their help, we constructed linear models.

The Multi-Head Self-Attention model cannot be called linear. The parallel work of several heads of

attention in itself is a rejection of the linearity of the model. In the Self-Attention algorithm itself, the

source data simultaneously goes in four directions.
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Therefore, to build a Multi-Head Self-Attention model, we will consider another functionality offered by

this library, which is creating custom neural layers.

A layer is a callable object that takes one or more tensors as input and outputs one or more tensors. It

includes computation and status. 

All neural layers in the Keras library represent classes inherited from the tf.keras.layers.Layer base

class. Therefore, when creating a new custom neural layer, we will also inherit from the specified base

class.

The base class provides the following parameters:

· trainable – flag that indicates the need to train the parameters of the neural layer

· name – layer name

· dtype – type of layer results and weighting factors

· dynamic – flag that indicates that the layer cannot be used to create a graph of static calculations

tf.keras.layers.Layer(

    trainable=True, name=None, dtype=None, dynamic=False, **kwargs

)

Also, the library architecture defines a minimum set of methods for each layer:

· _ _ init_ _  – layer initialization method

· call – calculation method (feed-forward pass)

In the initialization method, we define the custom attributes of the layer and create weight matrices,

the structure of which does not depend on the format and structure of the input data. However, when
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solving practical problems, we often do not know the structure of the input data, and as a result, we

cannot create weight matrices without understanding the dimensionality of the input data. In such

cases, the initialization of weight matrices and other objects is transferred to the build(self,

input_ shape) method. This method is called once, during the first call of the call method.

The call method describes the forward-pass operations that must be performed with the initial data.

The results of the operations are returned as one or more tensors. For layers used in linear models,

there is a restriction on the result in the form of a single tensor.

Each neural layer has the following attributes (a list of the most commonly used attributes is provided):

· name – layer name

· dtype – type of weighting factors

· trainable_ weights – list of variables to be trained

· non_ trainable_ weights – list of non-trainable variables

· weights – combines lists of trainable and non-trainable variables

· trainable – logical flag that indicates the need to train layer parameters

· activity_ regularizer – additional regularization function for the output of the neural layer.

The advantages of this implementation are obvious: we are not creating backpropagation methods. All

functionality is implemented by the library. We just need to correctly describe the logic of the feed-

forward pass in the call method.

This approach makes it possible to create rather complex architectural solutions. Moreover, the

created layer may contain other nested neural layers. At the same time, the parameters of the internal

neural layers are included in the list of parameters of the external neural layer.
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5.2.4.1 Creating a new neural layer class

Let's get to the practical part and look at the implementation of our multi-head attention neural layer.

To implement it, we create a new MHAttention class that inherits from the base class of all neural

layers tf.keras.layers.Layer.

# Multi-Head Self-Attention Model

class MHAttention(tf.keras.layers.Layer):

First, we'll override the layer initialization method _ _ init_ _ . In the parameters of the initialization

method, we will specify two constants:

· key_ size – size of the vector describing one element of the sequence in the tensor of Keys

· heads – number of attention heads

In the body of the method, we will save the parameters in local variables for future use and immediately

calculate the size of the concatenated output of attention heads into the variable m_ iDimension.

For your convenience, I made an effort to repeat the names of variables from the MQL5

implementation as much as possible.

Next, we declare the internal objects of our neural layer. However, note that in this case, we do not

specify the vector size of one element of the source data sequence. This is made possible by the use of

multidimensional tensors.

The TensorFlow library works with multidimensional arrays or tensors represented as objects. This

approach makes understanding the model more convenient and visual. To be able to implement the

task in OpenCL, we were forced to use one-dimensional data buffers. To gain access to the required

element, we calculated the offset in the one-dimensional buffer. Now, when using multidimensional

arrays, to access the matrix element, we just need to specify the row and column of the element. It is

convenient and clear.

Another advantage of this approach is that we do not need to specify the dimension of the source data.

We can get it from the tensor itself. We will take advantage of this. We won't ask the user for the size

of the description vector for one element of the input data sequence. Instead, we will receive the input

data tensor as a matrix. Each line of such a matrix is a vector description of one element of the

sequence. We can operate with the size of this vector. That is, the first dimension indicates the number

of elements of the sequence, and the second means the length of the description vector of one element

of the sequence.

However, there is also the other side of the coin. At the time of class initialization, we have not yet

received the initial data. So, we do not know its size, as the user did not specify them in the

parameters. Therefore, we cannot create all objects in the initialization method. But it doesn't matter.

We will do what we can.

In the initialization method, we will declare objects that can be created without understanding the

dimension of the source data:

· m_ cQuerys – neural layer for the formation of the concatenated tensor of queries Query

· m_ cKeys – neural layer for the formation of the concatenated tensor of keys Key

· m_ cValues – neural layer for the formation of the concatenated tensor of values Values

· m_ cNormAttention – data normalization layer for the Multi-Head Self-Attention block

· m_ cNormOutput – normalization layer for the results of the neural layer
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  def __init__(self,key_size, heads, **kwargs):

    super(MHAttention, self).__init__(**kwargs)

    self.m_iHeads = heads

    self.m_iKeysSize = key_size

    self.m_iDimension=self.m_iHeads*self.m_iKeysSize;

    self.m_cQuerys = tf.keras.layers.Dense(self.m_iDimension)

    self.m_cKeys = tf.keras.layers.Dense(self.m_iDimension)

    self.m_cValues = tf.keras.layers.Dense(self.m_iDimension)

    self.m_cNormAttention=tf.keras.layers.LayerNormalization(epsilon=1e-6)

    self.m_cNormOutput=tf.keras.layers.LayerNormalization(epsilon=1e-6)

After creating the initialization method, we proceed to the build method. This method will allow us to

initialize the missing objects. This method is run only once before the first call of the call method. It

receives the source data size in the parameters. Knowing this size, we can initialize objects, structures,

and/or parameters that depend on the size of the source data.

In the method body, we save the last dimension of the source data tensor as the size of the description

vector of one element of the source data sequence to the m_ iWindow local variable. After that, we will

create three more internal neural layers:

· m_ cW0 – fully connected layer of the reduction matrix W
0

· m_ cFF1 – the first fully connected layer of the Feed Forward block

· m_ cFF2 – the second fully connected layer of the Feed Forward block

  def build(self, input_shape):

    self.m_iWindow=input_shape[-1]

    self.m_cW0 = tf.keras.layers.Dense(self.m_iWindow)

    self.m_cFF1=tf.keras.layers.Dense(4*self.m_iWindow,

                                      activation=tf.nn.swish)

    self.m_cFF2=tf.keras.layers.Dense(self.m_iWindow)

So, we have defined all the internal objects necessary to implement the Multi-Head Self-Attention

algorithm inside our new layer. Before proceeding with the implementation, let's once again look at how

we can write the algorithm of multi-head attention using matrix mathematics since when working with

multidimensional tensors, we must operate with matrix operations.

The first step is to define the Query, Key, and Value tensors. To obtain query data, we need to multiply

the tensor of the source data by the corresponding matrix of weights. This operation is performed in

three internal neural layers.

  def call(self, data):

    batch_size = tf.shape(data)[0]

    query = self.m_cQuerys(data)

    key = self.m_cKeys(data)

    value = self.m_cValues(data)

The second step is to determine the matrix of dependency coefficients. According to the Self-Attention

algorithm, we first need to multiply the query tensor by the transposed key tensor.
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Everything is simple for just one attention head. But we have concatenated tensors, which in the last

dimension contain the data of all attention heads. Multiplying them in this form will give us a result

comparable to one-headed attention. As an option, we can transform the two-dimensional tensor into a

three-dimensional one, separating the attention head into a distinct dimension.

Multiplying the last two dimensions in this form is also not quite what we would like to get. However, if

we swap the first and second dimensions, then we can multiply the last two dimensions to get the result

we are looking for.

The described procedure will be placed in a separate function split_ heads.

  def split_heads(self, x, batch_size):

    x = tf.reshape(x, (batch_size, -1,

                                self.m_iHeads, 

                                self.m_iKeysSize))

    return tf.transpose(x, perm=[0, 2, 1, 3])

Inside the call method, we transform tensors and multiply them according to the Self-Attention

algorithm.

    query = self.split_heads(query, batch_size)

    key = self.split_heads(key, batch_size)

    value = self.split_heads(value, batch_size) 

    score = tf.matmul(query, key, transpose_b=True)

Next, we need to divide the obtained dependence coefficients by the square root of the dimension of

the key vector and normalize it with the Softmax function according to the last dimension of the tensor.

    score = score / tf.math.sqrt(tf.cast(self.m_iKeysSize, tf.float32))

    score = tf.nn.softmax(score, axis=-1)

Now we only need to multiply the normalized dependency coefficients by the Value tensor.

    attention = tf.matmul(score, value)

As a result of this operation, we will get the attention block result for each attention head. To continue

the algorithm, we need a concatenated tensor of all attention heads. Therefore, we need to carry out

the reverse procedure of the tensor transformation. Once again, we rearrange the first and second

dimensions and change the dimension of the tensor from three-dimensional to two-dimensional.

    attention = tf.transpose(attention, perm=[0, 2, 1, 3])

    attention = tf.reshape(attention,(batch_size, -1, self.m_iDimension))

After that, using the W
0 

matrix, we convert the concatenated tensor of the results to the size of the

tensor of the initial data. Add the two tensors and normalize the result.

    attention = self.m_cW0(attention)

    attention=self.m_cNormAttention(data + attention)

This concludes the first block of the Multi-Head Self-Attention algorithm, followed by two consecutive

fully connected layers of the Feed Forward block. The first neural layer will be with the Swish activation

function, and the second one will have no activation function.
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    output=self.m_cFF1(attention)

    output=self.m_cFF2(output)

At the end of the method, we add the result tensors of the Multi-Head Self-Attention and Feed Forward

blocks and normalize the layer. The result of the operations is returned in the form of a tensor.

    output=self.m_cNormOutput(attention+output)

    return output

We have implemented a minimal set of methods of the class, sufficient to test its functionality.

However, we will not be able to save the model with this class in this form. This is not good because our

goal is to build and train a model with the subsequent possibility of practical use. Therefore, the ability

to save the model and then restore it is one of the key requirements.

First, to enable the saving of the new object, which is our neural layer, it is necessary to add it to the

list of custom objects and provide serialization capabilities for the object. This allows us to make a

directive register_ keras_ serializable, which we will add before declaring the class of our neural layer.

# Multi-Head Self-Attention model

@tf.keras.utils.register_keras_serializable(package="Custom", name='MHAttention')

class MHAttention(tf.keras.layers.Layer):

But that's not all. We still need to add the get_ config method, which will return the contents of

variables to save to a file. Note that among the variables there are both those specified by the user

when initializing the class object and those saved from the size of the initial data. Our weights are tuned

to these dimensions.

  def get_config(self):

    config={'key_size': self.m_iKeysSize,

            'heads': self.m_iHeads,

            'dimension': self.m_iDimension,

            'window': self.m_iWindow

            }

    base_config = super(MHAttention, self).get_config()

    return dict(list(base_config.items()) + list(config.items()))

The from_ config method is responsible for restoring data from the configuration list. However, please

note the following. In the usual logic, the parameters from the class initialization method are specified

in the configuration dictionary. But we also saved data that depends on the size of the initial data. And,

as you remember, they are not included in the parameters of the initialization method. In its pure form,

we will get an error about the presence of unknown parameters. Therefore, at the beginning of the

method, we remove them from the configuration directory, but at the same time save the values to

local variables. And only after that, we restore the layer.

  @classmethod

  def from_config(cls, config):

    dimension=config.pop('dimension')

    window=config.pop('window')

    layer = cls(**config)

    layer._build_from_signature(dimension, window)

    return layer             

After initializing our neural layer from the configuration dictionary, we need to pass the values we

previously extracted about the configuration of the input data into the respective variables. To perform

this functionality, we will call the _build_from_signature method, which we will also have to override.
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  def _build_from_signature(self, dimension, window):

    self.m_iDimension=dimension

    self.m_iWindow=window           

With that, we conclude our work on the class of our neural layer and can move on to creating a model

to test the newly created Multi-Head Self-Attention neural layer.
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5.2.4.2 Creating a script to test Multi-Head Self-Attention

To test the operation of our new class of the Multi-Head Self-Attention neural layer, we will create a

script with the implementation of the neural network model, in which we will use the new type of neural

layer. We will create our script based on the lstm.py script, which we used earlier to test recurrent

models. Before we start, let's create a copy of the specified script with the file name attention.py. In

the new copy of the script, we will delete the previously created models, leaving only the convolution

model and the best recurrent model. They will serve as a basis for comparing new models.

# A model with a 2-dimensional convolutional layer

model3 = keras.Sequential([keras.Input(shape=inputs),

                           # Reformat the tensor into a 4-dimensional one.

        # Specify 3 dimensions, as the 4th dimension is determined by the size of the packet

                           keras.layers.Reshape((-1,4,1)), 

                           # A convolution layer with 8 filters

                           keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),

                           # Subsample layer

                           keras.layers.MaxPooling2D((2,1),strides=1),                         

        # Reformat the tensor to 2-dimensional for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

# LSTM block model with no fully connected layers

model4 = keras.Sequential([keras.Input(shape=inputs),

        # Reformat the tensor into 3-dimensional.

        # Specify 2 dimensions, as the 3rd dimension is determined by the size of the batch

                           keras.layers.Reshape((-1,4)), 

        # 2 consecutive LSTM blocks

        # 1 contains 40 elements  

                           keras.layers.LSTM(40,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5),

                           return_sequences=False),

        # 2nd gives the result instead of a fully connected layer

                           keras.layers.Reshape((-1,2)), 

                           keras.layers.LSTM(targerts) 

                         ])

To build the initial model, we created a fairly simple architecture consisting of one attention layer,

three fully connected hidden layers, and one fully connected output layer. We used almost the same

model architecture above to build the convolutional model. The use of similar models enables the

accurate evaluation of the impact of new solutions on the overall performance of the model.
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heads=8

key_dimension=4

model5 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

        # Reformat the tensor into 3-dimensional. Specify 2 dimensions,

        # as the 3rd dimension is determined by the size of the batch

        # first dimension is for sequence elements

        # second dimension is for the vector describing of one element

                           keras.layers.Reshape((-1,4)), 

                           MHAttention(key_dimension,heads),

Since our attention layer returns a tensor of the same size as its input, we need to reshape the data

into a two-dimensional space before using the block of fully connected layers.

        # Reformat the tensor to 2-dimensional for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish, 

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

It should be noted that despite the external similarity of the models, the model utilizing the attention

mechanism layer uses five times fewer parameters.

However, using a single attention layer is a simplified model and is employed solely for comparative

experimentation purposes. In practice, it's more common to use multiple consecutive attention layers.

I suggest evaluating the impact of multiple attention layers used in the model on real-world data. To

conduct such an experiment, we will sequentially add three more attention layers with the same

parameters to our previous model.
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Model using the Multi-Heads Self-Attention layer

model6 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

        # Reformat the tensor into 3-dimensional. Specify 2 dimensions,

        # as the 3rd dimension is determined by the size of the package

        # first dimension is for sequence elements

        # second dimension is for the vector describing one element

                           keras.layers.Reshape((-1,4)), 

                           MHAttention(key_dimension,heads), 

                           MHAttention(key_dimension,heads), 

                           MHAttention(key_dimension,heads), 

                           MHAttention(key_dimension,heads), 

        # Reformat the tensor to 2-dimensional for fully connected layers

                           keras.layers.Flatten(),

                           keras.layers.Dense(40, activation=tf.nn.swish, 

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish, 

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(40, activation=tf.nn.swish,

        kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), 

                           keras.layers.Dense(targerts, activation=tf.nn.tanh) 

                         ])

We will compile all neural models with the same parameters: the Adam optimization method, standard

deviation as the network error, and an additional accuracy metric.

model3.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

We compiled neural network models with the same parameters as before.

Recurrent models are sensitive to the sequence of input signals provided. Therefore, when training a

recurrent neural network, unlike the other models, you cannot shuffle the input data. Exactly for this
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purpose, when launching a recurrent model, we set the shuffle parameter to False. The convolution

model and models using the attention layer have this parameter set to True. The remaining training

parameters for the models remain unchanged, including the early stopping criterion when reaching a

minimum error on the training dataset.

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=20)

history3 = model3.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.01,

                      shuffle=True)

After slightly training the models, we visualize the results. We plot two graphs. On one of them, we will

display the dynamics of error changes during the training and validation process.

# Plot the results of model training

plt.figure()

plt.plot(history3.history['loss'], label='Conv2D train')

plt.plot(history3.history['val_loss'], label='Conv2D validation')

plt.plot(history4.history['loss'], label='LSTM only train')

plt.plot(history4.history['val_loss'], label='LSTM only validation')

plt.plot(history5.history['loss'], label='MH Attention train')

plt.plot(history5.history['val_loss'], label='MH Attention validation')

plt.plot(history6.history['loss'], label='MH Attention 4 layers train')

plt.plot(history6.history['val_loss'], label='MH Attention 4 layers validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics')

plt.legend(loc='upper right', ncol=2)

In the second graph, we plot similar results for Accuracy.

plt.figure()

plt.plot(history3.history['accuracy'], label='Conv2D train')

plt.plot(history3.history['val_accuracy'], label='Conv2D validation')

plt.plot(history4.history['accuracy'], label='LSTM only train')

plt.plot(history4.history['val_accuracy'], label='LSTM only validation')

plt.plot(history5.history['accuracy'], label='MH Attention train')

plt.plot(history5.history['val_accuracy'], label='MH Attention validation')

plt.plot(history6.history['accuracy'], label='MH Attention 4 layers train')

plt.plot(history6.history['val_accuracy'], label='MH Attention 4 layers validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics')

plt.legend(loc='lower right', ncol=2)

Then we will load the test dataset and evaluate the performance of the pretrained models on it.
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# Load testing dataset

test_filename = os.path.join(path,'test_data.csv')

test = np.asarray( pd.read_table(test_filename,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

# Split the test sample into input data and targets

test_data=test[:,0:inputs]

test_target=test[:,inputs:]

# Validation of model results on a test sample

test_loss3, test_acc3 = model3.evaluate(test_data, test_target, verbose=2) 

test_loss4, test_acc4 = model4.evaluate(test_data, test_target, verbose=2) 

test_loss5, test_acc5 = model5.evaluate(test_data, test_target, verbose=2) 

test_loss6, test_acc6 = model6.evaluate(test_data, test_target, verbose=2) 

The results of the model's performance on the test sample will be numerically logged and visualized on

the graph.
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# Output test results to the log

print('Conv2D model')

print('Test accuracy:', test_acc3)

print('Test loss:', test_loss3)

print('LSTM only model')

print('Test accuracy:', test_acc4)

print('Test loss:', test_loss4)

print('MH Attention model')

print('Test accuracy:', test_acc5)

print('Test loss:', test_loss5)

print('MH Attention 4l Model')

print('Test accuracy:', test_acc5)

print('Test loss:', test_loss5)

plt.figure()

plt.bar(['Conv2D','LSTM', 'MH Attention','MH Attention\n4 layers'],

        [test_loss3,test_loss4,test_loss5,test_loss6])

plt.ylabel('$MSE$ $loss$')

plt.title('Test results')

plt.figure()

plt.bar(['Conv2D','LSTM', 'MH Attention','MH Attention\n4 layers'],

        [test_acc3,test_acc4,test_acc5,test_acc6])

plt.ylabel('$Accuracy$')

plt.title('Test results')

plt.show()

We finalize our work on the Multi-Head Self-Attention mechanism. We have recreated this mechanism

by means of MQL5 and in Python. In this section, we have prepared a Python script that creates a total

of four neural network models:

· Convolution model

· Recurrent neural network

· Two models using Multi-Head Self-Attention technology

While running the script, we will conduct a brief training session for all four models using the same

dataset. We will compare the performance of the trained models on the test dataset and analyze the

results. This will allow us to compare the performance of various architectural solutions on real-world

data. The test results will be provided in the next chapter.

5.2.5 Comparative testing of Attention models

We have done a lot of work while studying and implementing the Multi-Head Self-Attention algorithm.

We even managed to implement it on several platforms. Earlier we created new classes only for our

library in MQL5. This time we got acquainted with the possibility of creating custom neural layers in

Python using the TensorFlow library. Now it's time to look at the results of our labor and evaluate the

opportunities offered to us by the new technology.

As usual, we start testing with models created using standard MQL5 tools. We have already started this

work when testing the operation of the Self-Attention algorithm. To run the new test, we will take

attention_ test.mq5 from the previous test and create a copy of it named attention_ test2.mq5.
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When creating a new class for multi-head attention, we largely inherited processes from the Self-

Attention algorithm. In some cases, methods were inherited entirely, while in others they used the Self-

Attention methods as a foundation and created new functionality through minor adjustments. So here,

the testing script will not require major changes, and all changes will affect only the block for declaring

a new layer.

Our first change is, of course, the type of neural layer we are creating. In the type parameter, we will

specify the defNeuronMHAttention constant, which corresponds to the multi-head attention class.

We also need to indicate the number of attention heads used. We will specify this value in the step

parameter. I agree that the name of the parameter is not at all consonant. However, I decided not to

create an additional parameter but to use the available free fields instead.

After that, we will once again go through the script code and carefully examine the key checkpoints for

executing operations.

That's it. Such changes are sufficient for the first test to evaluate the net impact of the solution

architecture on the model results.

//--- Attention layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronMHAttention;

   descr.count = BarsToLine;

   descr.window = NeuronsToBar;

   descr.window_out = 8;

   descr.step = 8;                // Number of attention heads

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

We conducted the testing directly on the same training dataset, keeping all other model parameters

unchanged. Their results are shown in the graph below.

We have seen that even the use of Self-Attention gives us superiority over the previously considered

architectural solutions of convolutional and recurrent models. Increasing the attention heads also yields

a positive result.

The presented graphs depicting the neural network error dynamics on the training dataset clearly show

that models using the attention mechanism train much faster than other models. Increasing the

number of parameters when adding attention heads requires slightly more training time. However, this

increase is not critical. At the same time, additional attention heads can reduce the error in the model

operation.



5. Attention mechanisms

558

5.2 Multi-Head attention

Comparative Testing of Attention Models

If we zoom in we can clearly see that the error of models using the attention mechanism remains lower

throughout the entire training. At the same time, the use of additional attention heads further improves

the performance.

Comparative Testing of Attention Models
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Note that the model using the convolutional layer has the highest number of trainable parameters. This

provides an additional reason to reconsider the rationality of resource usage and start exploring new

technologies that emerge every day.

When talking about the rational use of resources, I also want to caution against an inadequate increase

in the number of attention heads being used. Each attention head means the consumption of additional

resources. Find a balance between the amount of resources consumed, and the benefits that they give

to the overall result. There is no universal answer. Such a decision should be made on a case-by-case

basis.

The results of test training of models written in Python also confirm the above conclusions. Models that

employ attention mechanisms train faster and are also less susceptible to model overfitting. This is

confirmed by a smaller gap between the error graphs for training and validation. Increasing the number

of used attention layers allows the reduction of the overall model error under otherwise equal

conditions.

As you zoom in, you'll notice that models using attention mechanisms have straighter lines and fewer

breaks. This indicates a clearer identification of dependencies and a progressive movement towards

minimizing error. Partly, this can be explained by the normalization of results within the Self-Attention

block which allows you to have a result with the same statistical indicators at the output. 

The graph of the test results for the Accuracy metric also confirms our conclusions.

Results of test training of Python attention models
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Results of test training of Python attention models

Results of test training of Python attention models
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Results of test training of Python attention models

5.3 GPT architecture

In June 2018, OpenAI introduced GPT, the neural network model, which immediately showed the best

results in a number of language tests. In February 2019, they released GPT-2, and in May 2020,

everyone learned about GPT-3. These models demonstrated the possibility of a neural network to

generate texts. Experiments were also conducted on the generation of music and images. The main

disadvantage of the models is the requirements for computing resources. It took a month to train the

first GPT on a machine with 8 GPUs. This disadvantage is partially compensated by the ability to use

pre-trained models to solve new problems. However, the size of the model requires resources for its

functioning.

Conceptually, GPT models are built on the basis of the transformer we have already looked at. The main

idea is to pre-train a model without a teacher on a large volume of data and then fine-tune it on a

relatively small amount of labeled data.

The reason for the two-step training is the size of the model. Modern deep machine learning models,

such as GPT, have a large number of parameters, numbering in the hundreds of millions or more.

Therefore, training of such neural networks requires a huge training dataset. When using supervised

learning, creating a labeled training dataset can require significant effort. At the same time, there are

numerous digitized texts available on the internet which are not unlabeled, making them suitable for

unsupervised learning models. However, the results of unsupervised learning are statistically inferior to

supervised learning. Therefore, after unsupervised learning, the model undergoes fine-tuning on a

relatively small labeled dataset.

Unsupervised learning allows GPT to learn a language model, while fine-tuning using labeled data tailors

the model for specific tasks. In this way, a single pre-trained model can be replicated and configured to
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perform different language tasks. The limitation lies in the language of the source dataset for

unsupervised learning. 

As practical experience has shown, such an approach yields good results across a wide range of

language tasks. For example, the GPT-3 model is able to generate related texts on a given topic. But

it's worth noting that the mentioned model contains 175 billion parameters and was pre-trained on a

dataset of 570 GB.

Despite the fact that GPT models were designed for natural language processing, they also showed

impressive results in music and image generation tasks.

Theoretically, it is possible to use GPT models with any sequences of digitized data. The question lies in

having sufficient data and resources for unsupervised pre-training.

5.3.1 Description of the architecture and implementation principles

Let's consider the differences between GPT models and the previously considered Transformer. First,

GPT models do not use the encoder while only using the decoder. This has led to the disappearance of

the inner layer of Encoder-Decoder Self-Attention. The figure below shows the transformer block in GPT.

 

GPT Block

As in the classic Transformer, these blocks in GPT models are lined up on top of each other. Each block

has its own weigh matrices for the attention engine and fully connected Feed Forward layers. The

number of such blocks determines the size of the model. As it turns out, the stack of blocks can be

quite large. There are 12 of them in GPT-1 and the smallest of GPT-2 (GPT-2 Small), 48 in GPT-2 Extra

Large, and 96 in GPT-3.

Like traditional language models, GPT allows you to find relationships only with the previous elements of

the sequence, not allowing you to look into the future. However, unlike the Transformer, it doesn't use

masking of elements but rather introduces changes to the computation process. In GPT, the attention

coefficients in the Score matrix for subsequent elements are zeroed.

At the same time, GPT can be attributed to autoregressive models. Generating one token of the

sequence at a time, the generated token is added to the input sequence and fed into the model for the

next iteration.

As in the classic transformer, three vectors are generated inside the Self-Attention mechanism for each

token: Query, Key, and Value. In an autoregressive model, when the input sequence changes by only 1

token on each new iteration, there is no need to recalculate the vectors for each token from scratch.
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That's why in GPT, each layer calculates vectors only for the new elements in the sequence and stores

them for each element in the sequence. Each transformer block saves its vectors for later use. 

This approach allows the model to generate text word by word until it reaches the end token. 

And of course, GPT models use the Multi-Head Self-Attention mechanism.

5.3.2 Building a GPT model using MQL5

Before you start working on a GPT model, don't expect to get some kind of a beast at the end of the

section that can solve any problems. We only build the model algorithms. The operation of these

algorithms will be comparable to the computational resources involved. Of course, we will get and

evaluate the results of these algorithms. But first things first.

Let's briefly recap the algorithm:

1. The Multi-Head Self-Attention block received, as input, a tensor of initial data where each element

of the sequence is represented by a token (a vector of values).

One sequence for all heads (threads). The actions in steps 2-5 are identical for each attention head.

2. For each token, three vectors (Query, Key, Value) are calculated by multiplying the token vector

by the corresponding trainable matrix of weights W.

3. By multiplying the Query and Key vectors, we determine the pairwise dependencies between the

elements of the sequence. At this step, the Query vector of each element of the sequence is

multiplied by the Key vectors of the current and all previous elements of the sequence.

4. The matrix of the obtained dependence coefficients is normalized using the Softmax function in

the context of each query (Query). In this case, a zero attention coefficient is set for subsequent

elements of the sequence.

5. As a result of steps 3 and 4, we get a square Score matrix with a dimension equal to the number

of elements in the sequence, where the sum of all elements in the context of each Query is equal

to one.

6. Then we multiply the normalized attention coefficients by the Value vectors of the corresponding

elements of the sequence, add the resulting vectors, and get the attention-adjusted value for each

element of the sequence.

7. Next, we determine the weighted attention result. To do this, we multiply the concatenated tensor

of the results of all attention heads by the trained matrix W
0
.

8. The resulting tensor is added to the input sequence and normalized.

9. The Multi-Heads Self-Attention mechanism is followed by two fully connected layers of the Feed

Forward block. The first (hidden) layer contains four times as many neurons as the input sequence

with the ReLU activation function (we used the Swish function instead). The dimension of the

second layer is equal to the dimension of the input sequence, and neurons do not use the

activation function.

10.The result of the fully connected layers is summed up with the tensor input to the Feed Forward

block and the resulting tensor is normalized.

Now that we have refreshed the basic steps of the process, let's proceed with the implementation. To

implement the new type of neural layer, let's create a new class CNeuronGPT, inheriting from the

CNeuronBase neural layer base class of our model. Despite using the Self-Attention algorithm in the
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model, I chose not to inherit from our existing classes of neural layers using attention mechanisms.

This is due to some peculiarities in the model implementation, which we will become familiar with during

the process.

Perhaps one of the main differences is the ability to build multiple homogeneous layers within one class.

Previously we used separate layers to implement parts of the model functionality, while now we are

talking about the full-fledged creation of several copies of the layer being created, each with its own

weights. To achieve this, in the body of the method, we declare not individual neural layers but entire

collections of layers. Among them, you will see familiar variable names from working with previous

classes, but they will now contain pointers to collections of neural layers. At the same time, we have

preserved the functionality hidden behind the object names. Additionally, we have added two new

variables:

· m_ iLayers – number of neural layers in the block

· m_ iCurrentPosition – number of the current element in the sequence
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class CNeuronGPT    :  public CNeuronBase

  {

protected:

   CArrayLayers      m_cQuerys;

   CArrayLayers      m_cKeys;

   CArrayLayers      m_cValues;

   CArrayLayers      m_cScores;

   CArrayLayers      m_cAttentionOut;

   CArrayLayers      m_cW0;

   CArrayLayers      m_cFF1;

   CArrayLayers      m_cFF2;

   //---

   int               m_iLayers;

   int               m_iWindow;

   int               m_iUnits;

   int               m_iKeysSize;

   int               m_iHeads;

   CBufferType       m_dStd[];

   int               m_iCurrentPosition;

   int               m_iScoreTemp;

   virtual bool      NormlizeBuffer(CBufferType *buffer, CBufferType *std,

                                                              uint std_shift);

   virtual bool      NormlizeBufferGradient(CBufferType *output,

                     CBufferType *gradient, CBufferType *std, uint std_shift);

public:

                     CNeuronGPT(void);

                    ~CNeuronGPT(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                   VECTOR &Beta, VECTOR &Lambda) override;

   //---

   virtual int       GetUnits(void) const { return m_iUnits;   }

   virtual int       GetLayers(void) const { return m_iLayers; }

   //--- methods for operations with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification methods

   virtual int       Type(void) override  const { return(defNeuronGPT);  }

  };

The addition of the m_ iCurrentPosition variable is the second architectural feature of this model. We

have already said that GPT refers to autoregressive models. At each step, it returns one element of the

sequence and feeds it as input at a new iteration. We mentioned something similar about recurrent

models. However, in recurrent models, the hidden state was added to the current state of the

environment, while in the case of GPT, generating the language model involves creating a new state. Of
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course, concerning financial markets, we deviate slightly from this feedback and input the actual new

state, but we will preserve the signal processing principles.

The logic is as follows: if only one element of the sequence is updated at each new iteration, there is no

need to recalculate the same values every time. It's not efficient. Let's recalculate only the new

element of the sequence, and for the previous elements of the sequence, let's use the values from

previous iterations. This is why we introduce the m_ iCurrentPosition variable to store the index of the

current element in the sequence. We will get acquainted with its usage principles as we proceed with

the implementation.

Let's take things step by step. As usual, we will start working on the methods of the class with the

class constructor. In it, we initialize variables with initial values. Similar to the attention mechanism

classes discussed earlier, we use static objects that do not instantiate in the class constructor. The

class destructor remains empty.

CNeuronGPT::CNeuronGPT(void) :   m_iHeads(8),

                                 m_iWindow(0),

                                 m_iKeysSize(0),

                                 m_iUnits(0),

                                 m_iLayers(0),

                                 m_iCurrentPosition(0)

  {

  }

Following our previously used pattern of working with classes, next, we will construct the initialization

method of the class. This method is inherited from the parent class CNeuronBase and is overridden in

each new class.

In the parameters, the method receives a pointer to an object describing the created neural layer, and

we immediately perform a validity check on the received pointer, as well as verify the presence of the

specified minimum necessary parameters for the correct initialization of the class instance.

bool CNeuronGPT::Init(const CLayerDescription *desc)

  {

//--- checking the initial data

   if(!desc || desc.type != Type() || desc.count <= 0 || desc.window <= 0 ||

      desc.window_out <= 0 || desc.step <= 0 || desc.layers <= 0)

      return false;

After successfully passing the control block, we save the received parameters to the appropriate

variables of our class.
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//--- save the constants

   m_iWindow   = desc.window;

   m_iUnits    = desc.count;

   m_iKeysSize = desc.window_out;

   m_iHeads    = desc.step;

   m_iLayers   = desc.layers;

   if(!ArrayResize(m_dStd, m_iLayers))

      return false;

   for(int l = 0; l < m_iLayers; l++)

      if(!m_dStd[l].BufferInit(1, 2, 1))

         return false;

Then, similar to the previously created classes using the attention mechanism, we will slightly adjust

the description of the created neural layer and call the initialization method of the parent class. I would

like to remind you that in the description of the created neural layer, we set the window size parameter

of the input data to zero before calling the method of the parent class. This allows us to remove unused

buffer objects from the parent class.

//--- call the initialization method of the parent class

   CLayerDescription *temp = new CLayerDescription();

   if(!temp || !temp.Copy(desc))

      return false;

   temp.window_out = 1;

   temp.window     = 0;

   temp.activation = AF_NONE;

   if(!CNeuronBase::Init(desc))

      return false;

   delete temp;

After that, we create a loop with the number of iterations equal to the number of homogeneous neural

layers created. All other objects will be created in the body of this loop.

//--- run a loop to create objects of internal layers

   for(int layer = 0; layer < m_iLayers; layer++)

     {

The operations in the loop body are very similar to the operations performed in the class initialization

methods using the Self-Attention mechanism, but there are still differences.

Firstly, within the loop body, we create an instance of the CLayerDescription object to describe the

neural layers being created and fill it with the necessary data. Since we have decided to input only the

state update to the neural network, rather than the entire pattern information, I chose to forgo using

convolutional neural layers and opted for a basic fully connected neural layer. Therefore, in the type

field of the layer description object, we set the constant defNeuronBase. In this case, the window size

of the input data will be equal to the size of the vector describing one element of the sequence. In this

case, the entire volume of input data is perceived as the description of one element of the sequence.   

Next, we recall that the model uses the Multi-Head Self-Attention mechanism, so we need to create

three vectors (Query, Key, Value) for each attention head from one vector of the initial data. I would like

to remind you of another detail: when implementing the Multi-Head Self-Attention mechanism, we used

concatenated vectors. Now we are going further: we will no only create a single tensor for all attention

heads but we also combine all three entities mentioned above at once (Query, Key, Value). However,

since it will contain only one element of the sequence, its size will not be so large. In the count field

specify a size equal to the three vectors of one element of the key tensor sequence for each attention
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head. The newly created layer will not have an activation function, just like before. We will use the

parameter optimization method specified by the user in the neural layer description from the method

parameters.

      temp = new CLayerDescription();

      if(!temp)

         return false;

      temp.type = defNeuronBase;

      temp.window = m_iWindow;

      temp.count = (int)(3 * m_iKeysSize * m_iHeads);

      temp.activation = AF_NONE;

      temp.optimization = desc.optimization;

After creating the neural layer description object and specifying all the necessary parameters, we

create the first internal neural layer Queries. We initialize it using a pre-created neural layer description

object. It is essential to monitor the process of performing operations. After successfully completing

the first two operations, we add the layer to the corresponding collection.

      //--- initialize Querys

      CNeuronBase *Querys = new CNeuronBase();

      if(!Querys)

        {

         delete temp;

         return false;

        }

      if(!Querys.Init(temp))

        {

         delete Querys;

         delete temp;

         return false;

        }

      if(!m_cQuerys.Add(Querys))

        {

         delete Querys;

         delete temp;

         return false;

        }

Despite creating a concatenated tensor, we have kept the name Querys for the neural layer,

maintaining continuity with the previously created attention mechanism classes. However, we will also

create internal neural layers for Keys and Values, although with different parameters. 

We will use the internal neural layers Keys and Values to accumulate historical data on the received

current states. It is, so to speak, the memory of our neural layer, and it should be sufficient to store

the entire pattern being analyzed. However, since we have already calculated the state of these

vectors in the fully connected neural layer Querys, we do not need matrices of weights in them.

Therefore, before initializing the mentioned internal neural layers, we will make a change to the

description object of the neural layer: we will set the size of the input data window to zero and ensure

that the neural layer has enough elements to store the entire pattern description tensor.
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      //--- initialize Keys

      CNeuronBase *Keys = new CNeuronBase();

      if(!Keys)

        {

         delete temp;

         return false;

        }

      temp.window = 0;

      temp.count = (int)(m_iUnits * m_iKeysSize * m_iHeads);

      if(!Keys.Init(temp))

        {

         delete Keys;

         delete temp;

         return false;

        }

      if(!Keys.GetOutputs().Reshape(m_iUnits, m_iKeysSize * m_iHeads))

         return false;

      if(!m_cKeys.Add(Keys))

        {

         delete Keys;

         delete temp;

         return false;

        }

The rest of the algorithm for creating an internal neural layer is similar to creating the Querys layer:

· Create a new instance of the neural layer object.

· Initialize the neural layer.

· Add the neural layer to the corresponding collection.
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      //--- initialize Values

      CNeuronBase *Values = new CNeuronBase();

      if(!Values)

        {

         delete temp;

         return false;

        }

      if(!Values.Init(temp))

        {

         delete Values;

         delete temp;

         return false;

        }

      if(!Values.GetOutputs().Reshape(m_iUnits, m_iKeysSize * m_iHeads))

         return false;

      if(!m_cValues.Add(Values))

        {

         delete Values;

         delete temp;

         return false;

        }

After creating the neural layers Query, Keys, and Values, we proceed to create the dependency

coefficient matrix Score. There are implementation nuances here as well. This matrix in the Self-

Attention implementation algorithm has a square size with each side of the square equal to the number

of elements of the sequence. Each element of the matrix represents the coefficient of the pairwise

relationship between the elements of the sequence, where the rows of the matrix correspond to the

vectors of the tensor of the Query queries and the columns of the matrix correspond to the vectors of

the Key tensor.

Now, let's think about how we can implement such a matrix if we have one Query vector that describes

only the last state. Therefore, the Score matrix in this case degenerates into a vector. Of course, for

each attention head. Certainly, the neural layer of the Score dependency coefficient vector does not

contain a matrix of weights. Therefore, we adjust the number of elements in the neural layer and create

a new internal neural layer using the algorithm mentioned above. Let's take advantage of the

opportunity and make the matrix rectangular. The rows of the matrix will correspond to the attention

heads.
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      //--- initialize Scores

      CNeuronBase *Scores = new CNeuronBase();

      if(!Scores)

        {

         delete temp;

         return false;

        }

      temp.count = (int)(m_iUnits * m_iHeads);

      if(!Scores.Init(temp))

        {

         delete Scores;

         delete temp;

         return false;

        }

      if(!Scores.GetOutputs().Reshape(m_iHeads, m_iUnits))

         return false;

      if(!m_cScores.Add(Scores))

        {

         delete Scores;

         delete temp;

         return false;

        }

The next object we will create is a neural layer for the concatenated output of the AttentionOut

attention heads. Here, the situation is similar to the dependency coefficient matrix. We have already

discussed the reasons for the degeneration of the matrix of dependence coefficients into a vector, and

to obtain the result of the work of the attention head according to the Self-Attention algorithm, we

need to multiply the matrix of dependence coefficients by the Value tensor.

But in our case, with one Query vector at the output, we also get one vector for each attention head.

Therefore, we will specify the correct layer size and execute the algorithm for its initialization.
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      //--- initialize AttentionOut

      CNeuronBase *AttentionOut = new CNeuronBase();

      if(!AttentionOut)

        {

         delete temp;

         return false;

        }

      temp.count = (int)(m_iKeysSize * m_iHeads);

      if(!AttentionOut.Init(temp))

        {

         delete AttentionOut;

         delete temp;

         return false;

        }

      if(!AttentionOut.GetOutputs().Reshape(m_iHeads, m_iKeysSize))

         return false;

      if(!m_cAttentionOut.Add(AttentionOut))

        {

         delete AttentionOut;

         delete temp;

         return false;

        }

Following the multi-head attention algorithm, our next step will be to organize the results of all

attention heads into a unified vector and adjust its size to match the size of the input data vector. In

the algorithm of the Multi-Head Self-Attention mechanism, this operation is performed using the W
0

matrix. However, we will perform this operation using a basic fully connected neural layer without an

activation function.

Again, we will create a new instance of the neural layer object. Do not forget to check the result of the

operation.

      //--- initialize W0

      CNeuronBase *W0 = new CNeuronBase();

      if(!W0)

        {

         delete temp;

         return false;

        }

In the neural layer description object, we enter the necessary parameters:

· The size of the input data window is equal to the size of the previously created layer for the

concatenated results of attention heads.

· The number of elements at the output of the neural layer is equal to the size of the source data

vector.

· The activation function is not used.

We initialize the neural layer using the neural layer description object.
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      temp.window = temp.count;

      temp.count = m_iWindow;

      temp.activation = AF_NONE;

      if(!W0.Init(temp))

        {

         delete W0;

         delete temp;

         return false;

        }

      if(!m_cW0.Add(W0))

        {

         delete W0;

         delete temp;

         return false;

        }

After the successful initialization of the neural layer object, we add it to the appropriate collection.

This concludes the work on initializing the objects of the Multi-Head Self-Attention mechanism, and we

just have to create two neural layers of the Feed Forward block. The first neural layer has four times as

many neurons in its output as the tensor received as input, and it is activated using the Swish function.

      //--- initialize FF1

      CNeuronBase *FF1 = new CNeuronBase();

      if(!FF1)

        {

         delete temp;

         return false;

        }

      temp.window = m_iWindow;

      temp.count = temp.window * 4;

      temp.activation = AF_SWISH;

      temp.activation_params[0] = 1;

      temp.activation_params[1] = 0;

      if(!FF1.Init(temp))

        {

         delete FF1;

         delete temp;

         return false;

        }

      if(!m_cFF1.Add(FF1))

        {

         delete FF1;

         delete temp;

         return false;

        }

The second neural layer of the Feed Forward block does not have the activation function. It returns the

size of the tensor to the size of the initial data. Here we also use a basic fully connected neural layer.

We will make the necessary adjustments to the description object of the neural layer and initialize the

neural layer.
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      //--- initialize FF2

      CNeuronBase *FF2 = new CNeuronBase();

      if(!FF2)

        {

         delete temp;

         return false;

        }

      temp.window = temp.count;

      temp.count = m_iWindow;

      temp.activation = AF_NONE;

      if(!FF2.Init(temp))

        {

         delete FF2;

         delete temp;

         return false;

        }

      if(!m_cFF2.Add(FF2))

        {

         delete FF2;

         delete temp;

         return false;

        }

      delete temp;

     }

We check the results of the operations at each step and add the created neural layer to the

appropriate collection.

At this stage, we have created all the objects necessary for the operation of a single neural layer. We

remove the description object of the neural layer and proceed to the next iteration of our loop, where

we will create objects for the operation of the next layer.

Thus, upon completing all iterations of the loop, we will obtain objects for the operation of as many

neural layers as the user specified when calling the initialization method of this neural layer.

Furthermore, to avoid copying data between the buffers of internal neural layers and the current layer,

we will replace the pointers to the result and gradient buffers of the current layer.

//--- to avoid copying buffers, we will replace them

   if(m_cFF2.Total() < m_iLayers)

      return false;

   if(!m_cOutputs)

      delete m_cOutputs;

   CNeuronBase *neuron = m_cFF2.At(m_iLayers - 1);

   if(!neuron)

      return false;

   m_cOutputs = neuron.GetOutputs();

   if(!m_cGradients)

      delete m_cGradients;

   m_cGradients = neuron.GetGradients();

In conclusion, we call the method for distributing pointers to the OpenCL context among the class

object and exit the initialization method.
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   SetOpenCL(m_cOpenCL);

//---

   return true;

  }

To fully address the issue of class initialization, I suggest considering a method for distributing the

OpenCL context object pointer among the internal layer objects.

Despite the change in the type of internal objects, from a neural layer to a collection of neural layers,

the structure and algorithm of the pointer propagation method to the OpenCL context have not

changed much. This became possible thanks to the similar method we previously wrote in the neural

layer collection class.

In the parameters, our SetOpenCL method gets a pointer to the OpenCL context object. In the body of

the method, we first call the relevant method of the parent class, where all the necessary controls are

already implemented, and the pointer is saved in the corresponding class variable. After that, we

alternately check the pointers of all the internal objects of the neural layer and call a similar method for

them.

bool CNeuronGPT::SetOpenCL(CMyOpenCL *opencl)

  {

   CNeuronBase::SetOpenCL(opencl);

   m_cQuerys.SetOpencl(m_cOpenCL);

   m_cKeys.SetOpencl(m_cOpenCL);

   m_cValues.SetOpencl(m_cOpenCL);

   m_cScores.SetOpencl(m_cOpenCL);

   m_cAttentionOut.SetOpencl(m_cOpenCL);

   m_cW0.SetOpencl(m_cOpenCL);

   m_cFF1.SetOpencl(m_cOpenCL);

   m_cFF2.SetOpencl(m_cOpenCL);

   if(m_cOpenCL)

     {

      uint size = sizeof(TYPE) * m_iUnits * m_iHeads;

      m_iScoreTemp = m_cOpenCL.AddBuffer(size, CL_MEM_READ_WRITE);

      for(int l = 0; l < m_iLayers; l++)

         m_dStd[l].BufferCreate(m_cOpenCL);

     }

   else

     {

      for(int l = 0; l < m_iLayers; l++)

         m_dStd[l].BufferFree();

     }

//---

   return(!!m_cOpenCL);

  }

Thus, we conclude the class initialization and proceed directly to implementing the neural layer

operational algorithm. As always, we will start with the implementation of the feed-forward method.
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5.3.2.1 GPT feed-forward method

We continue our work on implementing the GPT algorithm proposed by the OpenAI team. We have

already created the basic skeleton of the class with objects to implement the algorithm. Now we are

proceeding directly to its implementation. Yes, the class will utilize the familiar Self-Attention algorithm,

but with some implementation specifics.

As in all the previously discussed classes, all the feed-forward functionality is implemented in the

CNeuronGPT::FeedForward method. As you know, this method is virtual, is inherited from the base

neural network class, and is overridden in each class to implement a specific algorithm. In the method

parameters, it receives a pointer to the object of the previous neural layer, which contains the initial

data in its buffer for executing the algorithm.

As in all previous implementations, we start the method with the control block. In this block, we check

the validity of pointers to the objects involved in the method. This operation allows us to prevent many

critical errors when accessing invalid objects.

bool CNeuronGPT::FeedForward(CNeuronBase *prevLayer)

  {

//--- check the relevance of all objects

   if(!prevLayer || !prevLayer.GetOutputs())

      return false;

Next, we increment the m_ iCurrentPosition index of the current object in the Key and Value buffers. We

need this pointer for organizing the stack in these buffers. In fact, the Self-Attention algorithm

performs a weighted summation of different contexts into a single vector. According to the

mathematical rules, rearranging the places of the summands does not change the sum. That is, it is

absolutely irrelevant at which position of the data buffer the element is located. What's important is its

presence. This is the disadvantage of this algorithm for handling timeseries, but also a plus for our

implementation. When organizing the data stack in the Key and Value buffers, we will not perform a

costly full data shift. Instead, we will move the pointer along the stack and overwrite the data in the

corresponding data buffer elements.

//--- increment the pointer to the current object in the data stack

   m_iCurrentPosition++;

   if(m_iCurrentPosition >= m_iUnits)

      m_iCurrentPosition = 0;

The next straightforward step is taken to organize the correct functioning of our internal multi-layered

architecture. The pointer to the previous neuron layer obtained in the parameters is needed only for

the first internal layer. Further internal neural layers will use the output from the preceding internal

neural layer as their input data. Therefore, for internal use, we introduce a local variable to store a

pointer to the previous neural layer. Now we will assign it the pointer obtained from the method

parameters, but after the iterations of each internal neural layer, we will write a new pointer into it. So,

we can organize the loop operation through all internal neural layers. In this case, we will work with one

object pointer variable in the loop body. In reality, each neural layer will access a buffer of its own input

data.

   CNeuronBase *prevL = prevLayer;

As mentioned before, the main functionality of our feed-forward method will be implemented within the

body of the loop iterating through the internal neural layers. Therefore, the next step is to create such

a loop. Right within the loop, we extract from the collection the pointer to the Querys object
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corresponding to the current internal neural layer. We check the validity of the extracted pointer and

then execute the feed-forward method of the corresponding object.

//--- run the loop through all internal layers

   for(int layer = 0; layer < m_iLayers; layer++)

     {

      CNeuronBase *Querys = m_cQuerys.At(layer);

      if(!Querys || !Querys.FeedForward(prevL))

         return false;

Further functionality is not covered by the methods of internal objects. Therefore, as in previous Self-

Attention implementations, we will implement it within the body of the method. Here, it is important to

remember that in all implementations of our library, we provided the user with the option to choose the

device and the technology for performing mathematical operations. In this class, we will not deviate

from our principles and will also implement algorithm separation based on the chosen computational

device. But first, let's perform some preparatory work and extract pointers to the objects of the

analyzed internal layer from the collections. Do not forget to validate the obtained pointers.

      CNeuronBase *Querys = m_cQuerys.At(layer);

      if(!Querys || !Querys.FeedForward(prevL))

         return false;

      CNeuronBase *Keys = m_cKeys.At(layer);

      if(!Keys)

         return false;

      CNeuronBase *Values = m_cValues.At(layer);

      if(!Values)

         return false;

      //--- initializing Scores

      CNeuronBase *Scores = m_cScores.At(layer);

      if(!Scores)

         return false;

      //--- initializing AttentionOut

      CNeuronBase *AttentionOut = m_cAttentionOut.At(layer);

      if(!AttentionOut)

         return false;

Next, we split the algorithm based on the chosen computational device. In this chapter, we will discuss

the organization of the process using standard MQL5 tools, and we will revisit the implementation of

multi-threaded computations using the OpenCL technology in the following sections.

      //--- branching of the algorithm by the computing device

      if(!m_cOpenCL)

        {

         MATRIX array[];

         if(!Querys.GetOutputs().m_mMatrix.Vsplit(3, array))

            return false;

         if(!Keys.GetOutputs().Row(array[1].Row(0), m_iCurrentPosition))

            return false;

         if(!Values.GetOutputs().Row(array[2].Row(0), m_iCurrentPosition))

            return false;

As you may recall, during the execution of the feed-forward pass of the specified object, we

simultaneously construct all the vectors for the Query, Key, and Value tensors for all attention heads. In
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the next step, we move the vectors of the last two tensors to the corresponding stacks. For this

purpose, we will divide the result buffer of the Querys layer into 3 equal parts: query, key, and value.

First, we copy the data into the appropriate data buffers. When copying data, we will use the

m_ iCurrentPosition variable to determine the offset in the buffers.

Then we will do a bit of preparatory work. To facilitate access to the elements of the objects, we will

create local pointers to the result buffers of the internal neural layers for Query and Key. We will also

prepare dynamic arrays to perform the computational part.

         MATRIX out;

         if(!out.Init(m_iHeads, m_iKeysSize))

            return false;

         MATRIX array_keys[], array_values[];

         MATRIX array_querys[];

         MATRIX keys = Keys.GetOutputs().m_mMatrix;

         MATRIX values = Values.GetOutputs().m_mMatrix;

Similarly to the construction of the feed-forward algorithm in the previously discussed implementation

of multi-head attention, we will split the data matrices according to the attention heads.

         if(!array[0].Vsplit(m_iHeads, array_querys))

            return false;

         if(!keys.Reshape(m_iUnits, m_iHeads * m_iKeysSize))

            return false;

         if(!keys.Vsplit(m_iHeads, array_keys))

            return false;

         if(!values.Reshape(m_iUnits, m_iHeads * m_iKeysSize))

            return false;

         if(!values.Vsplit(m_iHeads, array_values))

            return false;

After that, we create a nested loop for computations. In it, we iterate through the attention heads

used. Right here in the body, we extract the Query vector and the Keys matrix of the analyzed attention

head. We multiply them and divide the resulting vector by the square root of the dimension of the

description vector for one element in the Keys matrix. We normalize it using the Softmax function.

         //--- define Scores

         for(int head = 0; head < m_iHeads; head++)

           {

            MATRIX score=array_querys[head].MatMul(array_keys[head].Transpose())/

                                                               sqrt(m_iKeysSize);

            //--- normalize Scores

            if(!score.Activation(score,AF_SOFTMAX))

               return false;

            if(!Scores.GetOutputs().Row(score.Row(0), head))

               return false;

Thus, after normalizing the data, the sum of all dependency coefficients will be equal to one. This gives

us reason to expect a vector with appropriate characteristics at the output of the Self-Attention block.

We save the normalized data in a buffer for later use during the backpropagation pass.

After calculating and normalizing the dependency coefficient vector, we have all the necessary data to

calculate the output values of the Self-Attention block. We multiply the normalized Score vector by the

Value tensor. Then we copy the resulting vector into the local result matrix. 



5. Attention mechanisms

579

5.3 GPT architecture

         //--- attention block output

            MATRIX o = score.MatMul(array_values[head]);

            if(!out.Row(o.Row(0), head))

               return false;

           }

As a result of performing all iterations of the loop system in our out matrix, the concatenated output of

the Multi-Heads Self-Attention block will be collected. We transfer them to the result buffer of the

AttentionOut neural layer to use in our algorithm later.

         if(!out.Reshape(1, m_iHeads * m_iKeysSize))

            return false;

         AttentionOut.GetOutputs().m_mMatrix = out;

        }

      else // OpenCL block

        {

         return false;

        }

This completes the operation separation block depending on the computing device. Next, we will use

the methods of our internal objects.

According to the Multi-Heads Self-Attention algorithm, the next step is to create a single ordered

weighted vector of results for the entire multi-head attention block from the concatenated output of all

attention heads. For this purpose, the matrix W
0
 is provided in the method algorithm. In contrast, we

have assigned this functionality to the internal fully connected neural layer W0. We extract the pointer

to the object of the corresponding neural layer and call its feed-forward method. To prevent critical

errors, we must validate the pointer to the object before calling its method.

      //--- weighted output of all heads of attention

      CNeuronBase *W0 = m_cW0.At(layer);

      if(!W0 || !W0.FeedForward(AttentionOut))

         return false;

We are nearing the completion of the implementation of the Multi-Heads Self-Attention block algorithm.

According to the GPT model algorithm, we need to add the obtained result to the original data and

normalize the result using the formulas.

First, we call the CBufferType::SumArray method of summarizing two buffers. Then we normalize the

data using the CNeuronGPT::NormlizeBuffer method. Its algorithm completely repeats the relevant

method of the CNeuronAttention class.
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      //--- add to the input data and normalize

      if(!W0.GetOutputs().SumArray(prevL.GetOutputs()))

         return false;

      if(!NormlizeBuffer(W0.GetOutputs(), GetPointer(m_dStd[layer]), 0))

         return false;

 

After successfully normalizing all the data, we will pass the signal through two internal neural layers of

the Feed Forward block. This operation is straightforward: we sequentially extract pointers to the

respective neural layer objects, validate the pointers, and call the feed-forward method for each

internal layer.

      //--- forward pass of Feed Forward block

      CNeuronBase *FF1 = m_cFF1.At(layer);

      if(!FF1 || !FF1.FeedForward(W0))

         return false;

      CNeuronBase *FF2 = m_cFF2.At(layer);

      if(!FF2 || !FF2.FeedForward(FF1))

         return false;

Finally, we add the result of the Feed Forward block to the result of the Multi-Heads Self-Attention

block. Then we normalize the obtained values.

      //--- perform summation with the attention output and normalizing

      CBufferType *prev = FF2.GetOutputs();

      if(!prev.SumArray(W0.GetOutputs()))

         return false;

      if(!NormlizeBuffer(prev, GetPointer(m_dStd[layer]), 1))

         return false;

This completes the feed-forward pass for one internal layer. We can proceed to the next iteration of the

loop and the next internal neural layer. But first, we need to change the pointer to the neural layer of

the initial data, as we discussed at the beginning of the method. The results of the forward pass are

contained in the buffer of the internal neural layer FF2. We write the pointer to it into the local variable

prevL, with which we work at the next iteration of the loop.

      prevL = FF2;

     }

//---

   return true;

  }

So, upon completing all iterations of the nested neural layer enumeration loop, we obtain a complete

recalculation of the feed-forward pass for our block. To change the number of such neural layers, we

only need to modify one parameter when calling the initialization method of the CNeuronGPT class in

the GPT model.

With this, we conclude the work on the feed-forward pass method and move on to organizing the

backpropagation process.
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5.3.2.2 GPT backpropagation methods

In the previous sections, we looked at the architecture of the GPT model and even implemented

methods to initialize our new class and implement the feed-forward pass through the model algorithm.

Now let's look at a possible implementation of the backpropagation pass for this algorithm.

To implement the backpropagation pass in each new class we override three methods:

· CalcHiddenGradient – method for calculating the error gradient through the hidden layer

· CalcDeltaWeights – method for calculating the error gradient to the level of the weight matrix

· UpdateWeights – method for updating weights

This class will not be an exception, and we will redefine all three methods. Let's start with the first

backpropagation and, probably, the most complex method: error gradient propagation through the

hidden layer. It is in this method that we have to repeat the entire feed-forward algorithm in reverse

order.

In the parameters, the method receives a pointer to the object of the previous layer, to which we have

to pass the error gradient. Again, in the body of the method, we implement a block of checks. In it,

according to the already established good tradition, we check the validity of pointers to all objects used

in the method. This approach helps eliminate many critical errors during the execution of the method

code.

bool CNeuronGPT::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- check the relevance of all objects

   if(!m_cOutputs || !m_cGradients ||

      m_cOutputs.Total() != m_cGradients.Total())

      return false;

Next, by analogy with the forward pass method, we organize a loop for searching through the internal

neural layers. But this time, in accordance with the principles of backward pass, we also organize the

cycle with a countdown of iterations. All further iterations will be performed in the body of the loop and

repeated for all nested layers of our model.

//--- run a loop through all internal layers in reverse order

   for(int layer = m_iLayers - 1; layer >= 0; layer--)

     {

      CNeuronBase *FF2 = m_cFF2.At(layer);

      if(!FF2)

         return false;

      CBufferType *Gradients = FF2.GetGradients();

      //--- scale the gradient for normalization

      if(!NormlizeBufferGradient(FF2.GetOutputs(), Gradients,

                                               GetPointer(m_dStd[layer]), 1))

         return false;

In the body of the loop, we first retrieve a pointer to the corresponding neural layer of the output of the

Feed Forward FF2 block and adjust its error gradient buffer to the derivative of the normalization

function. We discussed the reasons for this operation in detail when constructing a similar method for

the Self-Attention algorithm.
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After this, we sequentially call the error gradient distribution methods for the internal layers of the Feed

Forward block. We also call the methods in the reverse order: first for the second layer, and then for

the first one.

      //--- propagate a gradient through the Feed Forward block

      CNeuronBase *FF1 = m_cFF1.At(layer);

      if(!FF2.CalcHiddenGradient(FF1))

         return false;

      CNeuronBase *W0 = m_cW0.At(layer);

      if(!FF1.CalcHiddenGradient(W0))

         return false;

During the feed-forward pass, we added up the results of the Multi-Heads Self-Attention and Feed

Forward blocks. Also, now we need to draw an error gradient in two directions. We add the error

gradients at the output level of the specified blocks. Then we adjust the total tensor by the derivative of

the layer normalization function.

      CBufferType *attention_grad = W0.GetGradients();

      if(!attention_grad.SumArray(Gradients))

         return false;

      //--- scale the gradient for normalization

      if(!NormlizeBufferGradient(W0.GetOutputs(), attention_grad,

                                            GetPointer(m_dStd[layer]), 0))

         return false;

Next, we distribute the error gradient across the attention heads by calling the error gradient

distribution method of the internal neural layer W
0
.

      //--- initialize Scores

      CNeuronBase *Scores = m_cScores.At(layer);

      if(!Scores)

         return false;

      //--- distribute the error gradient across the heads of attention

      CNeuronBase *AttentionOut = m_cAttentionOut.At(layer);

      if(!W0.CalcHiddenGradient(AttentionOut))

         return false;

Until now, everything was simple and transparent. We simply called the corresponding methods of our

internal neural layers in reverse order. But then comes the algorithm block that is not covered by the

methods of internal neural layers. It was implemented inside the feed-forward method. Therefore, we

also have to completely recreate the error gradient backpropagation functionality.

First, let's do the preparatory work and create local pointers to Querys, Keys, and Values objects. At

this point, don’t forget to check the validity of the received object pointers.
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      //--- get pointers to Querys, Keys, Values objects

      CNeuronBase *Querys = m_cQuerys.At(layer);

      if(!Querys)

         return false;

      CNeuronBase *Keys = m_cKeys.At(layer);

      if(!Keys)

         return false;

      CNeuronBase *Values = m_cValues.At(layer);

      if(!Values)

         return false;

Next, we need to create two options for implementing the algorithm: using standard MQL5 tools and in

multi-threaded operations mode using OpenCL technology. We create a branching of the algorithm

depending on the selected device for performing mathematical operations. As usual, in this section, we

will look at the implementation of the algorithm using standard MQL5 tools and will return to the

implementation of the multi-threaded operations block in other sections.

To organize calculations using standard MQL5 tools, we prepare dynamic arrays. In one array, we load

error gradient data from the buffer. Some arrays are filled with the results of the feed-forward pass and

others are initialized with zero values for subsequent gradient error accumulation operations.

      //--- branching of the algorithm across the computing device

      attention_grad = AttentionOut.GetGradients();

      if(!m_cOpenCL)

        {

         MATRIX gradients[];

         if(!attention_grad.m_mMatrix.Vsplit(m_iHeads, gradients))

            return false;

         if(!Querys.GetGradients().m_mMatrix.Reshape(3, m_iHeads * m_iKeysSize))

            return false;

         MATRIX values[];

         if(!Values.GetOutputs().m_mMatrix.Vsplit(m_iHeads, values))

            return false;

         MATRIX keys[];

         if(!Keys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, keys))

            return false;

         MATRIX querys[];

         MATRIX query = Querys.GetOutputs().m_mMatrix;

         if(!query.Reshape(3, m_iHeads * m_iKeysSize) ||

            !query.Resize(1, query.Cols()))

            return false;

         if(!query.Vsplit(m_iHeads, querys))

            return false;

         MATRIX querys_grad = MATRIX::Zeros(m_iHeads, m_iKeysSize);

         MATRIX keys_grad = querys_grad;

         MATRIX values_grad = querys_grad;

First, we will distribute the error gradient to the Value tensor. It's important to note that we'll be

distributing the error gradient not across the entire tensor but only for the current element. This is

reasonable when we consider the purpose of error gradient distribution. We aim to optimize the model

parameters throughout the training process, and distributing the error gradient helps us obtain

guidelines for this optimization.
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When distributing the error gradient to the Value tensor, we need to pass it in two directions: to the

previous layer and to the weight matrix responsible for forming the current layer's tensor.

We can only transfer the error gradient for the current state to the previous layer. The buffer of the

previous layer is unable to accept more because, during the feed-forward pass, it only provides the

current state for which it expects the error gradient.

Also, only the current state error gradient can be propagated to the weight matrix. To distribute the

error from previous states, we would need the input data from those previous states. However, the

previous layer does not provide this information, and we did not save it in the buffers of our layer.

Therefore, distributing the gradient to the elements of the value tensor, except for the current state, is

a dead-end task and does not make sense.

The general approach is as follows: during the feed-forward pass, we calculate only the current state

and additionally retrieve from memory those already calculated in previous iterations. A similar

situation applies during the backpropagation pass: it is assumed that the error gradient from previous

states has already been considered in the backpropagation methods in previous iterations. This

significantly reduces the number of operations for each iteration of the feed-forward and

backpropagation passes.

I hope the logic is clear. Let's return to our backpropagation method. We paused at passing the error

gradient to the Value tensor. To execute this iteration, we will first create a local pointer to the

attention coefficient vector and then organize a loop.

Our loop will iterate through the active attention heads. Here, we immediately save the attention

coefficient vector corresponding to the analyzed attention head in a local matrix. We multiply the

gradient vector obtained from previous iterations by the attention coefficient for the current element of

the sequence. The resulting values are saved in the error gradient matrix in the Values buffer.

         for(int head = 0; head < m_iHeads; head++)

           {

            MATRIX score = MATRIX::Zeros(1, m_iUnits);

            if(!score.Row(Scores.GetOutputs().m_mMatrix.Row(head), 0))

               return false;

         //--- distribution of the gradient on Values

            if(!values_grad.Row((gradients[head] * 

                                     score[0, m_iCurrentPosition]).Row(0), head))

               return false;

Next, we need to distribute the gradient in the second direction: through the matrix of dependency

coefficients on the Query and Key tensors. But first, we need to propagate the gradient through the

vector of dependence coefficients. We multiply the error gradient matrices at the output of the

attention block and the Values   matrix and obtain a gradient at the level of the vector of dependence

coefficients.

So, we have a vector of error gradients for one attention head. But I would like to remind you that

during the feed-forward pass, we normalized the vector of dependence coefficients with the Softmax

function. Therefore, the obtained error gradients are valid for normalized data. To further distribute the

error gradients, we need to adjust the error gradients to the derivative of the specified function.

A special feature of the Softmax function is the requirement for a complete set of tensor values to

compute the value of each element. Similarly, to compute the derivative of one element, we need a

complete set of values for the function results. In our case, the results of the function are the
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normalized vector of dependency coefficients, which we obtained during the forward pass. We have also

already obtained the vector of error gradients. Thus, we have all the necessary initial data to perform

the operations of finding the derivative of a function and adjusting the error gradient. The formula for

the derivative of the Softmax  function is as follows:

The practical part of the error gradient adjustment operations is implemented using MQL5 matrix

operations. After adjusting the error gradients, we divide the resulting vector by the square root of the

dimension of the Key vector of one element of the sequence. We performed the same operation during

the feed-forward pass to prevent uncontrolled growth of non-normalized dependency coefficients.

            //--- gradient distribution to Querys and Keys

            MATRIX score_grad = gradients[head].MatMul(values[head].Transpose());

            //---

            MATRIX ident = MATRIX::Identity(m_iUnits, m_iUnits);

            MATRIX ones = MATRIX::Ones(m_iUnits, 1);

            score = ones.MatMul(score);

            score = score.Transpose() * (ident - score);

            score_grad = score_grad.MatMul(score.Transpose()) /

                                                           sqrt(m_iKeysSize);

            MATRIX temp = score_grad.MatMul(keys[head]);

            if(!querys_grad.Row(temp.Row(0), head))

               return false;

            temp = querys[head] * score_grad[0, m_iCurrentPosition];

            if(!keys_grad.Row(temp.Row(0), head))

               return false;

           }

As a result of these operations, we obtain the adjusted error gradient for one element of the

dependency coefficient vector. But we will not save it to the next data buffer. Instead, we will

immediately distribute it to the corresponding elements of the Query and Key tensors. To do this, we

need to multiply this value by the vector of the opposite tensor. To determine the error gradient on the

Qwery vector, we have a complete set of sequence elements in the Key tensor. However, in the Qwery

tensor, we only have one sequence element. Therefore, the error gradient on the Key tensor will be

propagated only for the current element of the sequence. We save the obtained error gradient values

into the matrices we prepared earlier.

By obtaining error gradients at the levels of Query and Keys tensors, we complete the operations of the

loop through attention heads.

As soon as the full loop of iterations is completed, our querys_ grad, keys_ grad, and values_ grad

matrices will contain the accumulated error gradients for the current sequence element across all

attention heads. All we have to do is transfer its values to the error gradient buffer of our internal

Querys layer.
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         if(!querys_grad.Reshape(1, m_iHeads * m_iKeysSize) ||

            !keys_grad.Reshape(1, m_iHeads * m_iKeysSize) ||

            !values_grad.Reshape(1, m_iHeads * m_iKeysSize))

            return false;

         if(!Querys.GetGradients().Row(querys_grad.Row(0), 0) ||

            !Querys.GetGradients().Row(keys_grad.Row(0), 1) ||

            !Querys.GetGradients().Row(values_grad.Row(0), 2))

            return false;

         if(!Querys.GetGradients().Reshape(1, Querys.GetGradients().Total()))

            return false;

        }

      else // OpenCL block

        {

         return false;

        }

This concludes the block for separating the operations of the algorithm depending on the device for

performing the operations. Next, we will continue executing the algorithm using the methods of our

internal neural layers.

Previously, we obtained a concatenated tensor of error gradients that includes data from all attention

heads and from all three entities (Query, Key, Value). Now, using the method that propagates the

gradient through the hidden layer of our internal neural layer Querys.CalcHiddenGradient, we can

transfer the error gradient to the previous layer buffer. Before performing this operation, we need to

decide in which object’s buffer we will write the error gradients. We created this class as a multi-layer

block, and all operations of the method are performed in a loop iterating through the active layer of our

block. Therefore, to the object of the previous neural layer, whose pointer we received in the

parameters of this method, we transfer data only from the first neural layer of our block. It will have

index 0 in the collection of nested neural layers of our GPT block. All other nested neural layers must

pass the error gradient to the internal neural layer buffer FF2 of the previous nested neural layer. Let

me remind you that FF2 is the internal neural layer with the results of the Feed Forward block.

Therefore, we will create a local pointer to the object of the previous neural layer and assign it a

pointer to the required object depending on the index of the active nested neural layer in our GPT block.

Only after obtaining the correct pointer to the object of the correct previous layer, we transfer the

error gradient to its buffer.

      //--- transfer the error gradient to the previous layer

      CNeuronBase *prevL = (layer == 0 ? prevLayer : m_cFF2.At(layer - 1));

      if(!Querys.CalcHiddenGradient(prevL))

         return false;

      if(!prevL.GetGradients().SumArray(W0.GetGradients()))

         return false;

     }

//---

   return true;

  }

Please note that when constructing similar methods in the implementation classes of attention

mechanisms, at this point, we created a complete procedure for summing error gradients from four

directions. Now, thanks to the use of the concatenated error gradient buffer, we obtain the total error

gradient from three directions by executing the method of only one neural layer. We still have to add

gradients, but only once. To the obtained error gradient, we will add the error gradient at the level of
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the outputs of the multi-head attention block. You remember that during the feed-forward pass, we also

added the original data with the tensor of the multi-head attention block's outputs. Therefore, the error

gradient must go through all the steps that the signal goes through during the feed-forward pass, but in

reverse order.

This concludes the operations in the body of the loop iterating through the nested neural layers of our

GPT block, as well as the overall operations of our method. We close the loop and exit the method.

And once again, I want to emphasize: do not forget to monitor every step of the operation execution.

This helps minimize the risk of critical errors and makes the program operation more controlled and

reliable.

We have discussed the organization of the error gradient propagation method to the previous layer. But

this is only one of the three backpropagation methods that we must override for this class. Therefore,

after propagating the error gradient to the previous neural layer, we need to propagate the error

gradient to the internal weight matrices contained within the depths of a considerable number of

internal objects of the neural layers. In accordance with the structure of our class methods, this

functionality is performed in the CalcDeltaWeights method.

To propagate the error gradient to the weight matrix of any of the previously discussed neural layers,

two things are necessary:

· The error gradient at the output level of a given neural layer to the activation function.

· The initial data provided by the previous neural layer.

To organize this process, we already have all the necessary data. In the previous method, we

distributed the error gradient to each neural layer. We will get a pointer to the previous neural layer in

the parameters of the CNeuronGPT::CalcDeltaWeights method.

As usual, in the body of the method, we organize a control block to check the pointers of all used

internal objects. The control block should be minimal and sufficient. Eliminate redundant and explicitly

repetitive controls, as they do not add value to the program operation and can slow it down. Moreover,

each operation, including control, requires resources and time. Let's think about the objects for which

we should update weight matrices. These include:

· The Query neural layer, which returns a concatenated tensor of three entities (Query, Key, Value).

· The W
0
 matrix neural layer.

· Two neural layers of the Feed Forward block.

All the mentioned objects are declared static. Therefore, there is no need to check their pointers since

their presence is controlled by the system. This allows us to exclude the control block from this

method.

Everything else is straightforward and simple. Let's organize a loop through all the nested neural layers

of our GPT block. In the body of the block, we extract all the objects of the above collections, one by

one. First, we check the pointer to the object, and then we call its method to propagate the error

gradient to the level of the weight matrix.
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bool CNeuronGPT::CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

  {

//--- in a loop, we call the method for each internal object

   for(int layer = 0; layer < m_iLayers; layer++)

     {

      if(!m_cFF2.At(layer))

         return false;

      CNeuronBase *temp = m_cFF2.At(layer);

      if(!temp.CalcDeltaWeights(m_cFF1.At(layer), false))

         return false;

      temp = m_cFF1.At(layer);

      if(!temp.CalcDeltaWeights(m_cW0.At(layer), false))

         return false;

      temp = m_cW0.At(layer);

      if(!temp.CalcDeltaWeights(m_cAttentionOut.At(layer), false))

         return false;

      temp = m_cQuerys.At(layer);

      if(!temp)

         return false;

      CNeuronBase *prevL = (layer == 0 ? prevLayer : m_cFF2.At(layer - 1));

      if(!temp.CalcDeltaWeights(prevL, (read && layer == m_iLayers - 1)))

         return false;

     }

//---

   return true;

  }

It is worth mentioning a few words about the order in which methods of internal objects are called.

From the perspective of mathematical operations, the order of method calls does not affect the final

result. However, the order of method calls used in the loop body is not random. Note that in the loop

body, we explicitly check the pointers for only two objects that do not serve as the input data for other

internal layers. The reason is that the called methods of neural layers also have a control block that

checks the incoming data, including the received pointers. To eliminate repeated checks of object

pointers, we first pass a pointer to the object as input to another object, check the result of the

operations of the called method, which, among other things, confirms the validity of the passed pointer,

and then confidently access the object because its pointer was checked during the execution of the

previous object method. In this way, we organize a comprehensive check of all object pointers without

explicit control within the method body and eliminate redundant pointer checks that could slow down

the program execution.

Next, we will consider the method for updating model parameters. This function does not require

external object data. There is not a single object pointer in the method parameters, as there are only

parameter values for executing the specified parameter optimization algorithm.

In the method body, we also organize a loop to iterate through the nested neural layers of our GPT

block. In the loop body, we extract one object from each collection, check the validity of the pointer,

and call the method to update the weight matrix of each object.
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bool CNeuronGPT::UpdateWeights(int batch_size, TYPE learningRate,

                               VECTOR &Beta, VECTOR &Lambda)

  {

//--- in a loop we call the method for each internal object

   for(int layer = 0; layer < m_iLayers; layer++)

     {

      CNeuronBase *temp = m_cFF2.At(layer);

      if(!temp || !temp.UpdateWeights(batch_size, learningRate, Beta, Lambda))

         return false;

      temp = m_cFF1.At(layer);

      if(!temp || !temp.UpdateWeights(batch_size, learningRate, Beta, Lambda))

         return false;

      temp = m_cW0.At(layer);

      if(!temp || !temp.UpdateWeights(batch_size, learningRate, Beta, Lambda))

         return false;

      temp = m_cQuerys.At(layer);

      if(!temp || !temp.UpdateWeights(batch_size, learningRate, Beta, Lambda))

         return false;

     }

//---

   return true;

  }

Since the called methods do not access external objects, our control optimization approach will not

work here due to the absence of explicitly repetitive controls. Therefore, we need to explicitly check

each object pointer before calling its method.

We have discussed the implementation of three backpropagation methods and with that, we conclude

our work on implementing the GPT model algorithm in our CNeuronGPT class. For the complete

implementation of functionality using standard MQL5 tools, we need to override the methods for

working with files. We've already discussed the importance of these methods for the operation of neural

network models.
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5.3.2.3 File operations

We continue working on our GPT model implementation class. We have already implemented the

functionality of this model in the methods of our CNeuronGPT class. In the previous sections, we

discussed object initialization methods and created the processes of feed-forward and backpropagation

passes. The specified functionality is sufficient for creating a test model, and it is even possible to

conduct a series of tests to assess the model functionality.

However, we have already discussed the importance of file handling methods for the practical operation

of any neural network model. The main significance of this process is attributed to the cost of the

model training process because it requires both time and resources. Often such costs are quite high.

Therefore, there is a strong desire to train the model once and then use it with maximum workload in

the shortest possible time.

The unpredictable and highly volatile nature of financial markets does not leave us with hope for an

indefinitely prolonged usage of a model trained once. However, even in this case, with the volatility of

the environment, retraining the model in new conditions will require fewer resources and time compared

to training the model from scratch with random weights.

Therefore, let's continue our work and implement methods for working with files. As always, let's start

with the CNeuronGPT::Save method that saves data to a file.

When starting to work on the data saving method, as usual, we take a critical look at the structure of

our class and evaluate the necessity of saving the data for each object.
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class CNeuronGPT    :  public CNeuronBase

  {

protected:

   CArrayLayers      m_cQuerys;

   CArrayLayers      m_cKeys;

   CArrayLayers      m_cValues;

   CArrayLayers      m_cScores;

   CArrayLayers      m_cAttentionOut;

   CArrayLayers      m_cW0;

   CArrayLayers      m_cFF1;

   CArrayLayers      m_cFF2;

   //---

   int               m_iLayers;

   int               m_iWindow;

   int               m_iUnits;

   int               m_iKeysSize;

   int               m_iHeads;

   CBufferType       m_dStd[];

   int               m_iCurrentPosition;

   int               m_iScoreTemp;

   virtual bool      NormlizeBuffer(CBufferType *buffer, CBufferType *std,

                                                               uint std_shift);

   virtual bool      NormlizeBufferGradient(CBufferType *output, 

                      CBufferType *gradient, CBufferType *std, uint std_shift);

public:

                     CNeuronGPT(void);

                    ~CNeuronGPT(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read) override;

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                                           VECTOR &Beta, VECTOR &Lambda) override;

   //---

   virtual int       GetUnits(void) const { return m_iUnits;   }

   virtual int       GetLayers(void) const { return m_iLayers; }

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override  const { return(defNeuronGPT);  }

  };

At this point, we realize that besides constants, our class contains only collections of objects. The

resources required to recreate the collection objects with a complete description of their structure will

be much higher than the potential savings in disk space resources. Therefore, we organize the saving of

all collections in a data file for model recovery.
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In the parameters, this method receives a file handle to save the data. To avoid duplicate controls and

reduce the total amount of program code, we do not check the received handle. Instead, we call the

similar method of the parent class, to which we pass the received handle. The advantages of this

approach are obvious. With a single command, we check the received handle and save the data of

objects inherited from the parent class. By checking the result of the parent class method, we control

the entire specified process.

bool CNeuronGPT::Save(const int file_handle)

  {

//--- calling a method of a parent class

   if(!CNeuronBase::Save(file_handle))

      return false;

After the successful execution of the method of the parent class, we save the following constants of our

method to the file:

· m_ iLayers – the number of nested neural layers of the GPT block

· m_ iWindow – the size of the source data window (the size of the description vector of one element

of the source data sequence)

· m_ iKeysSize – the size of the description vector of one element of the Keys key tensor

· m_ iHeads – the number of attention heads used

· m_ iUnits – the number of elements in the sequence

· m_ iCurrentPosition – the position of the currently analyzed element

//--- save the constants

   if(FileWriteInteger(file_handle, m_iLayers) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iWindow) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iKeysSize) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iHeads) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iUnits) <= 0)

      return false;

   if(FileWriteInteger(file_handle, m_iCurrentPosition) <= 0)

      return false;

Saving the position of the current analyzed element is necessary for the proper functioning of the Key

and Value stacks. However, in real usage conditions, I would recommend that before using the model,

you sequentially input data into it in a volume sufficient to fully fill the stacks. This approach will allow

you to control the process of data loading into the model and eliminate the risk of possible omissions,

which could potentially impact the accuracy of the model performance in the initial stages after data

loading. Of course, the model will level out after the stack is completely filled. But the risk of losses up

to this point increases.

Next, we sequentially check the pointers to objects in all our collections and call their data-saving

methods.
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//--- call the method for all collections of inner layers

   if(!m_cQuerys.Save(file_handle))

      return false;

   if(!m_cKeys.Save(file_handle))

      return false;

   if(!m_cValues.Save(file_handle))

      return false;

   if(!m_cScores.Save(file_handle))

      return false;

   if(!m_cAttentionOut.Save(file_handle))

      return false;

   if(!m_cW0.Save(file_handle))

      return false;

   if(!m_cFF1.Save(file_handle))

      return false;

   if(!m_cFF2.Save(file_handle))

      return false;

//---

   return true;

  }

Then we exit the data saving method.

We have created a method for saving an object of our class. Now we can move on to work on the

method of recovering an object from the data written to the file. As a reminder, the primary

requirement for methods restoring the functionality of objects from saved data is to read the data in

strict accordance with the sequence of their recording.

Similar to the file-writing method, our data-loading method CNeuronGPT::Load receives in parameters

the handle of the file containing the data to be read. Just like when writing data, we first call the

analogous method of the parent class. First, we read the data in strict accordance with the writing

sequence. Second, we use the idea voiced when studying the method of writing data, that is, we use

the controls implemented in the method of the parent class and exclude their duplication. Of course,

before proceeding further, we check the result of the parent method operations.

bool CNeuronGPT::Load(const int file_handle)

  {

//--- call the method of a parent class

   if(!CNeuronBase::Load(file_handle))

      return false;

After the successful execution of the parent class method, we read the constants of our block

operating parameters. Their values are read in the order in which they are written. After reading the

constant values, we should adjust the size of the dynamic array for writing standard deviations used in

normalizing the results of our block operation. The size of the array must be sufficient to store data

from all nested neural layers. Otherwise, we run the risk of encountering a critical error due to

exceeding array dimensions during program execution.
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//--- read constants from a file

   m_iLayers = FileReadInteger(file_handle);

   m_iWindow = FileReadInteger(file_handle);

   m_iKeysSize = FileReadInteger(file_handle);

   m_iHeads = FileReadInteger(file_handle);

   m_iUnits = FileReadInteger(file_handle);

   m_iCurrentPosition = FileReadInteger(file_handle);

   if(ArrayResize(m_dStd, m_iLayers) <= 0)

      return false;

   for(int i = 0; i < m_iLayers; i++)

      if(!m_dStd[i].BufferInit(1, 2, 1))

         return false;;

Then all we have to do is load the data from our object collections. However, before calling the method

to load collection object data, we need to ensure the relevance of the collection object pointer and, if

necessary, create a new instance of the collection object. Only then we can call the data loading

method. Of course, do not forget that the order of loading objects is in strict accordance with the order

of their writing. We also control the data loading process at each iteration.

//--- call the method for all collections of inner layers

   if(!m_cQuerys.Load(file_handle))

      return false;

   if(!m_cKeys.Load(file_handle))

      return false;

   if(!m_cValues.Load(file_handle))

      return false;

   if(!m_cScores.Load(file_handle))

      return false;

   if(!m_cAttentionOut.Load(file_handle))

      return false;

   if(!m_cW0.Load(file_handle))

      return false;

   if(!m_cFF1.Load(file_handle))

      return false;

   if(!m_cFF2.Load(file_handle))

      return false;

After loading all objects, we create another loop and reformat the result buffers of all created objects.

In this case, we do not perform a validity check on the object pointers as in the previous iterations, all

these objects loaded data from the file, which means they were created and verified.
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//--- reformat the result matrices

   for(int i = 0; i < m_iLayers; i++)

     {

      CNeuronBase* temp = m_cKeys.At(i);

      if(!temp.GetOutputs().Reshape(m_iUnits, m_iKeysSize * m_iHeads))

         return false;

      temp = m_cValues.At(i);

      if(!temp.GetOutputs().Reshape(m_iUnits, m_iKeysSize * m_iHeads))

         return false;

      temp = m_cScores.At(i);

      if(!temp.GetOutputs().Reshape(m_iHeads, m_iUnits))

         return false;

      temp = m_cAttentionOut.At(i);

      if(!temp.GetOutputs().Reshape(m_iHeads, m_iKeysSize))

         return false;

     }

At the end of the method, we replace the buffers and terminate its work.

//--- replace data buffers to avoid excessive copying

   CNeuronBase *last = m_cFF2.At(m_cFF2.Total() - 1);

   if(!m_cOutputs)

      delete m_cOutputs;

   m_cOutputs = last.GetOutputs();

   if(!m_cGradients)

      delete m_cGradients;

   m_cGradients = last.GetGradients();

//---

   return true;

  }

Now that the file handling methods have been created, we can proceed further. Next, our plan involves

creating the capability to perform parallel mathematical operations using OpenCL.

5.3.3 Organizing parallel computing in the GPT model

We continue to work on our model class, GPT CNeuronGPT. In the previous sections, we have already

recreated the model algorithm using standard MQL5 tools. Now it's time to supplement the model with

the ability to perform mathematical operations in multi-threaded mode using the computing power of

the GPU. This is the opportunity provided by OpenCL.

To organize this process, we have to perform two subtasks:

· Create an OpenCL program.

· Organize the call of the OpenCL program from the main program.

Let's start by creating an executable program on the OpenCL side. In this program, we need to

implement that part of the algorithm that is not covered by the use of internal object methods. We

have two such blocks: one in the feed-forward part, and the second, mirrored to the first, included in

the error gradient propagation method when performing the backpropagation pass.

To execute the feed-forward algorithm, we will create the GPTFeedForward kernel. In part, the kernel

algorithm will resemble a similar kernel for classes using attention mechanisms. This is not surprising
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since they all use the Self-Attention mechanism. However, each implementation has its nuances. Last

time, instead of creating a new kernel for organizing multi-head attention, we were able to quickly

modify the existing kernel of the Self-Attention algorithm. Now, creating a new kernel seems less costly

compared to trying to create a universal kernel for all tasks.

Unlike the implementation of the Multi-Heads Self-Attention mechanism in which we translated the

kernel into a two-dimensional task space, in this implementation we return to a one-dimensional space.

This is due to the lack of the possibility of splitting the task into parallel threads in the context of the

elements of the Query tensor sequence since the GPT model implementation only allows processing one

query per iteration. In this case, we are left with a division by threads only in the context of attention

heads.

In the parameters of the GPTFeedForward kernel, we will continue to pass pointers to five data buffers.

However, the number of variables increases: earlier we obtained the size of the sequence from the

dimension of the task space, but now we have to explicitly specify it in the kernel parameters. Here, an

additional parameter is used to specify the current element in the sequences of keys and values.

__kernel void GPTFeedForward(__global TYPE *querys,

                             __global TYPE *keys,

                             __global TYPE *scores,

                             __global TYPE *values,

                             __global TYPE *outputs,

                             int key_size,

                             int units,

                             int current)

  {

As mentioned earlier, the created kernel will operate in a one-dimensional space, focusing on the

attention heads. Therefore, the first thing we do in the body of the kernel is determine the active

attention head based on the identifier of the executing thread and the total number of attention heads,

considering the total number of running threads.

   const int h = get_global_id(0);

   const int heads = get_global_size(0);

   int shift_query = key_size * h;

   int shift_scores = units * h;

We immediately determine the offset in the Query and Score (dependency coefficient matrix) tensors.

Next, according to the Self-Attention algorithm that is being built, we determine the dependency

coefficients between the elements of the sequence. To do this, we multiply the Query vector by the Key

tensor. To implement these operations, we will create a system of two nested loops. The outer loop will

iterate over the elements of the Key tensor sequence and, accordingly, the elements of the Score

vector with dependency coefficients. In the body of the loop, we will define the offset in the Key tensor

and prepare a local variable to count the intermediate values.

After that, we organize a nested loop with the number of iterations equal to the size of the description

vector of one element of the sequence. In the body of this cycle, we perform the operation of

multiplying a pair of vectors. The resulting value is divided by the square root of the dimension of the

vector, and we take the exponent from it. We write the result of the operation into the corresponding

element of the dependency coefficient vector and add it to the cumulative sum of all elements in the

dependency coefficient vectors for subsequent data normalization.
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We should consider the issue of the concatenated buffer of the results of the Query layer. The values of

the key and query vectors of the current element in the sequence have not yet been transferred to the

corresponding buffers. Therefore, we check the element that we are accessing in the key tensor.

Before accessing the current element, we first copy the data to the buffer. Of course, for current

operations, we could take data from the querys buffer. But we will need this data in subsequent

iterations. Therefore, transferring them to the buffer is inevitable.

   TYPE summ = 0;

   for(int s = 0; s < units; s++)

     {

      TYPE score = 0;

      int shift_key = key_size * (s * heads + h);

      for(int k = 0; k < key_size; k ++)

        {

         if(s == current)

            keys[shift_key + k] = querys[shift_query + k + heads * key_size];

         score += querys[shift_query + k] * keys[shift_key + k];

        }

      score = exp(score / sqrt((TYPE)key_size));

      summ += score;

      scores[shift_scores + s] = score;

     }

As a result of performing a full cycle of iterations of the system created above from two loops, we get a

vector of dependency coefficients. According to the Self-Attention algorithm, before further use of the

obtained coefficients, they will have to be normalized by the Softmax function. When obtaining the

exponent from the products of vectors, we have already executed part of the algorithm of the specified

function. To complete the normalization operation, we just need to divide the values stored in the

vector by their total sum, which we prudently collected in the local variable summ. Therefore, we

organize another loop with the number of iterations equal to the size of the vector of dependency

coefficients. In the body of this loop, we will divide all the values of the vector by the value of the local

variable summ.

   for(int s = 0; s < units; s++)

      scores[shift_scores + s] /= summ;

Thus, after completing the iterations of the loop in the Score vector, we get the normalized values of

the dependency coefficients with the total sum of all elements in the block. In fact, the obtained

coefficients give us an idea of the proportion of influence of each element of the sequence from the

Value tensor on the final value of the analyzed element of the sequence in the tensor of the results of

the current attention head.

This means that in order to obtain the final values, we need to multiply the Score vector with

normalized dependency coefficients by the Value tensor. To perform this operation, we need another

system of two nested loops. But before running it, we will determine the offset in the tensor of the

results before the beginning of the vector of the analyzed element of the sequence.

The outer loop, with the number of iterations equal to the size of the vector describing one element of

the sequence, indicates the ordinal number of the collected element in the result vector. The nested

loop, with the number of iterations equal to the number of elements in the sequence, helps correlate

the vectors of the Value tensor with the dependency coefficients from the Score vector. In the body of

the nested loop, we multiply the vector from the Value tensor by the corresponding element

dependency coefficient. The resulting values of the products will be accumulated in a local variable.
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After completing the iterations of the inner loop, we save the obtained value in the buffer of the Self-

Attention block results.

   shift_query = key_size * h;

   for(int i = 0; i < key_size; i++)

        {

      TYPE query = 0;

      for(int v = 0; v < units; v++)

        {

         if(v == current)

            values[key_size * (v * heads + h) + i] = 

                                      querys[(2 * heads + h) * key_size + i];

         query += values[key_size * (v * heads + h) + i] * 

                                                    scores[shift_scores + v];

        }

      outputs[shift_query + i] = query;

     }

  }

As a result of completing the full cycle of iterations within the loop system, we obtain the vector

describing one element of the sequence in the tensor of results for one attention head. The task

assigned to this kernel has been completed, and we can exit it.

This concludes the work with the feed-forward kernel, and we move further along. Now we need to

organize the backpropagation process. The implementation of this task will be split into two kernels. In

the GPTCalcScoreGradient kernel, we will propagate the error gradient to the vector of the dependency

coefficients. In the GPTCalcHiddenGradient kernel, we will continue the propagation of the error

gradient up to the level of the Query and Key tensors.

Let's take it step by step. The GPTCalcScoreGradient kernel in the parameters receives pointers to six

data buffers and three parameters:

· scores – buffer for the vector of dependency coefficients

· scores_ grad – buffer for the error gradient vector at the level of dependency coefficients

· values – buffer for the Value tensor

· values_ grad – buffer for the error gradient tensor at the Value level

· outputs_ grad – error gradient tensor buffer at the result level of the Self-Attention block

· scores_ temp – buffer for writing intermediate values

· window – size of the vector describing one element of the sequence in the Value tensor

· units – number of elements in the sequence

· current – ordinal number of the current item in the Value stack
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__kernel void GPTCalcScoreGradient(__global TYPE *scores,

                                   __global TYPE *scores_grad,

                                   __global TYPE *values,

                                   __global TYPE *values_grad,

                                   __global TYPE *outputs_grad,

                                   __global TYPE *scores_temp,

                                   int window,

                                   int units,

                                   int current)

  {

As with the feed-forward pass, we run the kernel in one-dimensional space by the number of attention

heads used. In the body of the kernel, we immediately determine the active attention head based on

the thread identifier and the total number of attention heads considering the total number of launched

threads.

   const int h = get_global_id(0);

   const int heads = get_global_size(0);

   int shift_value = window * (2 * heads + h);

   int shift_score = units * h;

We also determine the offset in the tensors of the error gradients at the level of Value and in the vector

of the dependency coefficients. Note that the offset in the tensor of error gradients for Value and in the

Value tensor itself will be different in this case.

In this implementation of the GPT model, we used one internal neural layer to generate a concatenated

tensor containing the values of Query, Key, and Value for all attention heads. Accordingly, we assemble

the error gradient into a similar concatenated tensor of the error gradients for the specified neural

layer. However, this tensor contains only the current element of the sequence. At the same time, the

Value stack tensor contains complete information about the entire sequence but only for the Value

tensor.

After the preparatory work, we distribute the error gradient to the Value tensor. As mentioned above,

we distribute the error gradient only for the current element of the sequence. To do this, we organize a

loop with the number of iterations equal to the size of the description vector of one element of the

sequence in the Value tensor. In the body of the loop, will multiply the error gradient vector at the

result level of the Self-Attention block by the corresponding dependency coefficient from the Score

vector. The obtained values are saved in the buffer of the concatenated tensor of error gradients.

//--- Gradient distribution to Values

   for(int i = 0; i < window; i ++)

      values_grad[shift_value + i] = scores[units * h + current] * 

                                                   outputs_grad[window * h + i];

After calculating the error gradient on the Value tensor, we will determine the value of the error

gradient at the level of the dependency coefficient vector. To perform this operation, we will need a

system of two loops: an outer loop with the number of iterations equal to the number of elements in the

sequence and a nested loop with the number of iterations equal to the size of the description vector for

one element in the Value tensor. In the body of the nested loop, we will multiply 2 vectors (Value and

error gradient). The resulting value is stored in the temporary data buffer.
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//--- Gradient distribution to Score

   for(int k = 0; k < units; k++)

        {

      TYPE grad = 0;

      for(int i = 0; i < window; i++)

         grad += outputs_grad[shift_value + i] * 

                                        values[window * (k * heads + h) + i];

      scores_temp[shift_score + k] = grad;

     }

After completing the full cycle of iterations within the loop system, in the temporary buffer, we will

obtain a fully populated gradient vector of error for the dependency coefficient vector. But to distribute

the error gradient further, we first need to correct it to the derivative of the Softmax function.

Let's organize another system of two nested cycles. Both loops will contain the number of iterations

equal to the number of elements in the sequence. In the body of the nested loop, we will calculate the

derivative of the function using the formula.

//--- Adjust to the Softmax derivative

   for(int k = 0; k < units; k++)

        {

      TYPE grad = 0;

      TYPE score = scores[shift_score + k];

      for(int i = 0; i < units; i++)

         grad += scores[shift_score + i] * ((int)(i == k) - score) *

                                                scores_temp[shift_score + i];

      scores_grad[shift_score + k] = grad;

     }

  }

We will save the obtained values in the error gradient buffer at the level of the dependency coefficient

vector. At this stage, we complete the work of the first kernel and move on to the second one.

In the second kernel of the GPTCalcHiddenGradient backpropagation process, we have to propagate the

error gradient further and bring it to the level of Query and Key tensors.

In parameters, the GPTCalcHiddenGradient kernel receives pointers to 4 data buffers and 3

parameters.

__kernel void GPTCalcHiddenGradient(__global TYPE *querys,

                                    __global TYPE *querys_grad,

                                    __global TYPE *keys,

                                    __global TYPE *scores_grad,

                                    int key_size,

                                    int units,

                                    int current)

  {

Note that we talked about distributing the gradient into the Query and Key tensors. In the kernel

parameters, there is a pointer only to the Query error gradient buffer. This situation is made possible by
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the use of a concatenated buffer, in which we have already saved the error gradient at the level of the

Value tensor. Now we add error gradients at the level of the Query and Key tensors to the same buffer.

In the kernel body, we determine the ordinal number of the analyzed attention head based on the

thread identifier and the number of used attention heads considering the total number of tasks

launched.

   const int h = get_global_id(0);

   const int heads = get_global_size(0);

   int shift_query = key_size * h;

   int shift_key = key_size * (heads + h);

   int shift_score = units * h;

Here we also define the offsets in the data buffers before the beginning of the analyzed vectors.

Next, we organize a system of two nested loops, in the body of which we will determine the error

gradients at the level of the tensors we are looking for. To do this, multiply the error gradient at the

level of the dependency coefficient vector by the opposite tensor.

//--- Gradient distribution on Querys and Keys

   const TYPE k = 1 / sqrt((TYPE)key_size);

//---

   for(int i = 0; i < key_size; i++)

        {

      TYPE grad_q = 0;

      TYPE grad_k = 0;

      for(int s = 0; s < units; s++)

        {

         grad_q += keys[key_size * (s * heads + h) + i] *

                                               scores_grad[shift_score + s];

         if(s == current)

            grad_k += querys[key_size * h + i] *

                                           scores_grad[units * h + current];

        }

      querys_grad[shift_query + i] = grad_q * k;

      querys_grad[shift_key + i] = grad_k * k;

     }

  }

Note that we calculate the error gradient only for the current element of the sequence and save the

obtained values in the corresponding elements of the error gradient buffer.

As a result of all iterations of our loop system, we get a fully filled concatenated tensor of error

gradients of all three entities (Query, Key, and Value). We complete the work on building the OpenCL

program and move on to building the functionality on the side of the main program.

To make it more convenient to manage the constructed kernels in the main program, let's create

named constants for calling kernels and accessing their elements. To do this, we open our constants

file defines.mqh and create kernel access constants in it.
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#define def_k_GPTFeedForward           34

#define def_k_GPTScoreGradients        35

#define def_k_GPTHiddenGradients       36

Then we add access constants to kernel parameters.

//--- GPT feed-forward pass

#define def_gptff_querys               0

#define def_gptff_keys                 1

#define def_gptff_scores               2

#define def_gptff_values               3

#define def_gptff_outputs              4

#define def_gptff_key_size             5

#define def_gptff_units                6

#define def_gptff_current              7

//--- determine the gradient at the matrix of GPT dependency coefficients

#define def_gptscr_scores              0

#define def_gptscr_scores_grad         1

#define def_gptscr_values              2

#define def_gptscr_values_grad         3

#define def_gptscr_outputs_grad        4

#define def_gptscr_scores_temp         5

#define def_gptscr_window              6

#define def_gptscr_units               7

#define def_gptscr_current             8

//--- gradient distribution via GPT

#define def_gpthgr_querys              0

#define def_gpthgr_querys_grad         1

#define def_gpthgr_keys                2

#define def_gpthgr_scores_grad         3

#define def_gpthgr_key_size            4

#define def_gpthgr_units               5

#define def_gpthgr_current             6

After that, we go to the dispatch service class of the CNet neural network model and, in the OpenCL

initialization method InitOpenCL, we change the total number of kernels in our program. Next, we

initialize the creation of new kernels in the OpenCL context.
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bool CNet::InitOpenCL(void)

  {

   ......

   if(!m_cOpenCL.SetKernelsCount(37))

        {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   ......

   if(!m_cOpenCL.KernelCreate(def_k_GPTFeedForward, "GPTFeedForward"))

        {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_GPTScoreGradients, "GPTCalcScoreGradient"))

        {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_GPTHiddenGradients, "GPTCalcHiddenGradient"))

        {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

//---

   return true;

  }

This concludes the preparatory work and goes directly to the methods of our CNeuronGPT class. In

them, we have to perform three stages of work to call each kernel:

· Preparing the input data and transferring it to the memory of the OpenCL context.

· Placing the kernel in the execution queue.

· Loading the results of program execution into the memory of the main program.

First, we modify the CNeuronGPT::FeedForward method. In the block for organizing multi-threaded

computing using OpenCL, we first check for the presence of an already created buffer in the memory of

the OpenCL context.
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bool CNeuronGPT::FeedForward(CNeuronBase *prevLayer)

  {

   ......

   for(int layer = 0; layer < m_iLayers; layer++)

        {

   ......

      //--- branching of the algorithm by the computing device

      if(!m_cOpenCL)

        {

         // Program block using standard MQL5 tools

   ......

        }

      else // OpenCL block

        {

         //--- checking data buffers

         if(Querys.GetOutputs().GetIndex() < 0)

            return false;

         if(Keys.GetOutputs().GetIndex() < 0)

            return false;

         if(Values.GetOutputs().GetIndex() < 0)

            return false;

         if(Scores.GetOutputs().GetIndex() < 0)

            return false;

         if(AttentionOut.GetOutputs().GetIndex() < 0)

            return false;

When all buffers have been created, and those that are necessary for kernel operation have been

passed to the OpenCL context memory, we pass pointers to the used data buffers and the necessary

constants to the kernel parameters. 
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         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTFeedForward, 

                                def_gptff_keys, Keys.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTFeedForward,

                     def_gptff_outputs, AttentionOut.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTFeedForward, 

                            def_gptff_querys, Querys.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTFeedForward,

                            def_gptff_scores, Scores.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTFeedForward, 

                            def_gptff_values, Values.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTFeedForward,

                                             def_gptff_key_size, m_iKeysSize))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTFeedForward, 

                                                   def_gptff_units, m_iUnits))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTFeedForward,

                                       def_gptff_current, m_iCurrentPosition))

            return false;

At this stage, the preparatory work is completed. Let's move on to the stage of placing the kernel in

the execution queue. Here, we first create two dynamic arrays in which we specify the offset and the

number of running threads in each task subspace. Then call the m_ cOpenCL.Execute method that

places the kernel in the queue.

         //--- Place a kernel in the queue

         int off_set[] = {0};

         int NDRange[] = {m_iHeads};

         if(!m_cOpenCL.Execute(def_k_GPTFeedForward, 1, off_set, NDRange))

            return false;

        }

This concludes the CNeuronGPT::FeedForward method. But we still have to do similar work in the

CNeuronGPT::CalcHiddenGradient method of the backpropagation algorithm. 

Let me remind you that in order to implement the backpropagation method, we have created two

kernels that will be called sequentially one after the other. Therefore, the kernel maintenance work

must be repeated for each of them.

First, let's create data buffers for the first kernel.
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bool CNeuronGPT::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

   ......

   for(int layer = m_iLayers - 1; layer >= 0; layer--)

        {

   ......

      //--- branching of the algorithm by the computing device

      attention_grad = AttentionOut.GetGradients();

      if(!m_cOpenCL)

        {

         // Program block using standard MQL5 tools

   ......

        }

      else // OpenCL block

        {

         //--- checking data buffers

         if(Values.GetOutputs().GetIndex() < 0)

            return false;

         if(Querys.GetGradients().GetIndex() < 0)

            return false;

         if(Scores.GetOutputs().GetIndex() < 0)

            return false;

         if(attention_grad.GetIndex() < 0)

            return false;

         if(Scores.GetGradients().GetIndex() < 0)

            return false;

         if(m_iScoreTemp < 0)

            return false;

Following our algorithm for working with the OpenCL context, after creating data buffers and passing all

the necessary information to the context memory, we pass pointers to the used data buffers and

constants for executing the program algorithm to the parameters of the kernel being launched.
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         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients, 

                           def_gptscr_outputs_grad, attention_grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients,

                            def_gptscr_scores, Scores.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients,

                     def_gptscr_scores_grad, Scores.GetGradients().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients,

                                         def_gptscr_scores_temp, m_iScoreTemp))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients,

                            def_gptscr_values, Values.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTScoreGradients,

                     def_gptscr_values_grad, Querys.GetGradients().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTScoreGradients,

                                               def_gptscr_window, m_iKeysSize))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTScoreGradients,

                                                    def_gptscr_units, m_iUnits))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTScoreGradients,

                                         def_gptscr_current, m_iCurrentPosition))

            return false;

Note that instead of the Value tensor error gradient buffer, we pass a pointer to the gradient buffer of

the inner neural layer Querys. This is because we used a concatenated error gradient buffer for all three

tensors. To eliminate the subsequent data copy operation, we will immediately write the data to the

concatenated buffer.

After that, we perform the operation of placing the kernel in the queue. Let me remind you that we are

launching a kernel to perform tasks in one-dimensional space in the context of attention heads.

Let's specify the offset in the task space and the number of threads to be started in the corresponding

dynamic arrays. After that, we call the method of queuing our kernel.

         //--- Place the kernel in queue

         int off_set[] = {0};

         int NDRange[] = {m_iHeads};

         if(!m_cOpenCL.Execute(def_k_GPTScoreGradients, 1, off_set, NDRange))

            return false;

This concludes the work on the first kernel, and we move on to building a similar algorithm for the

second kernel of the backpropagation pass.

Now we will check the additional buffers in the memory of the OpenCL context.
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         if(Querys.GetOutputs().GetIndex() < 0)

            return false;

         if(Keys.GetOutputs().GetIndex() < 0)

            return false;

We pass the parameters to the kernel.

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTHiddenGradients,

                                 def_gpthgr_keys, Keys.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTHiddenGradients,

                             def_gpthgr_querys, Querys.GetOutputs().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTHiddenGradients,

                      def_gpthgr_querys_grad, Querys.GetGradients().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_GPTHiddenGradients,

                      def_gpthgr_scores_grad, Scores.GetGradients().GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTHiddenGradients,

                                              def_gpthgr_key_size, m_iKeysSize))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTHiddenGradients,

                                                    def_gpthgr_units, m_iUnits))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_GPTHiddenGradients,

                                        def_gpthgr_current, m_iCurrentPosition))

            return false;

After that, we will put the kernel in the execution queue. Note that this time we do not create arrays of

offset and dimensionality of the task space. We simply use the arrays created during the execution of

the previous kernel without modification.

         if(!m_cOpenCL.Execute(def_k_GPTHiddenGradients, 1, off_set, NDRange))

            return false;

        }

This completes the work on building a GPT model class, and we can proceed to evaluate the results of

the work done.

5.3.4 Comparative testing of implementations

We have completed the CNeuronGPT neural layer class using the attention mechanisms. In this class,

we attempted to recreate the GPT (Generative Pre-trained Transformer) model proposed by the OpenAI

team in 2018. This model was developed for language tasks but later showed quite good results for

other tasks as well. The third generation of this model (GPT-3) is the most advanced language model at

the time of writing this book.

The distinguishing feature of this model from other variations of the Transformer model is its

autoregressive algorithm. In this case, the model is not fed with the entire volume of data describing

the current state but only the changes in the state. In language problem solving examples, we can

input into the model not the whole text at once, but one word at a time. Furthermore, the output

generated by the model represents a continuation of the sentence. We input this word again into the
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model without repeating the previous phrase. The model maps it to the stored previous states and

generates a new word. In practice, such an autoregressive model allows the generating of coherent

texts. By avoiding the reprocessing of previous states, the model's computational workload is

significantly reduced without sacrificing its performance quality.

We will not set the task of generating a new chart candlestick. For a comparative analysis of the model

performance with previously discussed architectural solutions, we will keep the same task and the

previously used training dataset. However, we will make the task more challenging for this model.

Instead of providing the entire pattern as before, we will only input a small part of it consisting of the

last five candles. To do this, let's modify our test script a bit.

We will write the script for this test to the file gpt_ test.mq5. As a template, we take one of the previous

attention model testing scripts: attention_ test.mq5. At the beginning of the script, we define a constant

for specifying the size of the pattern in the training dataset file and external parameters for configuring

the script.

#define GPT_InputBars         5

#define HistoryBars           40

//+------------------------------------------------------------------+

//| External parameters for script operation                         |

//+------------------------------------------------------------------+

// Name of the file with the training sample

input string   StudyFileName = "study_data.csv";

// File name for recording the error dynamics

input string   OutputFileName = "loss_study_gpt.csv";

// Number of historical bars in one pattern

input int      BarsToLine     = 40;             

// Number of input layer neurons per 1 bar

input int      NeuronsToBar   = 4;              

// Use OpenCL

input bool     UseOpenCL      = false;          

// Batch size for updating the weights matrix

input int      BatchSize      = 10000;          

// Learning rate

input double   LearningRate   = 0.00003;         

// Number of hidden layers

input int      HiddenLayers   =  3;             

// Number of neurons in one hidden layer

input int      HiddenLayer    =  40;            

// Number of loops of updating the weights matrix

input int      Epochs         =  1000;          

As you can see, all the external parameters of the script have been inherited from the test script of the

previous model. The constant for the size of the pattern in the training dataset is necessary for

organizing the correct loading of data because, in this implementation, the size of the data passed to

the model will be significantly different from the size of the pattern in the training dataset. I didn't

make this constant an external parameter because we are using a single training dataset, so there's no

need to change this parameter during testing. At the same time, the introduction of an additional

external parameter can potentially add confusion for the user.

After declaring the external parameters of the test script we are creating, we include our library for

creating neural network models.
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//+------------------------------------------------------------------+

//| Connecting the neural network library                            |

//+------------------------------------------------------------------+

#include "..\..\..\Include\NeuroNetworksBook\realization\neuronnet.mqh"

Here we finish creating global variables and can proceed with the script.

In the body of the script, we need to make changes to two functions. The first changes will be made to

the CreateLayersDesc function that describes the architecture of the model. As mentioned above, we

will only feed information about the last five candlesticks to the model input. So, we reduce the size of

the raw data layer to 20 neurons. But we will make the script architecture flexible and specify the size

of the source data layer as the product of the external parameter of the number of neurons per

description of one candlestick in NeuronsToBar and the constant of the number of candlesticks to load

in GPT_ InputBars.

bool CreateLayersDesc(CArrayObj &layers)

  {

   CLayerDescription *descr;

//--- create source data layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type         = defNeuronBase;

   int prev_count = descr.count = NeuronsToBar * GPT_InputBars;

   descr.window       = 0;

   descr.activation   = AF_NONE;

   descr.optimization = None;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Note that in case of an error occurring while adding an object to the dynamic array, we output a

message to the log for the user and make sure to delete the objects we created before the script

finishes. It should become a good practice for you to always clean up memory before the program

terminates, whether it's normal termination or due to an error.

After adding a neural layer to the dynamic array of descriptions, we proceed to the next neural layer.

We create a new instance of an object to describe the neural layer. We cannot use the previously

created instance because the variable only holds a pointer to the object. This same pointer was passed

to the dynamic array of pointers to objects describing neural layers. Therefore, when making changes

to the object through the pointer in the local variable, all new data will be reflected when accessing the

object through the pointer in the dynamic array. Thus, by using one pointer, we will only have copies of

the same pointer in the dynamic array, and the program will create a model consisting of identical

neural layers instead of the desired architecture.
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//--- GPT block

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete descr;

      return false;

     }

As the second layer, we will create a GPT block. The model will know about this from the defNeuronGPT

constant in the type field of the created neural layer.

In the count field, we will specify the stack size to store the pattern information. Its value will

determine the size of the buffers for the Key and Value tensors, and will also affect the size of the

vector of dependency coefficients Score.

We will set the size of the input window equal to the number of elements in the previous layer, which we

have saved in a local variable.

The size of the description vector of one element in the Key tensor will be equal to the number of

description elements of one candlestick. This is the value we used when performing previous tests with

attention models. This approach will help us to put more emphasis on the impact of the solution

architecture itself, rather than the parameters used. 

We also transfer the rest of the parameters unchanged from the scripts of previous tests with attention

models. Among them are the number of attention heads used and the parameter optimization function.

I'll remind you that the activation functions for all internal neural layers are defined by the Transformer

architecture, so there's no need for an additional activation function for the neural layer here.

   descr.type = defNeuronGPT;

   descr.count = BarsToLine;

   descr.window = prev_count;

   descr.window_out = NeuronsToBar; // Size of Key vector

   descr.step = 8;                  // Attention heads

   descr.layers = 4;

   descr.activation = AF_NONE;

   descr.optimization = Adam;

Besides, when testing the Multi-Head Self-Attention architecture, we created four identical neural

layers. Now, to create such an architecture, we only need to create one description of a neural layer

and specify the number of identical neural layers in the layers parameter.

We add the created description of the neural layer to our collection of descriptions of the architecture

of the created model.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Next comes a block of hidden fully connected neural layers, transferred in an unchanged form from the

scripts of the previous tests, as well as the results layer. At the output of our model, there will be a
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results layer represented by a fully connected neural layer with two elements and a linear activation

function.

The next block we will modify is the LoadTrainingData function for loading the training sample.

First, we create two dynamic data buffer objects. One will be used for loading pattern descriptions, and

the other for target values.

bool LoadTrainingData(string path, CArrayObj &data, CArrayObj &result)

  {

   CBufferType *pattern;

   CBufferType *target;

After that, we open the training dataset file for reading. When opening the file, we use the

FILE_ SHARE_ READ flag, which allows other programs to read this file without blocking it.

//--- open the file with the training dataset

   int handle = FileOpen(path, FILE_READ | FILE_CSV | FILE_ANSI | 

                               FILE_SHARE_READ, ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error opening study data file: %d", GetLastError());

      return false;

     }

Now we check the resulting file handle.

After successfully opening the training dataset file, we create a loop to read the data up to the end of

the file. To enabel the script to be forcibly stopped, we will add the IsStopped function to check the

interruption of the program closure.

//--- display the progress of training data loading in the chart comment

   uint next_comment_time = 0;

   uint OutputTimeout = 250; // not more than once every 250 milliseconds

//--- organize a loop to load the training sample

   while(!FileIsEnding(handle) && !IsStopped())

     {

      if(!(pattern = new CBufferType()))

        {

         PrintFormat("Error creating Pattern data array: %d", GetLastError());

         return false;

        }

      if(!pattern.BufferInit(1, NeuronsToBar * GPT_InputBars))

         return false;

      if(!(target = new CBufferType()))

        {

         PrintFormat("Error creating Pattern Target array: %d", GetLastError());

         return false;

        }

      if(!target.BufferInit(1, 2))

         return false;

In the body of the loop, we create new instances of data buffers for writing individual patterns and their

target values, for which we have already declared local variable pointers earlier. As always, we control
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the process of object creation. Otherwise, there is an increased risk of encountering a critical error

when subsequently accessing the created object.

It’s worth pointing out that we will create new objects at each iteration of the loop. This is due to the

principles of working with pointers to object instances which were described a bit above when creating

the model description.

After successful creation of objects, we proceed directly to reading the data. When creating a training

dataset, we first recorded descriptions of 40 candlestick patterns followed by 2 target value elements.

We will read the data in the same sequence. First, we organize a loop to read the pattern description

vector. We will read from the file one value at a time into a local variable, while simultaneously checking

the position of the loaded element. We will only save those elements in the data buffer that fall within

the size of our analysis window.

      int skip = (HistoryBars - GPT_InputBars) * NeuronsToBar;

      for(int i = 0; i < NeuronsToBar * HistoryBars; i++)

        {

         TYPE temp = (TYPE)FileReadNumber(handle);

         if(i < skip)

            continue;

         pattern.m_mMatrix[0, i - skip] = temp;

        }

We read the target values in the same way, only here we leave both values.

      for(int i = 0; i < 2; i++)

         target.m_mMatrix[0, i] = (TYPE)FileReadNumber(handle);

After successfully reading information about one pattern from the file, we save the loaded information

into dynamic arrays of our database. We save the pattern information in the dynamic data array and

the target values in the result array.

      if(!data.Add(pattern))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

      if(!result.Add(target))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

Meanwhile, we monitor the process of operations.

At this point, we have fully loaded and saved information about one pattern. Before moving on to

loading information about the next pattern, let's display on the chart of the instrument the number of

loaded patterns for visual control by the user.

Let’s move on to the next iteration of the loop.
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      //--- output download progress in chart comment

      //--- (not more than once every 250 milliseconds)

      if(next_comment_time < GetTickCount())

        {

         Comment(StringFormat("Patterns loaded: %d", data.Total()));

         next_comment_time = GetTickCount() + OutputTimeout;

        }

     }

   FileClose(handle);

   return(true);

  }

When all iterations of the loop are complete, the two dynamic arrays (data and result) will contain all

the information about the training dataset. We can close the file and at the same time terminate the

data loading block. This completes the function.

GPT is a regression model. This means it is sensitive to the sequence of input elements. To meet such a

requirement of the model for the training loop, let's apply the developments of a recurrent algorithm.

We randomly select only the first element of the training batch and, in the interval between model

parameter updates, we input consecutive patterns.
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bool NetworkFit(CNet &net, const CArrayObj &data, const CArrayObj &target,

                                                     VECTOR &loss_history)

  {

//--- training

   int patterns = data.Total();

//--- loop through epochs

   for(int epoch = 0; epoch < Epochs; epoch++)

     {

      ulong ticks = GetTickCount64();

      //--- training by batches

      //--- select a random pattern

      int k = (int)((double)(MathRand() * MathRand()) / MathPow(32767.0, 2) *

                                                   (patterns - BarsToLine-1));

      k = fmax(k, 0);

      for(int i = 0; (i < (BatchSize + BarsToLine) && (k + i) < patterns); i++)

        {

         //--- check to see if the training has stopped

         if(IsStopped())

           {

            Print("Network fitting stopped by user");

            return true;

           }

         if(!net.FeedForward(data.At(k + i)))

        {

            PrintFormat("Error in FeedForward: %d", GetLastError());

            return false;

           }

         if(i < BarsToLine)

            continue;

         if(!net.Backpropagation(target.At(k + i)))

        {

            PrintFormat("Error in Backpropagation: %d", GetLastError());

            return false;

           }

        }

      //--- reconfigur the network weights

      net.UpdateWeights(BatchSize);

      printf("Use OpenCL %s, epoch %d, time %.5f sec",

                (string)UseOpenCL, epoch, (GetTickCount64() - ticks) / 1000.0);

      //--- report on a bygone epoch

      TYPE loss = net.GetRecentAverageLoss();

      Comment(StringFormat("Epoch %d, error %.5f", epoch, loss));

      //--- remember the epoch error to save to file

      loss_history[epoch] = loss;

     }

   return true;

  }

Meanwhile, we monitor the process of operations.

Further script code is transferred in an unchanged form.
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Now we will run the script and compare the results with those obtained earlier when testing the

previous models.

We performed the first test with all training parameters intact and a single layer in the GPT block. The

graph of the model error in the learning dynamics has relatively large fluctuations. This can be caused

by the unevenness of the data distribution between weight matrix updates due to a lack of data

shuffling and a reduction in the amount of data fed into the model, which results in a decreased

gradient error propagation to the weight matrix at each feed-forward iteration. I would like to remind

you that during the implementation of the model, we discussed the issue of gradient error propagation

only within the scope of the current state.

At the same time, despite the significant noise, the proposed architecture raises the quality bar for the

model performance. It demonstrates the highest performance among all the models considered.

Testing the GPT model

Zooming up the graph demonstrates how well the model lowers the minimum error threshold.

Here it should be added that during testing, we trained our model "from scratch". The authors of the

architecture suggest unsupervised pre-training of the GPT block on a large dataset and then fine-tuning

the pre-trained model for specific tasks during supervised learning.
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Testing the GPT model

Let's continue testing our implementation. All known implementations of the GPT architecture use

multiple blocks of this architecture. For the next test, we increased the number of layers in the GPT

block to four. The rest of the script parameters are left unchanged.

The testing results were as expected. Increasing the number of neural layers invariably leads to an

increase in the total number of model parameters. A larger number of parameters requires a greater

number of update iterations to achieve optimal results. In doing so, the model learns better to separate

patterns and is more prone to overlearning. This is what the results of the model training demonstrated.

We see the same noise in the error plot. In addition, we observe an even greater reduction in the

minimum error metrics of the model.  
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Testing the GPT 4 layer model

Testing the GPT 4 layer model

We would like to add that, from the practice of using attention models, their benefits are most clearly

demonstrated when long sequences are used. GPT is no exception. It's more like the other way around.

Since the model recalculates only the current state and uses archived copies of previous states, this
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significantly reduces the number of operations when analyzing large sequences. As the number of

iterations decreases, the speed of the whole model increases.

For the next test, we increase the stack size to 60 candles. Thanks to the architectural design of GPT,

we can increase the length of the analyzed sequence by simply increasing one external parameter

without changing the program code. Among other things, we do not need to change the amount of data

fed to the model input. It should be noted that changing the stack size does not change the number of

model parameters. Yes, increasing the stack of Key and Value tensors leads to an increase in the Score

vector of dependency coefficients. But there is absolutely no change in any of the weight matrices of

the internal neural layers.

The test results demonstrated a reduction in the model's performance error. Moreover, the overall

trend suggests that there is a high likelihood of seeing improved results from the model as we continue

with further training.

Testing the GPT model with an enlarged stack
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Testing the GPT model with an enlarged stack

We have constructed yet another architectural model of a neural layer. The testing results of the model

using this new architectural solution demonstrate significant potential in its utilization. At the same

time, we employed small models with rather short training periods. This is sufficient for demonstrating

the functionality of architectural solutions but not adequate for real-world data usage. As practice

shows, achieving optimal results requires various experiments and unconventional approaches. In most

cases, the best results are achieved through a blend of different architectural solutions.

6. Architectural solutions for improving model convergence

We have discussed several different architectural solutions for neural layers. We have created classes

to implement the discussed architectural solutions and small models using them. However, in the

process of studying neural networks, we cannot bypass the issue of improving neural network

convergence. We have considered theoretical aspects of such practices but have not yet implemented

them in any model.

In this chapter, we dive deeper into the construction and application of architectural solutions

improving the convergence of neural networks, such as Batch Normalization and Dropout techniques.

Regarding batch normalization, we start by examining its basic principles, then proceed to a detailed

discussion of creating a batch normalization class using the MQL5 programming language, including

forward and backward pass methods, as well as file handling methods. The section also covers multi-

threaded computing in the context of batch normalization and provides the implementation of this

approach in Python, including the creation of a script for testing. An important part of the discussion is

the comparative testing of models using batch normalization, showing the practical effectiveness of the

approaches considered.

Moving on to the topic of Dropout, we will examine its implementation in MQL5, including feed-forward,

backpropagation and file handling methods. We will see multi-threaded operations for the Dropout
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mechanism and its implementation in Python. As we close this chapter, we will conduct comparative

testing of models using Dropout and see the impact of this technique on the convergence and efficiency

of neural networks. Thus, we will not only study the theoretical aspects but will also practically apply

them to improve the performance and convergence of models.

6.1 Batch normalization

One such practice is batch normalization. It's worth noting that data normalization is quite common in

neural network models in various forms. Remember when we created our first fully connected

perceptron model, one of the tests involved comparing the model performance on the training dataset

with normalized and non-normalized data. Testing showed the advantage of using normalized data.

We also encountered data normalization when studying attention models. The Self-Attention

mechanism uses data normalization at the output of the Attention block and at the output of the Feed

Forward block. The difference from the previous normalization is in the area of data normalization. In

the first case, we took each individual parameter and normalized its values with respect to historical

data, while in the second case, we didn't look at the history of values for a single indicator; on the

contrary, we took all the indicators at the current moment and normalized their values within the

context of the current state. We can say that the data was normalized along the time interval and

across it. The first option refers to batch data normalization, and the second is called Layer

Normalization.

However, there are other possible uses for data normalization. Let me remind you of the main problem

solved by data normalization. Consider a fully connected perceptron with two hidden layers. With a

forward pass, each layer generates a set of data that serves as a training sample for the next layer.

The output layer result is compared with reference data, and during the backpropagation pass, the

error gradient is propagated from the output layer through the hidden layers to the input data. Having

obtained the error gradient on each neuron, we update the weights, adjusting our neural network to the

training samples from the last forward pass. Here lies a conflict: we are adapting the second hidden

layer to the data output of the first hidden layer, while by changing the parameters of the first hidden

layer, we have already altered the data array. That is, we adjust the second hidden layer to the dataset

that no longer exists. A similar situation arises with the output layer, which adapts to the already

altered output of the second hidden layer. If you also consider the distortion between the first and

second hidden layers, the error scales increase. Furthermore, the deeper the neural network, the

stronger the manifestation of this effect. This phenomenon is called the internal covariance shift.
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In classical neural networks, the mentioned problem was partially addressed by reducing the learning

rate. Small changes in the weights do not significantly change the distribution of the dataset at the

output of the neural layer. However, this approach does not solve the problem of scaling with an

increase in the number of layers in the neural network as it reduces the learning rate. Another problem

with a low learning rate is the risk of getting stuck in local minima.

In February 2015, Sergey Ioffe and Christian Szegedy proposed a Batch Normalization method to solve

the problem of internal covariance shift. The idea of the method was to normalize each individual

neuron on a certain time interval with the median of the sample shifting to zero and scaling the dataset

variance to one.

Experiments conducted by the method authors demonstrate that the use of the Batch Normalization

method also acts as a regularizer. With this, there is no need to use other regularization methods, in

particular Dropout. Moreover, there are more recent studies that show that the combined use of

Dropout and Batch Normalization adversely affects the training results of a neural network.

In modern neural network architectures, variations of the proposed normalization algorithm can be

found in various forms. The authors suggest using Batch Normalization immediately before non-linearity

(activation formula).

6.1.1 Principles of batch normalization implementation

The authors of the method proposed the following normalization algorithm. First, we calculate the

average value from the data sample.
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where:

· μ
B
 = arithmetic mean of the dataset

· m = dataset size (batch)

Then we calculate the variance of the initial sample.

Next, we will normalize the dataset by making it have a zero mean and a unit variance.

Please note that a small positive number ε is added to the denominator of the dataset variance to avoid

division by zero.

However, it has been found that such normalization can distort the impact of the initial data. Therefore,

the authors of the method added another step that includes scaling and shifting. They introduced

variables γ and β, which are trained along with the neural network using gradient descent.

The application of this method allows obtaining a dataset with the same distribution at each training

step, which, in practice, makes neural network training more stable and enables an increase in the

learning rate. Overall, this can improve the training quality while reducing the time and computational

resources required for neural network training.

However, at the same time, the costs of storing additional coefficients increase. Additionally, the

calculation of moving averages and variances requires additional memory allocation to store historical

data for each neuron across the entire batch size. Here you can look at the exponential average. To

calculate EMA (Exponential Moving Averages), we only need the previous value of the function and the

current element of the sequence.

The figure below provides a visual comparison of moving averages and moving variances for 100

elements against exponential moving averages and exponential moving variances for the same 100

elements. The graph was plotted for 1,000 random items in the range from -1.0 to 1.0. 
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Comparison of moving and exponential average graphs

As seen in the graph, the moving average and exponential moving average converge after around 120-

130 iterations, and beyond that point, there is minimal deviation that can be disregarded. The

exponential moving average chart also looks smoother. To calculate EMA, you only need the previous

value of the function and the current element of the sequence. Let me remind you of the exponential

moving average formula.

where:

· μ
i
 = exponential average of the sample at the ith step

· m = dataset size (batch)

· x
i
 = current value of the indicator

To align the plots of moving variance and exponential moving variance, it took slightly more iterations

(around 310-320), but overall the picture is similar. In the case of variance, the use of exponential

moving averages not only saves memory but also significantly reduces the number of computations

since for moving variance, we would need to recalculate the deviation from the mean for the entire

batch of historical data, which can be computationally expensive.
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In my opinion, the use of such a solution significantly reduces memory usage and the computational

overhead during each iteration of the forward pass.

6.1.2 Building a batch normalization class in MQL5

After considering the theoretical aspects of the normalization method, we will move on to its practical

implementation within our library. To do this, we will create a new CNeuronBatchNorm class derived

from the CNeuronBase base class of the fully connected neural layer.

To ensure the full functionality of our class, we need to add a few things. We will add just one buffer for

recording normalization parameters for each element of the sequence and a variable to store the batch

size for normalization. For the rest, we will use base class buffers with minor amendments. We will talk

about them during the implementation of the methods.

class CNeuronBatchNorm    :  public CNeuronBase

  {

protected:

   CBufferType       m_cBatchOptions;

   uint              m_iBatchSize;       // batch size

public:

                     CNeuronBatchNorm(void);

                    ~CNeuronBatchNorm(void);

   //---

   virtual bool      Init(const CLayerDescription* description) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase* prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase* prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase* prevLayer, bool read) override;

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void)  override   const { return(defNeuronBatchNorm); }

  };

We'll be redefining the same set of basic methods:

· Init – method for initializing a class instance

· FeedForward – feed-forward method

· CalchiddenGradient – method of distributing error gradients through a hidden layer

· CalcDeltaWeights – method for distributing error gradients to the weight matrix

· Save – method for saving neural layer parameters

· Load – method for restoring the neural layer performance from the saved data

Let's start working on the class with its constructor. In this method, we only set an initial value for the

normalization batch size. The class destructor remains empty.
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CNeuronBatchNorm::CNeuronBatchNorm(void)  :  m_iBatchSize(1)

  {

  }

After that, we move on to working on the class initialization method. But before we start implementing

this method, let's pay attention to the nuances of our implementation.

First of all, the normalization method does not involve changing the number of elements. The output of

the neural layer will have the same number of neurons as the input. Therefore, the size of the source

data window should be equal to the number of neurons in the layer being created. Of course, we can

ignore the source data window size parameter and only use the number of neurons in the layer.

However, in this case, we would lose additional control during the neural layer initialization stage and

would have to constantly check whether the number of neurons matches during each feed-forward and

backpropagation pass.

The second point is related to the lack of a matrix of weights in our usual form. Let's look at

mathematical formulas again.

To calculate the normalized value, we use only the mean and standard deviation, which are calculated

for the dataset and do not have adjustable parameters. We have only two configurable parameters

when we shift and scale the values of γ and β. Both parameters are selected individually for each value

from the source data tensor.

Now let's remember the mathematical formula for a displaced neuron.

Don't you think that when N = 1, the formulas will look identical? We will use this similarity.

Now let's get back to our method of initializing an object instance. This method is virtual and inherits

from the parent class. According to the rules of inheritance, this method stores the return type and the

list of method parameters. The parameters of our method contain only one pointer to the object

describing the neural layer being created.

In the body of the method, we immediately check the received pointer to the description object of the

created neural layer, while also simultaneously verifying the correspondence between the size of the

input data window and the number of neurons in the created layer. We discussed this point a little

earlier.

After successfully checking the obtained object, we change the size of the initial data window by one in

accordance with the similarity shown above. Now we call the parent class initialization method,

remembering to check the results of the operations.
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bool CNeuronBatchNorm::Init(const CLayerDescription *description)

  {

   if(!description ||

      description.window != description.count)

      return false;

   CLayerDescription *temp = new CLayerDescription();

   if(!temp || !temp.Copy(description))

      return false;

   temp.window = 1;

   if(!CNeuronBase::Init(temp))

      return false;

   delete temp;

It should be noted here that during the initialization of the parent class, the weight matrix is initialized

with random values. However, for batch normalization, the recommended initial values are 1 for the

scaling coefficient γ and 0 for the offset β. As an experiment, we can leave it as it is, or we can fill the

weight matrix buffer now.

//--- initialize the training parameter buffer

   if(!m_cWeights.m_mMatrix.Fill(0))

      return false;

   if(!m_cWeights.m_mMatrix.Col(VECTOR::Ones(description.count), 0))

      return false;

After successfully initializing the objects of the parent class, we proceed to create objects and specify

initial values for the variables and constants of the new class.

First, we initialize the normalization parameter buffer. In this buffer, we need three elements for each

element in the sequence. There we will save:

0. μ – average value from previous iterations of the forward pass.

1. σ 2 – dataset variance over previous iterations of the forward pass.

2.  – normalized value before scaling and shifting.

I deliberately numbered the values starting from 0. This is exactly the indexing that values in our data

buffer will get. At the initial stage, we initialize the entire buffer with zero values and check the results

of the operations.

//--- initialize the normalization parameter buffer

   if(!m_cBatchOptions.BufferInit(description.count, 3, 0))

      return false;

   if(!m_cBatchOptions.Col(VECTOR::Ones(description.count), 1))

      return false;

At the end of the initialization method of our class, we save the batch normalization size into a specially

created variable. We then exit the method with a positive result.

   m_iBatchSize = description.batch;

//---

   return true;

  }

At this point, we conclude our work with the auxiliary initialization methods and move on to building the

algorithms for the class. As always, we will begin this work by constructing a method for the feed-

forward pass.
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6.1.2.1 Batch normalization feed-forward methods

We continue moving forward along the path of building the batch normalization class, and

simultaneously, along the path of understanding the structure and methods of organizing neural

networks. Earlier, we discussed various architectures for constructing neural layers to solve practical

tasks. However, the operation of the batch normalization layer is equally important in organizing the

functioning of a neural network, although its task may not be immediately apparent. Rather, it is hidden

within the organization of the processes of the neural network itself and serves more for the stability of

our model.

We have already built the class initialization methods. Now it's time to build the algorithm of method

operation directly. We begin this process with the FeedForward method. This method is declared virtual

in the CNeuronBase neural layer base class of our library and is overridden in each new class.

I would like to remind you that this approach allows us to eliminate the use of dispatch methods and

functions for reallocating information flows and calling various methods depending on the class of the

object being used. In practice, we can simply pass a pointer to any derived object into a local variable

of the base class of the neural layer and call the method declared in the base class. At the same time,

the system will perform all dispatching functions without our participation. It will call the method

related to the actual type of the object.

This property is exactly what we exploit when expecting to receive a pointer to an object of the base

class of the neural layer in the method parameters. At the same time, a pointer to any of the neural

layer objects in our library can be passed in the parameters. We can work with it through the use of

overridden virtual functions.

The operation of the feed-forward method itself starts with a control block for checking pointers to the

objects used by the method. Here we check both the pointer to the object of the previous layer

obtained in the parameters and pointers to internal objects.

bool CNeuronBatchNorm::FeedForward(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !m_cOutputs ||

      !m_cWeights || !m_cActivation)

      return false;

Please note that along with other objects, we also check the pointer to the activation function object.

Although the batch normalization algorithm does not use an activation function, we will not limit the

user's capabilities and will provide them with the option to use an activation function as they see fit.

Moreover, there are practical cases where applying an activation function after data normalization is

beneficial. For example, the method authors recommend normalizing data immediately before applying

the activation function. At first glance, applying such an approach would require modifications to every

previously discussed class. However, we can implement the same functionality without modifying the

existing classes. We simply need to declare the required neural layer without an activation function,

followed by a normalization layer with the desired activation function. Therefore, I believe the use of

the activation feature in our class is justified.

Next, we will branch the algorithm for a case when the normalization batch size is equal to 1 or less. It

should be understood that when the batch is equal to 1, no normalization is performed, and we simply

pass the tensor of the original data to the output of the neural layer. After completing the data copy

from the buffer, we call the activation method and exit the method after verifying the results of the

operations.
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//--- check the size of the normalization batch

   if(m_iBatchSize <= 1)

     {

      m_cOutputs.m_mMatrix = prevLayer.GetOutputs().m_mMatrix;

      if(m_cOpenCL && !m_cOutputs.BufferWrite())

         return false;

      if(!m_cActivation.Activation(m_cOutputs))

         return false;

      return true;

     }

Next, we need to construct the algorithm of the method. Following the concept we have adopted, we

will create two variants of the algorithm implementation: by standard MQL5 tools and in the multi-

threaded calculations mode using OpenCL. Therefore, next, we create another branching of the

algorithm depending on the user's choice of the computational device. In this section, we will consider

the construction of the algorithm using MQL5. In further sections, we will return to the construction of

the algorithm using OpenCL.

//--- branching of the algorithm over the computing device

   if(!m_cOpenCL)

     {

We start the block of operations using MQL5 with a small preparatory work. To simplify the process of

accessing the data, we save a sequence of raw data into a local matrix.

      MATRIX inputs = prevLayer.GetOutputs().m_mMatrix;

      if(!inputs.Reshape(1, prevLayer.Total()))

         return false;

According to the data normalization algorithm, we find the mean value. In considering the architecture

of our solution, we have decided to use an exponential moving average, which is determined by the

formula. 

      VECTOR mean = (m_cBatchOptions.Col(0) * ((TYPE)m_iBatchSize - 1.0) + 

                     inputs.Row(0)) / (TYPE)m_iBatchSize;

After determining the moving average, we find the average variance.

      VECTOR delt = inputs.Row(0) - mean;

      VECTOR variance = (m_cBatchOptions.Col(1) * ((TYPE)m_iBatchSize - 1.0) +

                         MathPow(delt, 2)) / (TYPE)m_iBatchSize;

Once the mean and variance values are found, we can easily compute the normalized value of the

current element in the sequence.

      VECTOR std = sqrt(variance) + 1e-32;

      VECTOR nx = delt / std;

Note that we add a small constant to the variance to eliminate the potential zero division error.
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The next step of the batch normalization algorithm is shift and scaling.

      VECTOR res = m_cWeights.Col(0) * nx + m_cWeights.Col(1);

After that, we only need to save the obtained values into the respective elements of the buffers. Please

note that we save not only the results of the algorithm operations in the result buffer but also our

intermediate values in the normalization parameters buffer. We will need them in subsequent iterations

of the algorithm. Do not forget to check the results of the operations.

      if(!m_cOutputs.Row(res, 0) ||

         !m_cBatchOptions.Col(mean, 0) ||

         !m_cBatchOptions.Col(variance, 1) ||

         !m_cBatchOptions.Col(nx, 2))

         return false;

     }

   else  // OpenCL block

     {

      return false;

     }

This completes the algorithm splitting depending on the computing device used. As always, we will set a

temporary stub for the OpenCL block in the form of a false value return. We will return to this part

later.

Now, before exiting the method, we activate the values in the result buffer of our class. To do this, we

call the Activation method of our special object to work with the m_ cActivation activation function.

After checking the result of the operation, we terminate the method.

   if(!m_cActivation.Activation(m_cOutputs))

      return false;

//---

   return true;

  }

With that, we conclude our work on the feed-forward method of the CNeuronBatchNorm batch

normalization class. I hope that understanding the logic behind its construction wasn't difficult for you.

Now, let's move on to building the backpropagation methods.
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6.1.2.2 Batch normalization backpropagation methods

In the previous sections, we began studying the algorithm of the batch normalization method. To

implement it in our library, we have created a separate neural layer in the form of the

CNeuronBatchNorm class and have even built methods for initializing the class of the feed-forward

algorithm. Now it's time to move on to building the backpropagation algorithm for our class. Let me

remind you that the backpropagation algorithm in all neural layers of our library is represented by four

virtual methods:

· The CalcOutputGradient method for calculating the error gradient at the output of the neural

network,

· The CalcHiddenGradient method for propagating the gradient through the hidden layer,

· The CalcDeltaWeights method for calculating weight adjustment values, and

· The UpdateWeights method for updating the weight matrix.

All of them were declared in our CNeuronBase neural layer base class. They are overridden in each new

class as needed.

In this class, we will override only two methods: error gradient propagation through the hidden layer

and the calculation of weight adjusting values.

We will not override the error gradient method at the output of the neural network because I do not

know of a scenario where it would be necessary to use batch normalization as the last layer of a neural

network. Moreover, experiments show that the use of batch normalization immediately before the

neural network result layer can adversely affect the results of the model.

As for the method for updating the weight matrix, we intentionally designed the operation of the buffer

for the matrix of trainable parameters in such a way that it became possible to use the method from

the parent class to update its parameters.

Now let's move on to the practical part and look at the implementation of the specified

CalcHiddenGradient backpropagation methods. This is a virtual method that was defined in the

CNeuronBase neural layer base class. The method is overridden in each new class of the neural layer to

implement a specific algorithm. In the parameters, the method receives a pointer to the object of the

previous neural layer and returns the logical result of the operations.

In the method body, we add a control block in which we check the validity of pointers both to the

previous layer object received in the parameters and to the internal objects used in the method

operation. We have talked about the importance of such a process on multiple occasions because

accessing an object through an invalid pointer leads to a critical error and a complete termination of

the program.

bool CNeuronBatchNorm::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !prevLayer.GetGradients() ||

      !m_cActivation || !m_cWeights)

      return false;

Next, we need to adjust the error gradient obtained from the next layer to the derivative of the

activation function of our layer. In the base class, we have encapsulated all the work with the activation

function into a separate object of the CActivation class. Therefore, now, to adjust the error gradient, we
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should simply call the appropriate method of this class and provide a pointer to the error gradient buffer

of our class as a parameter. As always, do not forget to check the result of the operation.

//--- adjust the error gradient to the derivative of the activation function

   if(!m_cActivation.Derivative(m_cGradients))

      return false;

After that, we check the size of the specified normalization batch. If it is not more than one, simply

copy the gradient buffer data of the current layer to the buffer of the previous layer. Then we exit the

method with the result of copying the data.

//--- check the size of the normalization batch

   if(m_iBatchSize <= 1)

     {

      prevLayer.GetGradients().m_mMatrix = m_cGradients.m_mMatrix;

      if(m_cOpenCL && !prevLayer.GetGradients().BufferWrite())

         return false;

      return true;

     }

Next, we sequentially calculate the gradients for all functions of the algorithm.

I suggest going through the process and looking at the mathematical formulas for the propagation of

the error gradient. At the initial stage, we have the error gradient for the results of our normalization

layer, which corresponds to the scaling and shifting function values. Let me remind you of the formula:

To adjust the error gradient, we need to multiply it by the derivative of the function. According to the

rules for calculating the derivative for , the shift β acts as a constant and its derivative is zero. The

derivative of the product is equal to the second factor. Thus, our derivative will be equal to the scaling

factor γ.

where G
i
 is the gradient of the ith element at the output of the scaling and shift function.

In the method code, this operation will be expressed in the following lines.
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//--- branching of the algorithm by computing device

   if(!m_cOpenCL)

     {

      MATRIX mat_inputs = prevLayer.GetOutputs().m_mMatrix;

      if(!mat_inputs.Reshape(1, prevLayer.Total()))

         return false;

      VECTOR inputs = mat_inputs.Row(0);

      CBufferType *inputs_grad = prevLayer.GetGradients();

      ulong total = m_cOutputs.Total();

      VECTOR gnx = m_cGradients.Row(0) * m_cWeights.Col(0);

Let's move on. We determine the normalized value using the formula.

From here, we need to distribute the error gradient to each of the components. I will not show the

entire process of deriving partial differential formulas. I will only provide a ready-made formula for

calculating the error gradient presented by the authors of the method in the article Batch

Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

The last two formulas will be needed for the next method, where we will propagate the error gradient to

the level of the trainable parameter matrix. Therefore, in the code of this method, we implement only

the formulas given above.

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
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      VECTOR temp = MathPow(MathSqrt(m_cBatchOptions.Col(1) + 1e-32), -1);

      VECTOR gvar = (inputs - m_cBatchOptions.Col(0)) / 

                   (-2 * pow(m_cBatchOptions.Col(1) + 1.0e-32, 3.0 / 2.0)) * gnx;

      VECTOR gmu = temp * (-1) * gnx - gvar * 2 * 

                          (inputs - m_cBatchOptions.Col(0)) / (TYPE)m_iBatchSize;

      VECTOR gx = temp * gnx + gmu / (TYPE)m_iBatchSize + gvar * 2 * 

                          (inputs - m_cBatchOptions.Col(0)) / (TYPE)m_iBatchSize;

Note that the formulas are the sums of the values across the entire normalization dataset. We perform

calculations only for the current value. Nevertheless, we do not deviate from the above formulas. The

reason is that our dataset is stretched over time, and we return the error gradient at each step. During

the period between updates of the trainable parameters of our class, we accumulate the error gradient

on them, thereby summing it over the entire duration of our normalization dataset stretched along the

time scale.

Now we only need to save the obtained error gradient into the corresponding element of the buffer and

check the result of the operation.

      if(!inputs_grad.Row(gx, 0))

         return false;

      if(!inputs_grad.Reshape(prevLayer.Rows(), prevLayer.Cols()))

         return false;

     }

   else  // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

As a result of performing these operations, we obtained a filled buffer for the gradient tensor of the

previous layer. So, the task set for this method has been completed, and we can conclude the

branching of the algorithm depending on the used device. We will set a temporary stub for the block of

organizing multi-threaded computing using OpenCL, as in similar cases when working with other

methods. Thus, we finish working on our CNeuronBatchNorm::CalcHiddenGradient method at this point.

We will continue to organize the process of the backpropagation pass. Let's move on to the next

method CNeuronBatchNorm::CalcDeltaWeights. Usually, this method is responsible for distributing the

error gradient to the level of the weight matrix. But in our case, we have slightly different trainable

parameters, on which we will distribute the error gradient.

The CalcDeltaWeights method like the previous one, receives a pointer to the object of the previous

layer in the parameters. However, in this case, it is more of a fulfillment of the requirement of method

inheritance than a functional necessity. The formulas for propagating the error gradient to trainable

variables have already been provided above, but I will list them again for reference.
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As can be seen from the above formulas, the error gradient of the parameters does not depend on the

values of the previous layer. The gradient of the scaling coefficient depends on the normalized value,

while the gradient of the bias is equal to the error gradient at the output of the batch normalization

layer. Of course, the normalized value itself depends on the values of the previous layer. However, to

avoid its recalculation, we simply saved the normalized values in a buffer with a feed-forward pass.

Therefore, in the body of this method, we will not refer to the elements of the previous layer. Hence,

there is no point in wasting time checking the resulting pointer to the previous layer. At the same time,

we will not completely exclude the control block as we check not only external pointers but also

pointers to internal objects.

bool CNeuronBatchNorm::CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

  {

//--- control block

   if(!m_cGradients || !m_cDeltaWeights)

      return false;

After successfully passing the control block, we check the value of the normalization batch. It should

be at least greater than one. Otherwise, we exit the method.

//--- check the size of the normalization batch

   if(m_iBatchSize <= 1)

      return true;

After successfully passing all the controls, we proceed to the direct implementation of the method

algorithm. We always implement the algorithm in two versions: using standard MQL5 tools and using

multi-threaded computing technology using OpenCL. Therefore, before continuing the operations, we

will create a branching of the algorithm depending on the device used for computing operations.

//--- branching of the algorithm by the computing device

   if(!m_cOpenCL)

     {

In the branch of algorithm implementation using standard MQL5 tools we will use matrix operations.

According to the formulas provided above, we determine the error gradient for the scaling coefficient

and the bias. We add the obtained values to the previously accumulated error gradients of the

corresponding elements and update the values in the error gradient accumulation buffer.

      VECTOR grad = m_cGradients.Row(0);

      VECTOR delta = m_cBatchOptions.Col(2) * grad + m_cDeltaWeights.Col(0);

      if(!m_cDeltaWeights.Col(delta, 0))

         return false;

      if(!m_cDeltaWeights.Col(grad + m_cDeltaWeights.Col(1), 1))

         return false;

After completing all the operations, we will have a fully updated error gradient buffer at the level of the

batch normalization layer's trainable parameters. In other words, the task for this method is solved,

and we close the branch of the algorithm depending on the computing device, along with the entire

method. However, first, we add a stub in the block of the multi-threaded computing algorithm using

OpenCL.
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     }

   else  // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

Above, we have redefined two methods from the backpropagation algorithm. The method of updating

the weights, and in this case the trained parameters, was inherited from the parent class. Thus, the

work on the backpropagation methods in terms of the organization of the process using standard MQL5

tools can be considered complete. Let's move on to the file handling methods.
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6.1.2.3 File operations

We are confidently approaching the completion of work on the methods of the CNeuronBatchNorm

batch normalization class. Previously, we have already built methods for initializing the class, as well as

built an algorithm for the operation of feed-forward and backpropagation passes using standard MQL5

capabilities. Let's move on to working on file handling methods. We have discussed the importance of

having and correctly functioning these methods several times as the performance of these methods

determines how quickly we can deploy a trained model into operational use.

We have already done similar work more than once for other classes in our library. Now we will follow

the same established algorithm. First, we evaluate the need to write each element of the class to the

data file. In the structure of our class, we have created only one new data buffer and one variable. Both

of these elements are important for organizing correct object operations in our class. Therefore, we

save both elements to a data file.

class CNeuronBatchNorm    :  public CNeuronBase

  {

protected:

   CBufferType       m_cBatchOptions;

   uint              m_iBatchSize;       // batch size

public:

                     CNeuronBatchNorm(void);

                    ~CNeuronBatchNorm(void);

   //---

   virtual bool      Init(const CLayerDescription* description) override;

   virtual bool      SetOpenCL(CMyOpenCL *opencl) override;

   virtual bool      FeedForward(CNeuronBase* prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase* prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase* prevLayer,bool read)override;

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void)  override   const {return defNeuronBatchNorm;}

  };

Having determined the scope of our work, we now proceed directly to creating the file handling

methods for our class. As always, the first step is to create the CNeuronBatchNorm::Save method for

writing data to the file. Like all the methods we have discussed so far, this one is also created as a

virtual method in the base neural layer class and is overridden in each new neural layer class to fully

save all the necessary information for subsequent restoration of the correct operation of the saved

objects. In parameters, the method receives a file handle of to write the data.

bool CNeuronBatchNorm::Save(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronBase::Save(file_handle))

      return false;

The obtained file handle for writing data is not checked, as this control is already implemented in the

same-named method of the parent class, which is called in the body of this method. Thus, we check

the result of the operations of the method of the parent class.
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   if(!CNeuronBase::Save(file_handle))

      return false;

It is very convenient to use the method of the parent class. This usage serves a dual purpose. The first

purpose is a control function because the parent class already implements a set of controls that do not

need to be duplicated in the new method. We only need to call the parent class method and check its

execution result. The second purpose is functional. The method of the parent class already stores all

inherited objects and variables. Here, it's the same situation: we call the parent class method once,

thereby saving all inherited objects and variables. Convenient, isn't it? Moreover, we do not need to call

the method for each individual functionality. With one call, we accomplish two tasks: control and saving

of inherited objects. Checking the result of the function execution confirms the correct execution of

both functions of the method.

After successfully executing the parent class method, we understand that the handle to the file

provided as a parameter is valid. Now we can proceed with further file operations without the risk of

getting a critical error. First, we save the normalization batch size, which is stored in the m_ iBatchSize

variable. Also, we make sure to check the result of the operation.

//--- save the size of the normalization batch

   if(FileWriteInteger(file_handle, m_iBatchSize) <= 0)

      return false;

At the end of the method, we save the buffer of m_ cBatchOptions normalization parameters. To do this,

we just call the corresponding method of the specified object and check its operation result.

//--- save normalization settings

   if(!m_cBatchOptions.Save(file_handle))

      return false;

//---

   return true;

  }

As you can see, by using parent class methods and internal objects, we have described the method for

saving all the necessary information easily and quite concisely. The main data saving controls and

operations are hidden in these methods.

Similarly, let's create a method for loading data from the CNeuronBatchNorm::Load file. It should be

noted that this method is responsible not only for reading data from a file but also for fully restoring the

functionality of the object to the state at the time of data saving. Therefore, this method should include

operations for creating instances of objects required for the correct functioning of our batch

normalization class. In addition, we must initialize all unsaved objects and variables with initial values.

In the parameters, the CNeuronBatchNorm::Load method, like the previous data saving method,

receives the handle of the file with the saved data. We have to organize the reading of data from the file

in strict accordance with the sequence of their writing to the file. This time, in the body of the method,

we immediately call the method of the parent class. The calculation here is the same: by calling the

parent class method once, we immediately execute the entire functionality with inherited objects and

variables. At the same time, we only need to check the result of the parent class method once to

ensure the correctness of all its operations.
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bool CNeuronBatchNorm::Load(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronBase::Load(file_handle))

      return false;

After the successful execution of the parent class method, we move on to loading the data of the

objects of the batch normalization class. According to the sequence in which the data is written to the

file, we first read the size of the normalization batch.

   m_iBatchSize = FileReadInteger(file_handle);

Finally, it remains to load the buffer data of the m_ cBatchOptions normalization parameters. 

//--- initialize a dynamic array of optimization parameters

   if(!m_cBatchOptions.Load(file_handle))

      return false;

//---

   return true;

  }

After successfully loading all the data, we will conclude the method execution with a positive result.

We have finished creating a batch data normalization layer using standard MQL5 tools. To complete the

work on the CNeuronBatchNorm class, we need to supplement its functionality with the ability to

perform multi-threaded mathematical operations using OpenCL. We'll do that in the next section. But

now we have the opportunity to conduct the first tests.

6.1.3 Organizing multi-threaded computations in the batch

normalization class

We continue working on our batch normalization class CNeuronBatchNorm. In the previous sections, we

have already fully implemented the functionality of the class using standard MQL5 tools. In order to

complete the work on the class, according to our concept, it remains to supplement its functionality

with the ability to perform multi-threaded mathematical operations using OpenCL. Recall, the

implementation of this functionality can be roughly divided into two sub-processes:

· Create an OpenCL program.

· Modify the methods of the main program to organize data exchange with the context and call the

OpenCL program.

Let's start by creating the OpenCL program. First, we implement the BatchNormFeedForward forwards

pass kernel. In the parameters, we pass pointers to four buffers and two constants to the kernel:

· inputs – buffer of raw data (previous layer results)

· options – normalization parameter buffer

· weights – trainable parameter matrix buffer (named after the class buffer)

· output – result buffer

· batch – size of the normalization batch

· total – size of the result buffer
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__kernel void BatchNormFeedForward(__global TYPE *inputs,

                                   __global TYPE *options,

                                   __global TYPE *weights,

                                   __global TYPE *output,

                                   int batch,

                                   int total)

  {

The last parameter is necessary because we use vector variables of TYPE4 type to optimize the

computation process. This approach allows parallel computing not at the software level, but at the

microprocessor level. The use of a vector of four elements of type double allows you to fully fill a 256-

bit microprocessor register and perform calculations on the entire vector in a single clock cycle. Thus,

in one clock cycle of the microprocessor, we perform operations on four elements of our data array.

OpenCL supports vector variables of 2, 3, 4, 8, and 16 elements. Before choosing a vector dimension,

please check the specifications of your hardware.

In the kernel body, we immediately identify the current thread ID. We will need it to determine the

offset in the buffers of the tensors before the analyzed variables.

We also check the size of the normalization batch. If it is not greater than one, we simply copy the

corresponding elements from the gradient buffer of the current layer to the gradient buffer of the

previous layer and terminate further execution of the kernel.

   int n = get_global_id(0);

   if(batch <= 1)

     {

      D4ToArray(output, ToVect4(inputs, n * 4, 1, total, 0), n * 4, 1, total, 0);

      return;

     }

Please note that when calling the function to convert tensor values into vector representation and vice

versa for the bias parameter in the tensor, we increase the thread identifier by a factor of four. This is

because when using vector operations with TYPE4, each thread simultaneously processes four elements

of the tensor. Therefore, the number of launched threads will be four times smaller than the size of the

processed tensor.

If the normalization batch size is greater than one, and we continue program execution, we need to

determine the offset in the normalization parameter tensor buffers, taking into account the identifier of

the current thread and the vector operation size (TYPE4)

   int shift = n * 4;

   int shift_options = n * 3 * 4;

   int shift_weights = n * 2 * 4;

We now move on directly to the execution of our algorithm. First, we create a vector with the analyzed

input data and calculate the exponential average. Let's use the previous mean and variance to

determine the first iteration. We divide the pre-obtained averaging value by the dataset package size

only on the second and subsequent iterations. This is because the average of the first element is the

element itself.

After determining the mean, we find the deviation of the current value from the mean and calculate the

dataset variance.
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   TYPE4 inp = ToVect4(inputs, shift, 1, total, 0);

   TYPE4 mean = ToVect4(options, shift, 3, total * 3, 0) * ((TYPE)batch - 1) + inp ;

   if(options[shift_options ] != 0 && options[shift_options + 1] > 0)

      mean /= (TYPE4)batch;

   TYPE4 delt = inp - mean;

   TYPE4 variance = ToVect4(options, shift, 3, total * 3, 1) * ((TYPE)batch - 1) + pow(delt, 2);

   if(options[shift_options + 1] > 0)

      variance /= (TYPE4)batch;

Having mean and sample variance, we can easily calculate the normalized value of the parameter.

   TYPE4 nx = delt / sqrt(variance + 1e-37f);

Next, according to the batch normalization algorithm, it is necessary to perform the shift and scaling of

the normalized value. But before that, I want to remind you that at the initial stage, we initialized the

buffer of trainable parameter matrices with zero values. As such, we get 0 for all values regardless of

the previously normalized value.

Therefore, we check for a zero value for the scaling factor and replace it with one if necessary.

   if(weights[shift_weights] == 0)

      D4ToArray(weights, (TYPE4)1, shift, 2, total * 2, 0);

Note that we are checking for equality to zero only for the first element of the analyzed value vector.

We will replace the entire vector with one. This approach is acceptable because I expect to get null

values only on the first pass. At this point, we will have all buffer elements equal to zero and need to

replace them. The coefficients will then be determined and optimized and, therefore, it will be different

from zero during model training.

After such a simple operation, we can safely scale up and shift.

   TYPE4 res = ToVect4(weights, shift, 2, total * 2, 0) * nx + 

               ToVect4(weights, shift, 2, total * 2, 1);

Now we only need to save the received data to the appropriate buffer elements. In doing so, we

maintain not only the last result but also the intermediate values we need.

   D4ToArray(options, mean, shift, 3, total * 3, 0);

   D4ToArray(options, variance, shift, 3, total * 3, 1);

   D4ToArray(options, nx, shift, 3, total * 3, 2);

   D4ToArray(output, res, shift, 1, total, 0);

  }

This completes the work on the BatchNormFeedForward feed-forward kernel and we can move on to

the work on the backpropagation kernels.

To implement the backpropagation algorithm, we create two kernels, one for the propagation of the

error gradient to the level of the previous layer and the other one for the propagation of the error

gradient to the level of the matrix of trainable parameters.

We start by creating an error gradient propagation kernel through a hidden layer of the

BatchNormCalcHiddenGradient neural network. In the parameters of this method, this time we will pass

five data buffers and two constants:
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· inputs – buffer of input data (previous layer results)

· options – normalization parameter buffer

· weights – trainable parameter matrix buffer (named after the class buffer)

· gradient – error gradient buffer at the result level of the current layer

· gradient_ inputs – error gradient buffer at the level of the previous layer results (in this case the

kernel result)

· batch – size of the normalization batch

· total – size of the result buffer

__kernel void BatchNormCalcHiddenGradient(__global TYPE *options,

                                          __global TYPE *gradient,

                                          __global TYPE *inputs,

                                          __global TYPE *gradient_inputs,

                                          __global TYPE *weights,

                                          int batch,

                                          int total)

  {

At the beginning of the kernel, as in the feed-forward kernel, we determine the current flow identifier

and check the normalization batch size. If the normalization batch size is not greater than one, we

simply copy the error gradients from the current layer buffer to the previous layer buffer and stop

executing the kernel.

   int n = get_global_id(0);

   int shift = n * 4;

   if(batch <= 1)

     {

      D4ToArray(gradient_inputs, ToVect4(gradient, shift, 1, total, 0),

                                                   shift, 1, total, 0);

      return;

     }

If, however, the size of the normalization batch is greater than one, and we continue with the kernel

operations, then we have to propagate the error gradient throughout the chain from the results level of

the current layer to the results level of the previous layer. Below are the mathematical formulas we

have to implement.
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   TYPE4 inp = ToVect4(inputs, shift, 1, total, 0);

   TYPE4 gnx = ToVect4(gradient, shift, 1, total, 0) * 

               ToVect4(weights, shift, 2, total * 2, 0);

   TYPE4 temp = 1 / sqrt(ToVect4(options, shift, 3, total * 3, 1) + 1e-37f);

   TYPE4 delt = inp - ToVect4(options, shift, 3, total * 3, 0);

   TYPE4 gvar = delt / (-2 * pow(ToVect4(options, shift, 3, total * 3, 1) +

                                              1.0e-37f, 3.0f / 2.0f)) * gnx;

   TYPE4 gmu = (-temp) * gnx - gvar * 2 * delt / (TYPE4)batch;

   TYPE4 gx = temp * gnx + gmu/(TYPE4)batch + gvar * 2 * delt/(TYPE4)batch;

After the calculation, we save the result of the operations and complete the kernel.

   D4ToArray(gradient_inputs, gx, shift, 1, total, 0);

  }

This completes the first kernel in implementing the backpropagation algorithm of our batch

normalization class, and we move on to the final phase of the OpenCL program, which is the creation of

the second backpropagation kernel in which the error gradient is propagated to the level of the

BatchNormCalcDeltaWeights trainable parameter matrix.

We pass three data buffers to this kernel in parameters. These are:

· options – normalization parameter buffer

· delta_ weights – error gradient buffer at the trainable parameter matrix level (in this case the result

of the kernel)

· gradient – error gradient buffer at the result level of the current layer.

__kernel void BatchNormCalcDeltaWeights(__global TYPE *options,

                                        __global TYPE *delta_weights,

                                        __global TYPE *gradients)

  {

We need to implement only two mathematical formulas in this kernel:

As you can see, the operations are quite simple and will not require too long code to implement the

algorithm. This time we don’t even use vector operations.

At the beginning of the kernel, we define the ID of the current thread and the offset in the buffers with

the normalization parameter tensors. The offset in the error gradient buffers will match the thread ID.

   const int n = get_global_id(0);

   int shift_options = n * 3;

   int shift_weights = n * 2;

To reduce global memory access, we will first save the gradient error value in a local variable, and then

calculate and immediately write the corresponding values for the current step to the gradient error

accumulation buffer elements using the formulas mentioned above.
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   TYPE grad = gradients[n];

   delta_weights[shift_weights] += grad * options[shift_options + 2];

   delta_weights[shift_weights + 1] += grad;

  }

As you can see, the error gradients are written to the corresponding buffer elements. So, the task

assigned to this kernel is complete and we can finish its operation.

We have created all three kernels to implement feed-forward and backpropagation passes in our batch

normalization class. We can now proceed to make changes to the main program to organize data

exchange with the OpenCL context and call the corresponding program kernel.

Let's start this work as usual by creating constants for OpenCL kernels. Go to defines.mqh and add

program kernel identifier constants at the beginning.

#define def_k_BatchNormFeedForward        37

#define def_k_BatchNormCalcHiddenGradient 38

#define def_k_BatchNormCalcDeltaWeights   39

Then add the kernel parameter identifiers.

//--- feed-forward pass of batch normalization

#define def_bnff_inputs                0

#define def_bnff_options               1

#define def_bnff_weights               2

#define def_bnff_outputs               3

#define def_bnff_batch                 4

#define def_bnff_total                 5

//--- gradient distribution through the batch normalization layer

#define def_bnhgr_options              0

#define def_bnhgr_gradient             1

#define def_bnhgr_inputs               2

#define def_bnhgr_gradient_inputs      3

#define def_bnhgr_weights              4

#define def_bnhgr_batch                5

#define def_bnhgr_total                6

//---- gradient distribution to optimized batch normalization parameters

#define def_bndelt_options             0

#define def_bndelt_delta_weights       1

#define def_bndelt_gradient            2

The next step is to initialize the new kernels in the program. To do this, we switch to the method of

initializing the OpenCL program of the main dispatch class of our model CNet::InitOpenCL. First, we

change the total number of kernels used.
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   if(!m_cOpenCL.SetKernelsCount(40))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_BatchNormFeedForward,

                                   "BatchNormFeedForward"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_BatchNormCalcHiddenGradient,

                                   "BatchNormCalcHiddenGradient"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   if(!m_cOpenCL.KernelCreate(def_k_BatchNormCalcDeltaWeights,

                                   "BatchNormCalcDeltaWeights"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

Now that the kernels have been created, and we can access them, we move on to working with the

methods of our batch normalization class.

As is already the tradition, we will start with the feed-forward method. We only make changes to the

implementation of the multithread algorithm using OpenCL. All other method code remains unchanged.

According to the algorithm of preparing the kernel to run, we must first pass all the necessary data to

the OpenCL context memory. So, we check for created buffers in the context memory.
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bool CNeuronBatchNorm::FeedForward(CNeuronBase *prevLayer)

  {

   ......

//--- branching of the algorithm by the computing device

   if(!m_cOpenCL)

     {

//--- Implementation using MQL5 tools

   ......

     }

   else  // OpenCL block

     {

 //--- checking data buffers

      CBufferType *inputs = prevLayer.GetOutputs();

      if(inputs.GetIndex() < 0)

         return false;

      if(m_cBatchOptions.GetIndex() < 0)

         return false;

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

In the next step, we pass pointers to data buffers and the values of required constants to the kernel

parameters. 

 //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormFeedForward,

                                         def_bnff_inputs, inputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormFeedForward,

                                    def_bnff_weights, m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormFeedForward,

                               def_bnff_options, m_cBatchOptions.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormFeedForward, 

                                    def_bnff_outputs, m_cOutputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_BatchNormFeedForward,

                                    def_bnff_total, (int)m_cOutputs.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_BatchNormFeedForward,

                                               def_bnff_batch, m_iBatchSize))

         return false;

After completing the preparatory work, we proceed to enqueue the kernel for execution. First, we need

to fill in two dynamic arrays. In one of them, we fill in the dimension of the task space, and in the other

one, we fill in the offset in each dimension of the task space. We will run the kernel in a one-dimensional

zero-offset task space. The number of threads to run will be four times smaller than the tensor size of

the current layer results. However, since the dimension of the tensor will not always be a multiple of

four, and we need to run the computations for all elements of the result tensor, we will provide an

additional thread that will compute the "tail" part of the tensor that is not a multiple of four.
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After calculating the number of threads and filling the buffers, we call the kernel queuing method.

 //--- queuing for execution

      uint off_set[] = {0};

      uint NDRange[] = { (int)(m_cOutputs.Total() + 3) / 4 };

      if(!m_cOpenCL.Execute(def_k_BatchNormFeedForward, 1, off_set, NDRange))

         return false;

     }

//---

   if(!m_cActivation.Activation(m_cOutputs))

      return false;

//---

   return true;

  }

This completes the work with the feed-forward method, in which we have already implemented full

functionality, including the ability to organize parallel computations on GPUs using OpenCL technology.

Let's proceed to backpropagation methods, in which we need to perform similar work. When

implementing the backpropagation method in pure MQL5, we have overridden two methods.

Consequently, we need to supplement both methods with multi-threaded computing functionality. First,

let's add functionality to the method that propagates the error gradient up to the previous neural layer

CNeuronBatchNorm::CalcHiddenGradient. As with the feed-forward method, we first create the

necessary data buffers in the OpenCL context.
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bool CNeuronBatchNorm::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

   ......

//--- branching of the algorithm by the computing device

   if(!m_cOpenCL)

     {

//--- Implementation using MQL5 tools

   ......

     }

   else  // OpenCL block

     {

 //--- checking data buffers

      CBufferType* inputs = prevLayer.GetOutputs();

      CBufferType* inputs_grad = prevLayer.GetGradients();

      if(inputs.GetIndex() < 0)

         return false;

      if(m_cBatchOptions.GetIndex() < 0)

         return false;

      if(m_cWeights.GetIndex() < 0)

         return false;

      if(m_cOutputs.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

      if(inputs_grad.GetIndex() < 0)

         return false;

Then, according to our algorithm for implementing multi-threaded computations using OpenCL, we pass

the parameters of the induced kernel.



6. Architectural solutions for improving model convergence

650

6.1 Batch normalization

 //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcHiddenGradient, 

                                             def_bnhgr_inputs, inputs.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcHiddenGradient,

                                        def_bnhgr_weights, m_cWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcHiddenGradient,

                                   def_bnhgr_options, m_cBatchOptions.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcHiddenGradient,

                                     def_bnhgr_gradient, m_cGradients.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcHiddenGradient,

                               def_bnhgr_gradient_inputs, inputs_grad.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_BatchNormCalcHiddenGradient,

                                        def_bnhgr_total, (int)m_cOutputs.Total()))

         return false;

      if(!m_cOpenCL.SetArgument(def_k_BatchNormCalcHiddenGradient,

                                                   def_bnhgr_batch, m_iBatchSize))

         return false;

After passing all parameters, we prepare the kernel for the run queue. Recall that when creating the

kernel we defined the use of vector operations with type TYPE4. Accordingly, we reduce by four times

the number of threads running. Now we call the queuing method of the kernel.

 //--- queuing

      int off_set[] = {0};

      int NDRange[] = { (int)(m_cOutputs.Total() + 3) / 4 };

      if(!m_cOpenCL.Execute(def_k_BatchNormCalcHiddenGradient, 1, off_set, NDRange))

         return false;

     }

//---

   return true;

  }

This concludes the method that propagates the error gradient through the hidden layer

CNeuronBatchNorm::CalcHiddenGradient. We need to repeat the operations for the second

backpropagation method CNeuronBatchNorm::CalcDeltaWeights.

Again, we repeat the algorithm for queuing the kernel. This time the kernel uses three data buffers.
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bool CNeuronBatchNorm::CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

  {

   ......

//--- branching of the algorithm by the computing device

   if(!m_cOpenCL)

     {

//--- Implementation using MQL5 tools

   ......

     }

   else

     {

 //--- check data buffers

      if(m_cBatchOptions.GetIndex() < 0)

         return false;

      if(m_cGradients.GetIndex() < 0)

         return false;

      if(m_cDeltaWeights.GetIndex() < 0)

         return false;

Then we pass pointers to the created buffers as parameters to the launched kernel.

 //--- pass parameters to the kernel

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcDeltaWeights,

                           def_bndelt_delta_weights, m_cDeltaWeights.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcDeltaWeights,

                                 def_bndelt_options, m_cBatchOptions.GetIndex()))

         return false;

      if(!m_cOpenCL.SetArgumentBuffer(def_k_BatchNormCalcDeltaWeights,

                                   def_bndelt_gradient, m_cGradients.GetIndex()))

         return false;

Then we place the kernel in the execution queue. This time the number of threads will be equal to the

number of elements in the results tensor of our batch normalization layer.

      //--- queuing

      int off_set[] = {0};

      int NDRange[] = {(int)m_cOutputs.Total()};

      if(!m_cOpenCL.Execute(def_k_BatchNormCalcDeltaWeights, 1, off_set, NDRange))

         return false;

      if(read && !m_cDeltaWeights.BufferRead())

         return false;

     }

//---

   return true;

  }

This concludes our work with CNeuronBatchNorm batch normalization class. It is ready for use as it

now fully implements the data normalization algorithm. We have implemented the algorithm in two

versions: using standard MQL5 tools and using OpenCL multi-threaded computing technology. This gives

the user the opportunity to choose the technology used according to their requirements.

I now propose to look at the implementation of the batch normalization method in Python.
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6.1.4 Implementing batch normalization in Python

We have already discussed the batch data normalization algorithm and even implemented a batch

normalization layer for our library in MQL5. Additionally, we have added the capability to utilize

multithreading technology with OpenCL. Now let's see the version of the method implementation

offered by the familiar Keras library for TensorFlow.

This library provides the tf.keras.layers.BatchNormalization layer.

tf.keras.layers.BatchNormalization(

    axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,

    beta_initializer='zeros', gamma_initializer='ones',

    moving_mean_initializer='zeros',

    moving_variance_initializer='ones', beta_regularizer=None,

    gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs

)

Batch normalization applies a transformation to maintain the mean of the results around zero and the

standard deviation around one.

It's important to note that the batch normalization layer operates differently during training and during

logical output.

During the training period, the layer normalizes its output data using the mean and standard deviation

of the current batch of input data. For each normalized channel, the layer returns:

 

where:

·  = small constant (configured as part of the constructor arguments) to avoid division by zero error

·  = trainable scale factor (initialized as 1), which can be disabled by setting scale=False in the

object constructor

·  = trainable offset factor (initialized as 0), which can be disabled by setting center=False in the

object constructor

· X = tensor of the input data batch

·  = average value of the data batch

·  = variance of the data batch

During operation, the layer normalizes its output data using the moving average and standard deviation

of the batches it encountered during training.

Thus, the layer will normalize the input data during inference only after being trained on data with

similar statistical characteristics.

You can pass the following arguments to the layer constructor:

· axis – integer, the axis to be normalized (usually a feature axis)
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· momentum – momentum for the moving average

· epsilon – small constant to avoid division by zero error

· center – if True, adds a beta offset to normalized tensor, if False, beta is ignored

· scale – if True it is multiplied by gamma, if False gamma is not used; when the next layer is a linear

layer, it can be turned off because the scaling will be performed by the subsequent layer

· beta_ initializer – beta weight initializer type

· gamma_ initializer – type of gamma weight initializer

· moving_ mean_ initializer – type of initializer for moving average

· moving_ variance_ initializer – type of initializer for moving average variance

· beta_ regularizer – additional regularizer for beta weight

· gamma_ regularizer – additional regularizer for gamma weight

· beta_ constraint – optional constraint for beta weight

· gamma_ constraint – optional constraint for gamma weight

The following parameters can be used when accessing a layer:

· inputs – tensor of initial data, it is allowed to use tensor of any rank

· training – logical flag indicating the mode of operation of the layer: training or operation (the

difference between the modes of operation is specified above)

· input_ shape – used to describe the dimensionality of input data in case the layer is specified first in

the model

At the output, the layer produces a tensor of results while preserving the dimensionality of the original

data.

In addition, the layer design allows the use of the layer.trainable setting that blocks parameters from

being changed during training. This is optional and usually means that the layer operates in output

mode. This mode is usually enabled by the "training" parameter, which can be passed when calling the

layer. However, please note that "Parameter Freeze" and "Output Mode" are two different concepts.

However, in the case of a BatchNormalization layer, setting trainable = False means that the layer will

subsequently run in logical output mode. This means that it will use the moving average and moving

variance to normalize the current batch instead of the mean and variance of the current dataset.

This behavior was added in TensorFlow 2.0 to ensure that when layer.trainable = False, you get the most

commonly expected behavior in the case of fine-tuning.

Note that setting trainable for a model containing other layers will recursively set the trainable value for

all inner layers.

If the trainable value of the attribute changes after a model is compiled, the new value does not take

effect for that model until the model is recompiled again.
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6.1.4.1 Creating a script to test batch normalization

To analyze the effect of batch normalization on the result, let's take the simplest models with a fully

connected perceptron. One of our very first tests was to check the influence of preprocessing

normalization of input data on the model's performance. In that test, we concluded that it was

important to normalize the initial data and used normalized initial data in all subsequent models.

However, the preliminary normalization of the initial data always has costs and is not very convenient

for working in financial markets, when the initial data goes in a continuous stream. In this case, the

normalization of the source data must be written in the program code. When changing the dataset,

whether it's due to time-dependent factors or alterations in the analyzed instrument, it may require

modifications to the code or external parameters that need to be defined outside the model. This is an

additional cost. After that, you would need to retrain the model. Therefore, it would be logical to find a

way to incorporate the data normalization process into the model and update its parameters during the

model training. Don't you think that the batch normalization model we are looking at is suitable for

solving this problem? This will be our first test.

To conduct such an experiment, we will use the script for testing perceptron models perceptron.py and

create a copy of it named batch_ norm.py. Let's make small changes to it.

At the beginning of the script, we import the necessary libraries as usual.

# Import libraries

import os

import pandas as pd

import numpy as np

import tensorflow as tf 

from tensorflow import keras 

import matplotlib.pyplot as plt

import MetaTrader5 as mt5

Before training, we need to load training datasets which are available in the sandbox of the MetaTrader

5 terminal. To determine the path to the sandbox, we connect to the terminal and find the path to the

terminal data folder. We add MQL5\Files to the resulting path and thus get the path to the terminal

sandbox. If you saved the training dataset to a subdirectory, you also need to add it to this sandbox

path. Now you can disconnect from the terminal. We will create two local variables with the full path to

the files of the training dataset, one with normalized data and the second one with non-normalized

data.

# Load the training dataset

if not mt5.initialize():

    print("initialize() failed, error code =",mt5.last_error())

    quit()

path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')

mt5.shutdown()

filename = os.path.join(path,'study_data.csv')

filename_not_norm = os.path.join(path,'study_data_not_norm.csv')

First, we load data from the normalized set.
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data = np.asarray( pd.read_table(filename,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

Then we divide the uploaded data into patterns and goals. Let me remind you that when creating the

training dataset, we wrote all the information about the pattern to the file in one line. At the same time,

each line contains information about only one pattern. The last two elements in the row contain the

target values of the pattern. Let's use this property and determine the number of elements in the

second dimension of our data array. Subtracting the number of elements from the obtained value by

the target values, we get the number of elements of one pattern description. Using this information, we

divide the data into two arrays.

# Divide the training sample into initial data and goals

targets=2

inputs=data.shape[1]-targets

train_data=data[:,0:inputs]

train_target=data[:,inputs:]

After that, we load and divide the data of the non-normalized training dataset in the same way.

#load unnormalized training dataset

data = np.asarray( pd.read_table(filename_not_norm,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

# Split the non-normalized training sample into initial data and goals

train_nn_data=data[:,0:inputs]

train_nn_target=data[:,inputs:]

del data

After dividing the training dataset into two tensors, we delete the source data object in order to use our

resources more efficiently.

The next step after loading the data is to create neural network models for testing.

First, we will create a small fully connected perceptron with one hidden layer of 40 elements and a

result layer of 2 elements.



6. Architectural solutions for improving model convergence

656

6.1 Batch normalization

# Creating the first model with one hidden layer

model1 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(targets, activation=tf.nn.tanh) 

                         ])

After this, we create a callback object for early termination if the model's error on the training dataset

doesn't decrease for more than five epochs. When compiling the model, we specify the Adam

parameter optimization method and the standard deviation as a function of the model's training error.

In addition to the error function to track the quality of training, we add the Accuracy metric, which

shows the proportion of correct responses to the model.

callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5)

model1.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model1.summary()

Next, we create a second model, in which we simply add a batch normalization layer between the

source data layer and the hidden model layer.

# Add batch normalization to the source data 

# to a model with one hidden layer

model1bn = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                             keras.layers.BatchNormalization(),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.Dense(targets, activation=tf.nn.tanh) 

                            ])

And we compile the model with the same parameters.

model1bn.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model1bn.summary()

The models for our first experiment are ready.

In the second experiment, I would like to evaluate the impact of using batch normalization within the

network between hidden layers of the model. To conduct this experiment, we will also create fully

connected perceptrons, but with three similar hidden layers. In the first model, we'll create a model

without using batch normalization. Let's just take the first model from this script and add two hidden

layers to it, similar to the first hidden layer. The source data and results layers remain unchanged.

# Create a model with three hidden layers

model2 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dense(targets, activation=tf.nn.tanh) 

                         ])

For the sake of experiment purity, we will compile the model with the same parameters.
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model2.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model2.summary()

Now let's add a batch normalization layer before each hidden layer. Note that we do not add a batch

normalization layer before the result layer, because the authors of the method do not recommend it. In

their experiments, this worsened the results of the models.

# Add batch normalization for the source data and hidden layers of the second model

model2bn = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                             keras.layers.BatchNormalization(),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.BatchNormalization(),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.BatchNormalization(),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.Dense(targets, activation=tf.nn.tanh) 

                            ])

As before, the model is compiled without changing the parameters.

model2bn.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model2bn.summary()

Now that all the models are built, we can start training them. All models will be trained with the same

parameters. To train the model, we will use batches of 1000 patterns between weight matrix updates.

Training will last for 500 epochs unless early stopping occurs. The last 10% of the training dataset will

be used for validation. At the same time, the patterns will be mixed during the learning process.

First, let's train a model with one hidden layer using normalized data.

# Train the first model on non-normalized data

history1 = model1.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model1.save(os.path.join(path,'perceptron1.h5'))

Next, we train the same model using non-normalized data.

# Train the first model on non-normalized data

history1nn = model1.fit(train_nn_data, train_nn_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

Now we train a similar model using a batch normalization layer between the source data and the hidden

layer. Training will be carried out on a non-normalized training dataset.
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history1bn = model1bn.fit(train_nn_data, train_nn_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model1bn.save(os.path.join(path,'perceptron1bn.h5'))

The results of the first two trainings will serve as benchmarks for evaluating the model performance

with the batch normalization layer.

At this stage, we gather enough information to draw a conclusion from the first experiment: data

normalization during data preprocessing can be replaced with a batch normalization layer between the

raw data and the trainable model.

Let's move on to working on the second experiment and determine the impact of the addition of a

batch normalization layer before the hidden layer of the model on the training process and the overall

performance of the trained model. To do this, we need to train two more models.

First, we train a model with three hidden layers using pre-normalized data. We use the same training

parameters to train the model.

history2 = model2.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model2.save(os.path.join(path,'perceptron2.h5'))

Next, we train the model using a non-normalized training dataset, but with a batch normalization layer

before of each hidden layer. In particular, the batch normalization layer is also used before the first

hidden layer after the source data layer.

history2bn = model2bn.fit(train_nn_data, train_nn_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model2bn.save(os.path.join(path,'perceptron2bn.h5'))

After training these two models, we have enough information to draw conclusions from the results of

the second experiment. For clarity, let's create graphs showing the change in training and validation

errors as a function of the number of training epochs.

First, let's plot the change in the standard deviation of the data of our models from the target data for

the first experiment.
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# Drawing model training results with one hidden layer

plt.plot(history1.history['loss'], label='Normalized inputs train')

plt.plot(history1.history['val_loss'], label='Normalized inputs validation')

plt.plot(history1nn.history['loss'], label='Unnormalized inputs train')

plt.plot(history1nn.history['val_loss'], label='Unnormalized inputs validation')

plt.plot(history1bn.history['loss'],

                        label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history1bn.history['val_loss'],

                   label='Unnormalized inputs\nvs BatchNormalization validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n1 hidden layer')

plt.legend(loc='upper right', ncol=2)

In addition to the first graph, let's plot the dynamics of changes in the Accuracy metric.

plt.figure()

plt.plot(history1.history['accuracy'], label='Normalized inputs train')

plt.plot(history1.history['val_accuracy'], label='Normalized inputs validation')

plt.plot(history1nn.history['accuracy'], label='Unnormalized inputs train')

plt.plot(history1nn.history['val_accuracy'], label='Unnormalized inputs validation')

plt.plot(history1bn.history['accuracy'],

                           label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history1bn.history['val_accuracy'],

                      label='Unnormalized inputs\nvs BatchNormalization validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n1 hidden layer')

plt.legend(loc='lower right', ncol=2)

We build similar graphs to display the results of the second experiment.
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# Drawing the results of training models with three hidden layers

plt.figure()

plt.plot(history2.history['loss'], label='Normalized inputs train')

plt.plot(history2.history['val_loss'], label='Normalized inputs validation')

plt.plot(history2bn.history['loss'],

                   label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history2bn.history['val_loss'],

              label='Unnormalized inputs\nvs BatchNormalization validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n3 hidden layers')

plt.legend(loc='upper right', ncol=2)

plt.figure()

plt.plot(history2.history['accuracy'], label='Normalized inputs train')

plt.plot(history2.history['val_accuracy'], label='Normalized inputs validation')

plt.plot(history2bn.history['accuracy'],

                       label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history2bn.history['val_accuracy'],

                  label='Unnormalized inputs\nvs BatchNormalization validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n3 hidden layers')

plt.legend(loc='lower right', ncol=2)

So, at this stage, we have trained all the models using data from the training set. For us, the training

dataset represents historical data. Of course, the fact that the model can approximate historical data is

a good thing. But we would like the model to work well in real-time. To check how the model behaves

on unknown data, let's check the operation of the models on a test sample.

We load the test dataset in the same way as we loaded the training datasets. First, let's load the

normalized test dataset.

# Uploading a test dataset

test_filename = os.path.join(path,'test_data.csv')

test = np.asarray( pd.read_table(test_filename,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

Now we divide the loaded data into patterns and target values.

# Separation of the test sample into initial data and goals

test_data=test[:,0:inputs]

test_target=test[:,inputs:]

Then we repeat the algorithm to load the non-normalized test dataset.
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test_filename = os.path.join(path,'test_data_not_norm.csv')

test = np.asarray( pd.read_table(test_filename,

                   sep=',',

                   header=None,

                   skipinitialspace=True,

                   encoding='utf-8',

                   float_precision='high',

                   dtype=np.float64,

                   low_memory=False))

# Split the test dataset into initial data and goals

test_nn_data=test[:,0:inputs]

test_nn_target=test[:,inputs:]

del test

After copying the data, we delete the array of initial data, which will allow us to manage our resources

more efficiently.

Next, we will test the operation of all models on test samples. We check the operation of models

without batch normalization layers on normalized data. We will test models using batch normalization

layers on non-normalized test sample data.

# Checking the results of models on a test sample

test_loss1, test_acc1 = model1.evaluate(test_data, test_target, verbose=2) 

test_loss1bn, test_acc1bn = model1bn.evaluate(test_nn_data, test_nn_target,

                                                                verbose=2) 

test_loss2, test_acc2 = model2.evaluate(test_data, test_target, verbose=2) 

test_loss2bn, test_acc2bn = model2bn.evaluate(test_nn_data, test_nn_target,

                                                                verbose=2) 

Testing results are output to the log.

# Output test results to the journal

print('Model 1 hidden layer')

print('Test accuracy:', test_acc1)

print('Test loss:', test_loss1)

print('Model 1 hidden layer with BatchNormalization')

print('Test accuracy:', test_acc1bn)

print('Test loss:', test_loss1bn)

print('Model 3 hidden layers')

print('Test accuracy:', test_acc2)

print('Test loss:', test_loss2)

print('Model 3 hidden layer with BatchNormalization')

print('Test accuracy:', test_acc2bn)

print('Test loss:', test_loss2bn)

For clarity, we make a graphical representation of the results separately for the standard deviation and

for the Accuracy metric.
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plt.figure()

plt.bar(['1 hidden layer','1 hidden layer\nvs BatchNormalization',

         '3 hidden layers','3 hidden layers\nvs BatchNormalization'],

        [test_loss1,test_loss1bn,test_loss2,test_loss2bn])

plt.ylabel('$MSE$ $Loss$')

plt.title('Test results')

plt.figure()

plt.bar(['1 hidden layer','1 hidden layer\nvs BatchNormalization',

         '3 hidden layers','3 hidden layers\nvs BatchNormalization'],

        [test_acc1,test_acc1bn,test_acc2,test_acc2bn])

plt.ylabel('$Accuracy$')

plt.title('Test results')

plt.show()

After creating the graphs, we call the command to render them on the user's screen.

With this, we conclude our work on the script that allows testing of how the use of batch normalization

layer affects training results and model performance. We will get familiar with the results in the next

section, dedicated to testing models.

6.1.5 Comparative testing of models using batch normalization

We have done a lot of work together and created a new class for batch normalization implementation.

Its main purpose is to solve the internal covariance shift problem. As a result, the model should learn

faster and the results should become more stable. Let's do some experiments and see if that's the

case.

First, we will test the model using our class written in MQL5. For experiments, we will use very simple

models that consist of only fully connected layers.

In the first experiment, we will try to use a batch normalization layer instead of pre-normalization in the

data preparation stage. This approach will reduce the cost of data preparation both for model training

and during commercial operation. In addition, the inclusion of normalization in the model allows it to be

used with real-time data streams. This is how stock quotes are delivered, and processing them in real-

time gives you an advantage.

To test the approach, we will create a script that uses one fully connected hidden layer and a fully

connected layer as the neural layer of the results. Between the hidden layer and the initial data layer,

we will set up a batch normalization layer.

The task is clear, so let's move on to practical implementation. To create the script, we will use the

script from the first test of a fully connected perceptron perceptron test.mq5 as a base. Let's create a

copy of the file with the name perceptron_ test_ norm.mq5.

At the beginning of the script are the external parameters. We will transfer them to the new script

without any changes.
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//+------------------------------------------------------------------+

//| External parameters for script operation                         |

//+------------------------------------------------------------------+

// Name of the file with the training sample

input string   StudyFileName = "study_data_not_norm.csv";

// File name for recording the error dynamics

input string   OutputFileName = "loss_study_vs_norm.csv";

// Number of historical bars in one pattern

input int      BarsToLine     = 40;             

// Number of input layer neurons per 1 bar

input int      NeuronsToBar   = 4;

// Use OpenCL

input bool     UseOpenCL      = false;

// Packet size for updating the weights matrix

input int      BatchSize      = 10000;

// Learning rate

input double   LearningRate   = 3e-5;

// Number of hidden layers

input int      HiddenLayers   =  1;

// Number of neurons in one hidden layer

input int      HiddenLayer    =  40;            

// Number of iterations of updating the weights matrix

input int      Epochs         =  1000;

In the script, we will only make changes to the CreateLayersDesc function that serves to specify the

model architecture. In the parameters, this function receives a pointer to a dynamic array object,

which we are to fill with descriptions of the neural layers to be created. To exclude possible

misunderstandings, let's clear the obtained dynamic array immediately.

bool CreateLayersDesc(CArrayObj &layers)

  {

   layers.Clear();

   CLayerDescription *descr;

//--- creating initial data layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

First, we create a layer to receive the initial data. Before passing the description of the layer to be

created, we must create an instance of the neural layer description object CLayerDescription. We

create an instance of the object and immediately check the result of the operation. Please note that in

case of an error, we display a message to the user, then we delete the dynamically created array

object that was created earlier and only then terminate the program execution.

When the object is successfully created, we begin populating it with the desired content. For the initial

data neural layer, we specify the basic type of a fully connected neural layer with zero initial data

window without activation function and parameter optimization. We specify the number of neurons to

be sufficient to receive the entire sequence of the pattern description. In this case, the number is equal

to the product of the number of neurons in the pattern description by the number of elements in one

candlestick description.
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   descr.type         = defNeuronBase;

   int prev =

      descr.count     = NeuronsToBar * BarsToLine;

   descr.window       = 0;

   descr.activation   = AF_NONE;

   descr.optimization = None;

Once all the parameters of the created neural layer are specified, we add our neural layer description

object to the dynamic array of the model architecture description and immediately check the result of

the operation.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

After adding the description of a neural layer to the dynamic array, we proceed to the description of

the next neural layer. Again, we create a new instance of the neural layer description object and check

the result of the operation.

//--- batch normalization layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

The second layer of the model will be the batch normalization layer. We will tell the model about this by

specifying an appropriate constant in the type field. We specify the number of neurons and the size of

the initial data window according to the size of the previous neuron layer. A new batch size parameter is

added for the batch normalization layer. For this parameter, we will specify a value equal to the batch

size between updates of the batch parameters. We do not use the activation function, but we specify a

method to optimize the Adam parameters.

   descr.type = defNeuronBatchNorm;

   descr.count = prev;

   descr.window = descr.count;

   descr.batch = BatchSize;

   descr.activation = AF_NONE;

   descr.optimization = Adam;

After specifying all the necessary parameters of the new neural layer, we add it to the dynamic array of

the model architecture description. As always, we check the result of the operation.
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   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Next in our model, there is a block of hidden layers. The number of hidden layers is specified in the

external script parameters by the user. All hidden layers are basic fully connected layers with the same

number of neurons, which is specified in the external parameters of the script. Therefore, to create all

the hidden neural layers, you only need one description object for the neural layer, which can be added

multiple times to the dynamic array describing the model architecture.

Hence, the next step is to create a new instance of the neural layer description object and check the

result of the operation.

//--- block of hidden layers

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

After creating the object, we fill it with the necessary values. Also, we specify the base type of the

neuron layer defNeuronBase. The number of elements in the neural layer is transferred from the

external parameter of the HiddenLayer script. We will use Swish as the activation function and Adam as

the parameter optimization method.

   descr.type         = defNeuronBase;

   descr.count        = HiddenLayer;

   descr.activation   = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

Once sufficient information is provided for creating a neural layer, we organize a loop with the number

of iterations equal to the number of hidden layers. Within the loop, we will add the created description

of the hidden neural layer to the dynamic array describing the model architecture. At the same time,

don't forget to control the process of adding the description object to the array at each iteration.

   for(int i = 0; i < HiddenLayers; i++)

      if(!layers.Add(descr))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         delete descr;

         return false;

        }

In conclusion of the model description, you need to add the description of the output neural layer. For

this, we create another instance of the neural layer description object and immediately check the

result of the operation.
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//--- layer of results

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

After creating the object, we fill it with the description of the neural layer to be created. For the output

layer, you can use the basic type of fully connected neural layer with two elements (corresponding to

the number of target values for the pattern). We use the linear activation function and the Adam

optimization method as we did for the other model layers.

   descr.type         = defNeuronBase;

   descr.count        = 2;

   descr.activation   = AF_LINEAR;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

Add the prepared description of the neural layer to the dynamic array describing the architecture of

the model.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

   return true;

  }

And of course, don't forget to check the result of the operation

This concludes our work on building the script to run the first test, while the rest of the script code is

transferred to this one in an unchanged form. We will run the script on the previously prepared training

dataset. I will remind you that for the purity of experiments, all models within this book are trained on a

single training dataset. This applies to models created in the MQL5 environment and those written in

Python.

From the test results presented in the figures below, it can be confidently stated that the use of batch

normalization layers can effectively replace the preprocessing normalization procedure at the data

preparation stage.

The direct impact of batch normalization layers can be assessed by comparing the error dynamics

graph of a model without a batch normalization layer when trained on a non-normalized training

dataset. The gap between the charts is enormous.
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Batch normalization of initial data

At the same time, differences in the error dynamics graphs of the model during training on normalized

data and on non-normalized data with the use of batch normalization layers may only become apparent

when you zoom in on the graph. Only at the beginning of training, there is a gap between the

performance of the models. As training iterations increase, the accuracy gap of the models shrinks

dramatically. After 200 iterations, the model using the normalization layer shows even better

performance. This further confirms the possibility of including batch normalization layers in a model for

real-time data normalization, providing additional evidence of its effectiveness.  
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Batch normalization of initial data

We performed a similar experiment with models created in Python. This experiment confirmed the

earlier findings.

Batch normalization of initial data (MSE)
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Batch normalization of initial data (MSE)

Batch normalization of initial data (Accuracy)
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Batch normalization of initial data (Accuracy)

Furthermore, within the scope of this experiment, the model using batch normalization layers

demonstrated slightly better results both on the training dataset and during validation.

The analysis of the graph for the Accuracy metric suggests similar conclusions.

The second and probably the main option for using a batch normalization layer is to put the batch

normalization layer before the hidden layers. The authors proposed using this method in exactly this

way to address the problem of internal covariate shift. To test the effectiveness of this approach, let's

create a copy of our script with the name perceptron_ test_ norm2.mq5. We will make small changes in

the block of creating hidden layers. This is because, in the new script, we need to alternate between

fully connected hidden layers and batch normalization layers, so we will include the creation of batch

normalization layers within the loop.
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//--- Batch Normalization Layer

   CLayerDescription *norm = new CLayerDescription();

   if(!norm)

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   norm.type = defNeuronBatchNorm;

   norm.count = prev;

   norm.window = descr.count;

   norm.batch = BatchSize;

   norm.activation = AF_NONE;

   norm.optimization = Adam;

//--- Hidden layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      delete norm;

      return false;

     }

   descr.type         = defNeuronBase;

   descr.count        = HiddenLayer;

   descr.activation   = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   for(int i = 0; i < HiddenLayers; i++)

     {

      if(!layers.Add(norm))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         delete descr;

         delete norm;

         return false;

        }

      CLayerDescription *temp = new CLayerDescription();

      if(!temp)

        {

         PrintFormat("Error creating CLayerDescription: %d", GetLastError());

         delete descr;

         return false;

        }

      temp.Copy(norm);

      norm = temp;

      norm.count = descr.count;

      if(!layers.Add(descr))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         delete descr;

         delete norm;

         return false;

        }
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     }

   delete norm;

Otherwise, the script remains unchanged.

Testing of the script operation fully confirmed the earlier conclusions. Initially, when trained on non-

normalized data, the model with batch normalization takes a little time to adapt. However, the gap in

the accuracy of the models is shrinking dramatically.

Batch normalization before the hidden layer

With a closer look, it becomes clear that the model with three hidden layers and batch normalization

layers before each hidden layer even performs better on non-normalized input data. At the same time,

its error dynamics graph decreases at a faster rate compared to the rest of the models.
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Batch normalization before the hidden layer

Batch normalization before the hidden layer (MSE)

Conducting a similar experiment with models created in Python also confirms that models using batch

normalization layers before each hidden layer, under otherwise equal conditions, train faster and are

less prone to overfitting.
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The dynamics of changes in the Accuracy metric value also confirms the earlier conclusions.

Additionally, we validated the models on a test dataset to evaluate the performance using new data.

The results obtained showed a fairly smooth performance of all four models. The divergence of the RMS

error of the models did not exceed 5*10-3. Only a slight advantage was shown by models with three

hidden layers.

Evaluation of the models using the Accuracy metric showed similar results.

Batch normalization before the hidden layer (Accuracy)
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Testing the effectiveness of batch normalization on new data

Testing the effectiveness of batch normalization on new data

To conclude, I decided to perform one more test. The authors of the method claim that the use of a

batch normalization layer can increase the learning rate to speed up the process. Let's test this
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statement. We will run the perceptron_ test_ norm2.mq5 script again, but this time increase the learning

rate by 10 times.

Testing has shown the potential effectiveness of this approach. In addition to a faster learning process,

we got a better learning result than the previous ones.

Batch normalization before the hidden layer with increased learning rate
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Batch normalization before the hidden layer with increased learning rate

In this section, we conducted a series of training tests for various models using batch normalization

layers and without them. The obtained results demonstrated that a batch normalization layer after the

input data can replace the normalization process at the data preparation stage for training. This

approach allows the data normalization process to be built into the model and tuned during model

training. In this way, we can process the initial data in real-time during the operation of the model

without complicating the overall decision-making program.

In addition, using a batch normalization layer before the hidden model layers can speed up the learning

process, all other things being equal.

6.2 Dropout

As we continue discussing ways to increase the convergence of models, let's consider the Dropout

method.

When training a neural network, a large number of features are fed into each neuron, and it is difficult

to assess the influence of each of them. As a result, errors from some neurons are smoothed out by the

correct values from others, and errors accumulate at the output of the neural network. As a result,

training stops at a certain local minimum with a relatively large error. This effect is known as feature

co-adaptation, where the influence of each feature seems to adapt to the surrounding environment. For

us, it would be better to achieve the opposite effect, where the environment is decomposed into

individual features, and the influence of each feature is evaluated separately.
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Dropout

To combat the complex co-adaptation of features, in July 2012, a group of scientists from the

University of Toronto in the article Improving neural networks by preventing co-adaptation of feature

detectors proposed randomly excluding some of the neurons in the learning process. Reducing the

number of features during training increases the significance of each one, and constant variation in the

quantitative and qualitative composition of features reduces the risk of their co-adaptation. This

method is called Dropout. Some compare the application of this method to decision trees because, by

excluding some neurons, we get a new neural network with its own weights at each training iteration.

According to the rules of combinatorics, the variability of such networks is quite high.

During the operation of the neural network, all attributes and neurons are evaluated. Thus, we get the

most accurate and independent assessment of the current state of the environment under

consideration.

The authors of the method in their paper mention the possibility of using it to improve the quality of

pre-trained models as well.

Describing the proposed solution from the mathematics point of view, we can say that each individual

neuron is dropped out of the process with a certain given probability p, or the neuron will participate in

the process of training a neural network with probability q.

To determine the list of neurons to be dropped out, a pseudo-random number generator with a normal

distribution is used. This approach provides the most uniform exclusion of neurons possible. In practice,

we will generate a vector with a size equal to the input sequence. For the features used in the vector,

we will set 1, and for the excluded elements, we will use 0. 

However, excluding analyzed features undoubtedly leads to a reduction in the sum at the input of the

neuron activation function. To compensate for this effect, we will multiply the value of each feature by

https://arxiv.org/pdf/1207.0580.pdf
https://arxiv.org/pdf/1207.0580.pdf
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a factor of 1/q. It is obvious that this coefficient will increase the values since the probability of q will

always be in the range from 0 to 1.

where:

· d
i
 = elements of the Dropout result vector

· q = probability of using a neuron in the learning process

· x
i
 = elements of the masking vector

· n
i
 = elements of the input sequence

During the backpropagation in the training process, the error gradient is multiplied by the derivative of

the above-mentioned function. In the case of Dropout, the backpropagation pass will be similar to the

feed-forward pass using the masking vector from the feed-forward pass. 

During the operation of the neural network, the masking vector is filled with ones, allowing values to be

transmitted in both directions without hindrance.

In practice, the coefficient of 1/q is constant throughout the training, so we can easily calculate this

coefficient once and write it instead of one in the masking tensor. This way, we combine the coefficient

recalculation and multiplication by 1 in each training iteration.

6.2.1 Building Dropout in MQL5

After discussing the theoretical aspects, I suggest moving on to studying the implementation of this

method in our library.

To implement the Dropout algorithm, we will create a new class called CNeuronDropout, which we will

include in our model as a separate layer. The new class will inherit directly from the CNeuronBase

neural layer base class.
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class CNeuronDropout    :  public CNeuronBase

  {

protected:

   TYPE              m_dOutProbability;

   int               m_iOutNumber;

   TYPE              m_dInitValue;

   CBufferType       m_cDropOutMultiplier;

public:

                     CNeuronDropout(void);

                    ~CNeuronDropout(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

                                                     override { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                       VECTOR &Beta, VECTOR &Lambda) override { return true; }

   //--- methods of working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override    const { return defNeuronDropout; }

  };

The first thing we encounter is the implementation of two different algorithms: one for the training

process and another for testing and application. Therefore, we need to explicitly specify to the neural

layer which algorithm it should use in each specific case. To do this, we introduce the m_ bTrain flag

which we will set to true during training and to false during testing. 

To control the values of the flag, we will create a helper overload method TrainMode. In one version,

when specifying a parameter, it will set a flag, and in the other variant, when called without

parameters, it will return the current value of the m_ bTrain flag.

   virtual void      TrainMode(bool flag)       {  m_bTrain = flag; }

   virtual bool      TrainMode(void)      const {  return m_bTrain; }

While working with the library, we built a mechanism for overriding the methods of all classes. By doing

so, we created a versatile class architecture, allowing the dispatcher class of our model to work

uniformly with any neural layer, without spending time on checking the type of the neural layer and

branching algorithms based on the type of the neural layer used. To support this concept, we will

introduce a flag variable and methods for working with it at the level of the CNeuronBase base neural

layer.

In the protected block of our class, we declare the following variables:

· m_ dOutProbability – specified probability for dropping out neurons

· m_ iOutNumber – number of neurons to be dropped out

· m_ dInitValue – value for initializing the masking vector, in the theoretical part of this article we

denoted this coefficient as 1/q
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Also, we will declare a pointer to the data buffer object for the m_ cDropOutMultiplier masking vector.

The list of class methods is quite familiar. They all override the methods of the parent class.

Note that our new layer does not have weight matrices. The override of the CalcDeltaWeights and

UpdateWeights methods which are responsible for distributing the error gradient to the weight matrix

and updating the model parameters, is designed to maintain the overall architecture of the neural

layers and the model as a whole. We cannot use methods from the parent class because the absence of

corresponding objects would lead to a critical error. The creation of additional unused objects is an

irrational waste of resources. Therefore, we override the methods. However, we create them as empty

methods and they will simply always return a positive value.

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

                                                     override { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                       VECTOR &Beta, VECTOR &Lambda) override { return true; }

Now let's proceed with the class methods. We will start, as always, with the class constructor. In this

method, we specify the default value of the variables. Using a static object for the mask vector buffer

allows us to skip the operation of creating it in the constructor and deleting it in the destructor. 

CNeuronDropout::CNeuronDropout(void)   :  m_dInitValue(1.0),

                                          m_dOutProbability(0),

                                          m_iOutNumber(0)

  {

   m_bTrain = false;

  }

Note that the values of the m_ bTrain class mode flag, unlike other variables, are specified in the body

of the method. This is due to the declaration of a variable in the parent class.

The method destructor remains empty.

Next comes the initialization method of the CNeuronDropout::Init class. In the parameters, the method

receives a pointer to an object of the class describing the created neural layer. In the body of the

method, we immediately check the validity of the received pointer as well as the compatibility of the

dimensions of the created neural layer and the previous one. The only role of the Dropout layer is to

mask neurons, while the size of the tensor does not change in any way.

bool CNeuronDropout::Init(const CLayerDescription *description)

  {

//--- control block

   if(!description || description.count != description.window)

      return false;

After successfully passing the control block, we reset the size of the input data window and call the

initialization method of the parent class. Resetting the size of the input data window will instruct the

parent class method not to create a weight matrix and other objects related to training the neural layer

parameters. As always, we remember to check the results of the operations.
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//--- calling a method of a parent class

   CLayerDescription *temp = new CLayerDescription();

   if(!temp || !temp.Copy(description))

      return false;

   temp.window = 0;

   if(!CNeuronBase::Init(temp))

      return false;

   delete temp;

After the successful execution of the parent class method, we save the main parameters of the neural

layer operation, including the dropout probability, the number of neurons to exclude, and the

initialization value of the masking matrix. We obtain the first parameter from the user, while the other

two parameters should be calculated.

//--- calculation of coefficients

   m_dOutProbability = (TYPE)MathMin(description.probability, 0.9);

   if(m_dOutProbability < 0)

      return false;

   m_iOutNumber = (int)(m_cOutputs.Total() * m_dOutProbability);

   m_dInitValue = (TYPE)(1.0 / (1.0 - m_dOutProbability));

After that, we initialize the masking buffer with the initial values and set the training flag to true.

//--- initiate the masking buffer

   if(!m_cDropOutMultiplier.BufferInit(m_cOutputs.Rows(), m_cOutputs.Cols(),

                                                              m_dInitValue))

      return false;

   m_bTrain = true;

//---

   return true;

  }

This completes the work with the class initialization methods and proceeds to the actual creation of the

algorithm of the Dropout method.

But first, let's recall that we don't have access to the neural layer directly from the main program. Now

we have introduced a flag for the neural layer operation mode. Therefore, we need to go back to the

dispatcher class of the model and add a method for changing the state of the flag.

void CNet::TrainMode(bool mode)

  {

   m_bTrainMode = mode;

   int total = m_cLayers.Total();

   for(int i = 0; i < total; i++)

     {

      if(!m_cLayers.At(i))

         continue;

      CNeuronBase *temp = m_cLayers.At(i);

      temp.TrainMode(mode);

     }

  }

In this method, we will save the flag value into a local variable and iterate through all the neural layers

of the model in a loop, calling a similar method for each neural layer of the model.
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6.2.1.1 Feed-forward method

The feed-forward pass is traditionally implemented in the FeedForward method. This method is declared

virtual in the neural layer base class. It is overridden in each new class to build a specific algorithm for

the class. We will do the same for this particular class, that is, we will also override this method.

In the parameters, the CNeuronDropout::FeedForward method receives a pointer to the object of the

previous layer of our model. Within the method body, we immediately set up control blocks to check

the pointers to objects used in this method. As usual, here we check not only pointers to external

objects received in parameters but also to internal objects of the class. In this case, we will check the

pointers to the previous layer object and its result buffer. We will also check the validity of the pointer

to the result buffer of the current layer.

bool CNeuronDropout::FeedForward(CNeuronBase *prevLayer)

  {

//--- control block

   if(!prevLayer || !prevLayer.GetOutputs() || !m_cOutputs)

      return false;

After successfully passing the control block, we proceed to execute the algorithm of the Dropout

method.

To execute the algorithm in training mode, we prepare a masking buffer. First, we fill the entire buffer

with increasing coefficients 1/q, which we stored in the m_ dInitValue variable at the class initialization

stage.

After that, we create a loop with the number of iterations equal to the number of elements to be

dropped out. In the loop body, we generate random values from the range between 0 and the number

of elements of the sequence. For randomly selected elements, we replace the multiplier in the masking

buffer with 0.

Although lightning never strikes twice in the same place, let's provide an algorithm for the case when

the same element falls out twice. Before writing 0 to the masking buffer, we first check the current

coefficient for the dropped element. If it is equal to zero, then we decrease the value of the loop

iteration counter and move on to selecting the next element. This approach will allow us to exclude the

specified number of elements precisely.
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//--- generate a data masking tensor

   ulong total = m_cOutputs.Total();

   if(!m_cDropOutMultiplier.m_mMatrix.Fill(m_dInitValue))

      return false;

   for(int i = 0; i < m_iOutNumber; i++)

     {

      int pos = (int)(MathRand() * MathRand() / MathPow(32767.0, 2) * total);

      if(m_cDropOutMultiplier.m_mMatrix.Flat(pos) == 0)

        {

         i--;

         continue;

        }

      if(!m_cDropOutMultiplier.m_mMatrix.Flat(pos, 0))

         return false;

     }

After generating the masking vector, we only need to apply it to the initial data. To do this, we multiply

two buffers, element by element: the initial data and the masking.

According to our library building concept, in each method of the class, we create two execution

branches whenever possible: one using standard MQL5 means and the other one using OpenCL for

multi-threaded computations. Therefore, next, we create a branching of the algorithm depending on the

selected device for computing operations.

As always, now we will look at the implementation of the algorithm using MQL5. We will return to

implementing the algorithm in multi-threaded operations using OpenCL a little later. In the block for

implementing the algorithm using MQL5, we use matrix operations. 

//--- branching of the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

As you remember, the method has two modes: training and operation. Therefore, before executing the

algorithm, we check the current operating mode. If the class runs in operational mode, we simply copy

the contents of the result buffer from the previous layer into the result buffer of the current layer. In

the case of the training process, we multiply the tensor of the original data by the masking tensor.

//--- checking the operating mode flag

      if(!m_bTrain)

         m_cOutputs.m_mMatrix = prevLayer.GetOutputs().m_mMatrix;

      else         

         m_cOutputs.m_mMatrix = prevLayer.GetOutputs().m_mMatrix *

                                m_cDropOutMultiplier.m_mMatrix;

     }

   else  // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

So, as a result of the operations described above, the result buffer of our layer contains the masked

data from the previous layer. The task set for the feed-forward method has been completed, and we
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can complete the method execution. Let's also add a temporary stub in place of the multi-threaded

calculation algorithm.

Next, we move on to organizing the backpropagation process.
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6.2.1.2 Backpropagation methods for Dropout

Traditionally, after implementing the feed-forward algorithm, we move on to organizing the

backpropagation process. As you know, in the base class of the neural layer, the backpropagation

algorithm is implemented by four virtual methods:

· CalcOutputGradient for calculating the error gradient at the output of a neural network

· CalcHiddenGradient for propagating a gradient through a hidden layer

· CalcDeltaWeights for the required calculation of weight correction values

· UpdateWeights for updating the weight matrix

All the above methods are overridden in new classes as needed. As mentioned earlier, our Dropout layer

does not contain trainable parameters. As a consequence, it does not contain a weight matrix. Thus,

the last two methods are not relevant to our class. At the same time, we will have to override these

methods to maintain the integrity of our model architecture because, during training, it will call these

methods for all the neural layers used. If we do not override them, then when these methods are called,

the operations of the inherited parent method will be performed. In this case, the absence of a buffer of

the weight matrix and related objects can lead to critical errors. In the best-case scenario, as a result

of our control operation, we will terminate the method with a false result, which will lead to the

interruption of the training process. Therefore, we override these methods and replace them with

empty methods that will always return a positive result.

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

                                                        override { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                          VECTOR &Beta, VECTOR &Lambda) override { return true; }

The CalcOutputGradient method is used only for the results layer. Dropout operation principles do not

imply its use as a results layer. Therefore, we do not override it.

Thus, we only have one method left to override: the CalcHiddenGradient method that propagates the

gradient through the hidden layer. This method, like most of the previous ones, is declared as virtual in

the base neural network class and is overridden in all new classes to establish the specific algorithm of

the neural layer operation. In the parameters, the method receives a pointer to the object of the

previous layer. Right within the method body, we set up a control block to verify the validity of pointers

to objects used by the method. As in the feed-forward method, we check pointers to all used objects,

both external and internal.

bool CNeuronDropout::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

//---control block

   if(!prevLayer || !prevLayer.GetGradients() || !m_cGradients)

      return false;

After successfully passing the block of controls, we must create a branching of the algorithm depending

on the computing device. As always, in this section, we will consider the implementation of the

algorithm using MQL5 tools and will return to the multi-threaded implementation of the algorithm in the

next section.
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//--- branching of the algorithm depending on the execution device

   ulong total = m_cOutputs.Total();

   if(!m_cOpenCL)

     {

In the implementation block using MQL5, we check the class operating mode. During operational use

mode, we simply copy the data from the error gradient buffer of the current layer into a similar buffer

of the previous layer.

      //--- check the operating mode flag

      if(!m_bTrain)

         prevLayer.GetGradients().m_mMatrix = m_cGradients.m_mMatrix;

      else

         prevLayer.GetGradients().m_mMatrix = m_cGradients.m_mMatrix *

                                              m_cDropOutMultiplier.m_mMatrix;

     }

   else  // OpenCL block

     {

      return false;

     }

//---

   return true;

  }

If the method operates in model training mode, according to the Dropout algorithm, we need to

multiply the error gradient buffer of the current layer element-by-element by the masking vector

buffer. The matrix multiplication operation allows us to do this literally in one line of code.

As you can see, at this stage we have passed the error gradient into the buffer of the previous layer.

Therefore, the task set for this method is completed, and we can finish the method execution. Now we

add a stub in the block for organizing multi-threaded operations. We will return to it in one of the

subsequent sections.

Thus, we have fully implemented the Dropout algorithm using standard MQL5 tools. At this stage, you

can already create a model and obtain initial results using this approach. However, as we have

discussed before, it is equally important to have the capability to restore the previously trained model

functionality at any convenient time for the full functionality of any neural layer within the model.

Therefore, in the next section, we will look at methods for saving neural layer data and restoring the

functioning of the layer from previously saved data.
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6.2.1.3 File operations

In the previous sections, we explored the operating algorithm of the Dropout approach and even

managed to create the CNeuronDropout class to implement it within our library. Within the framework

of this class, we have implemented the Dropout feed-forward and backpropagation algorithms. Now, for

the full implementation of this class, we need to add file methods that will allow us to save and restore

the operation of a previously trained model at any required time. This provides the opportunity to

quickly restore the functionality of the model when needed.

Again, when starting this work, we critically evaluate the variables and objects of our class to decide

whether to save them to a file in whole or in part or to restore them according to some parameters.

class CNeuronDropout    :  public CNeuronBase

  {

protected:

   TYPE              m_dOutProbability;

   int               m_iOutNumber;

   TYPE              m_dInitValue;

   CBufferType       m_cDropOutMultiplier;

public:

                     CNeuronDropout(void);

                    ~CNeuronDropout(void);

   //---

   virtual bool      Init(const CLayerDescription *desc) override;

   virtual bool      FeedForward(CNeuronBase *prevLayer) override;

   virtual bool      CalcHiddenGradient(CNeuronBase *prevLayer) override;

   virtual bool      CalcDeltaWeights(CNeuronBase *prevLayer, bool read)

                                                       override { return true; }

   virtual bool      UpdateWeights(int batch_size, TYPE learningRate,

                         VECTOR &Beta, VECTOR &Lambda) override { return true; }

   //--- methods for working with files

   virtual bool      Save(const int file_handle) override;

   virtual bool      Load(const int file_handle) override;

   //--- object identification method

   virtual int       Type(void) override     const { return(defNeuronDropout); }

  };

In addition to the objects inherited from the parent class, we create only one data buffer and three

variables. These three variables have mathematical relationships between them. The masking vector

buffer is redefined on each feed-forward pass. Thus, to restore the functionality of the Dropout layer, it

is sufficient to save the objects of the parent class and one variable.

Therefore, the data-saving method will be quite simple and short. In parameters, the method receives a

pointer to a file handle for saving. In the method body, we call a similar method from the parent class,

in which all the controls and the saving of parent class objects are already implemented. After the

successful execution of the parent class method, we will only write the dropout probability to the file,

which represents the probability of dropping out neurons from processing. This particular variable was

chosen because it is the parameter specified by the user, while the others are secondary and are

calculated during class initialization.
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bool CNeuronDropout::Save(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronBase::Save(file_handle))

      return false;

//--- save the probability constant of dropping out elements

   if(FileWriteDouble(file_handle, m_dOutProbability) <= 0)

      return false;

//---

   return true;

  }

The method for restoring the functionality of the CNeuronDropout::Load layer looks a little more

complicated than the saving method. Just like the data-saving method, the data-loading method

receives a file handle with data to load in its parameters. We remember the fundamental rule of data

loading: data is loaded from the file in strict accordance with the sequence in which it was written.

Therefore, in the method body, we first call a similar method from the parent class, where all the

controls and loading of data inherited from the parent class objects are already implemented.

bool CNeuronDropout::Load(const int file_handle)

  {

//--- call the method of the parent class

   if(!CNeuronBase::Load(file_handle))

      return false;

We must always check the result of the parent class method execution because it confirms not only the

data loading but also the passing of all implemented controls.

After the successful execution of the parent class method, we read the probability of dropping out

neurons from the file. Based on the obtained value, we calculate the number of neurons to be dropped

out on each feed-forward iteration and initialize the values of the masking buffer elements.

//--- read and restore constants

   m_dOutProbability = (TYPE)FileReadDouble(file_handle);

   m_iOutNumber = (int)(m_cOutputs.Total() * m_dOutProbability);

   m_dInitValue = (TYPE)(1.0 / (1.0 - m_dOutProbability));

Finally, at the end of the method for restoring the functionality of our layer, we initialize the buffer for

recording the masking vector. 

//--- initializing the data masking buffer

   if(!m_cDropOutMultiplier.BufferInit(m_cOutputs.Rows(), m_cOutputs.Cols(),

                                                              m_dInitValue))

      return false;

//---

   return true;

  }

After successfully loading data and initializing objects in our layer, we exit the method with a positive

result.

At this stage, we are completing work on the Dropout layer class using standard MQL5 tools. In the

next section, we will look at implementing a multi-threaded algorithm using OpenCL.
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6.2.2 Organizing multi-threaded operations in Dropout

We continue to implement the Dropout technology. In the previous sections, we have already fully

implemented the algorithm for the operation of this technology using standard MQL5 capabilities. Now

we move on to implementing the algorithm using the multi-threading capability on the GPU using

OpenCL. Within the framework of this book, we performed this operation many times before. However, I

would like to repeat that in order to implement it, we need to work in two directions. First, we will

create an OpenCL program, and then we need to do the work on the side of the main program to

implement data exchange between the main program and the OpenCL context in which the program will

run and call the OpenCL program.

As always, this work begins with the creation of the OpenCL program. In this case, we don't have to

write much code on the OpenCL side. Moreover, we will use the same kernel to implement both feed-

forward and backpropagation passes. How did that happen? Let's recall what operations we need to

implement.

In the feed-forward pass, we perform data masking. The vector mask is created using MQL5 on the

main program side. Here we need to mask the initial data. To do this, we element-wise multiply the

initial data tensor by the vector mask.

Therefore, for the feed-forward pass, we need to create a kernel for element-wise multiplication of two

tensors of the same size.

During the backpropagation process, an error gradient must be propagated through the masking

operation. Let's take a closer look at the formula for the masking operation. 1/q is a constant that is

defined at the class initialization stage and does not change throughout the model training and

operation process. x
i
 is a masking vector element that can only take two values: 1 or 0. Therefore, the

entire masking process can be represented as multiplying a certain original value by a constant. As you

know, the derivative of such an operation is the constant by which multiplication is performed.

In our case, to adjust the error gradient, we need to element-wise multiply the gradient of error of the

current layer by the masking vector.

Thus, in the feed-forward and backpropagation passes, we element-wise multiply various tensors by the

masking vector. Therefore, to implement both passes on the OpenCL side, it is sufficient to create one

kernel of element-wise multiplication of two vectors. This is actually a fairly simple task. Using vector

variables to optimize the process does not complicate the task.

To do this, we create the MaskMult masking kernel. In the parameters, this kernel receives pointers to

three data buffers, two of which contain the input data, and the third one is used to write the results.

Also, since vector operations are implied, the total number of threads will be smaller than the number

of operations. So we won't be able to determine the size of the initial data tensors from the number of

threads running. Therefore, to determine the dimensions of the tensors, we will transmit the necessary

dimension information in kernel parameters.
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In the body of the kernel, we define the ID of the current thread and transfer the necessary data from

the buffers to local vector variables. Let's multiply two vector variables. The result obtained will be

returned from the local vector variable to the scalar data buffer.

__kernel void MaskMult(__global TYPE *inputs,

                       __global TYPE *mask,

                       __global TYPE *outputs,

                       int outputs_total)

  {

   const int n = get_global_id(0) * 4;

//---

   TYPE4 out = ToVect4(inputs, n, 1, outputs_total, 0) *

               ToVect4(mask, n, 1, outputs_total, 0);

   D4ToArray(outputs, out, n, 1, outputs_total, 0);

  }

As you can see, the entire kernel code fits into three lines. Of course, this was made possible by using

the previously created functions that translate the data of the scalar buffer to and from a local vector

variable.

Once the OpenCL kernel is created, we proceed to implement the functionality on the main program

side. First, we need to create constants to refer to OpenCL program elements. To do this, we open the

defines.mqh file and specify constants for the kernel and its parameters.

#define def_k_MaskMult                40

//--- data masking

#define def_mask_inputs                0

#define def_mask_mask                  1

#define def_mask_outputs               2

#define def_mask_total                 3

Then we move on to the model dispatcher class. In the OpenCL context initialization method, we

change the total number of kernels and then create a kernel in the context.
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bool CNet::InitOpenCL(void)

  {

   ......

   if(!m_cOpenCL.SetKernelsCount(41))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

   ......

   if(!m_cOpenCL.KernelCreate(def_k_MaskMult, "MaskMult"))

     {

      m_cOpenCL.Shutdown();

      delete m_cOpenCL;

      return false;

     }

//---

   return true;

  }

Once the preparatory work has been completed, we move on to working directly with the methods of

our CNeuronDropout class. As always, let's start with the CNeuronDropout::FeedForward method and

implement the following processes in this method:

· Pass information to the OpenCL context.

· Pass parameters to the OpenCL kernel.

· Place the kernel in the run queue.

· Download the kernel results.

· Clear context memory.

Moving on to the forward pass method. Changes will only affect the multi-threaded operation block, and

the rest of the method code will remain unchanged.

The Dropout class can operate in two modes: training and production use. We have created a kernel for

training mode, but have not prepared a kernel for the second case. For example, the operation of

copying data from buffer to buffer is easy, and we can perform it with MQL5 tools. However, we have

minimized data exchange between the OpenCL context and the main program. So, on the main program

side, the content of the buffers will be irrelevant. To perform a data copy operation, you must first load

the data from the OpenCL context into the main program memory and then copy the data from one

buffer to another. You then need to return the data to the OpenCL context in another buffer for

subsequent operations. This is totally inconsistent with our policy of minimizing data exchange between

the OpenCL context and the main program.

We consider the second option: the use of a single kernel in two operation modes. In production use

mode, the masking buffer is filled with units. It's also a working method. At the same time, we prepare

the masking buffer on the side of the main program. OpenCL does not provide a pseudo-random number

generator. So, before executing the kernel, we should pass the contents of the masking buffer from the

main program to the OpenCL context. But in training mode, it's a coercive measure. Why waste time on

this unnecessary operation in the use mode? Can we take a step back and prepare another kernel?
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I found another solution. We already have a kernel to perform a linear activation function. Below is its

mathematical representation.

If we consider the special case at a=1 and b=0, we get a simple copy of the data.

You do not need to load additional buffers into the OpenCL context memory. Instead, we will only pass

two integer values into the parameters.

The algorithm for working with the kernel remains the same: check the presence of buffers in the

context's memory, pass the kernel parameters, and enqueue the kernel.
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bool CNeuronDropout::FeedForward(CNeuronBase *prevLayer)

  {

   ......

//--- branching of the algorithm depending on the execution device

   if(!m_cOpenCL)

     {

   ......

     }

   else  // OpenCL block

     {

      //--- operation mode flag check

      if(!m_bTrain)

        {

         //--- check data buffers

         CBufferType *inputs = prevLayer.GetOutputs();

         if(inputs.GetIndex() < 0)

            return false;

         if(m_cOutputs.GetIndex() < 0)

            return false;

         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation, 

                                             def_activ_inputs, inputs.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation,

                                        def_activ_outputs, m_cOutputs.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_LineActivation, 

                                                      def_activ_param_a, (TYPE)1))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_LineActivation,

                                                      def_activ_param_b, (TYPE)0))

            return false;

         uint offset[] = {0};

         uint NDRange[] = {(uint)m_cOutputs.Total()};

         if(!m_cOpenCL.Execute(def_k_LineActivation, 1, offset, NDRange))

            return false;

        }

To organize work during training, we will repeat the algorithm mentioned above by enqueueing a new

kernel.
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      else

        {

         //--- check data buffers

         CBufferType *inputs = prevLayer.GetOutputs();

         if(inputs.GetIndex() < 0)

            return false;

         if(!m_cDropOutMultiplier.BufferCreate(m_cOpenCL))

            return false;

         if(m_cOutputs.GetIndex() < 0)

            return false;

         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, 

                                             def_mask_inputs, inputs.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, 

                                 def_mask_mask, m_cDropOutMultiplier.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult,

                                        def_mask_outputs, m_cOutputs.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_MaskMult, def_mask_total, total))

            return false;

         //--- enqueuing

         int off_set[] = {0};

         int NDRange[] = { (int)(total + 3) / 4};

         if(!m_cOpenCL.Execute(def_k_MaskMult, 1, off_set, NDRange))

            return false;

        }

     }

//---

   return true;

  }

This concludes the feed-forward kernel. Let's proceed to implement similar operations for the

CNeuronDropout::CalcHiddenGradient backpropagation method. Let me remind you that we will use the

same kernels for the backpropagation pass in this case. The call algorithm does not change. Changes

will only affect the specification of buffers used.
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bool CNeuronDropout::CalcHiddenGradient(CNeuronBase *prevLayer)

  {

   ......

//--- branching of the algorithm depending on the execution device

   ulong total = m_cOutputs.Total();

   if(!m_cOpenCL)

     {

   ......

     }

   else  // OpenCL block

     {

      //--- operation mode flag check

      if(!m_bTrain)

        {

         //--- checking data buffers

         CBufferType *grad = prevLayer.GetGradients();

         if(grad.GetIndex() < 0)

            return false;

         if(m_cGradients.GetIndex() < 0)

            return false;

         //--- passing parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation,

                                def_activ_inputs, m_cGradients.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation,

                                       def_activ_outputs, grad.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_LineActivation, 

                                               def_activ_param_a, (TYPE)1))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_LineActivation, 

                                               def_activ_param_b, (TYPE)0))

            return false;

         uint offset[] = {0};

         uint NDRange[] = {(uint)m_cOutputs.Total()};

         if(!m_cOpenCL.Execute(def_k_LineActivation, 1, offset, NDRange))

            return false;

        }

Operation mode during training.
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      else

        {

         //--- check data buffers

         CBufferType* prev = prevLayer.GetGradients();

         if(prev.GetIndex() < 0)

            return false;

         if(m_cDropOutMultiplier.GetIndex() < 0)

            return false;

         if(m_cGradients.GetIndex() < 0)

            return false;

         //--- pass parameters to the kernel

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, 

                                         def_mask_inputs, m_cGradients.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, 

                                   def_mask_mask, m_cDropOutMultiplier.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult,

                                                def_mask_outputs, prev.GetIndex()))

            return false;

         if(!m_cOpenCL.SetArgument(def_k_MaskMult, def_mask_total, total))

            return false;

         //--- enqueuing

         int off_set[] = {0};

         int NDRange[] = { (int)(total + 3) / 4 };

         if(!m_cOpenCL.Execute(def_k_MaskMult, 1, off_set, NDRange))

            return false;

        }

     }

//---

   return true;

  }

Note that in the backpropagation process, we no longer load masking data into the OpenCL context.

We expect it to remain in context with the feed-forward method.

Congratulations, we have completed the work on the methods of the Dropout algorithm implementation

class. We've done quite a lot of work and implemented the Dropout algorithm with MQL5 and multi-

threaded operations using OpenCL. Now we can test the models. But first, I suggest considering the

implementation of this approach in Python in the TensorFlow library.

6.2.3 Implementing Dropout in Python

To build models in Python, we previously used the Keras library for TensorFlow. This library already has

a ready-made implementation of the Dropout layer.

tf.keras.layers.Dropout(

    rate, noise_shape=None, seed=None, **kwargs

)

The Dropout layer randomly sets the input units to 0 at a certain frequency equal to rate at each

iteration during the training process. This helps prevent the model from overfitting. Initial data that is
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not set to 0 is scaled by 1/(1 - rate). Therefore, the sum of all initial data transmitted remains

unchanged.

Note that the Dropout layer is only applied if its training field is set to True. Otherwise, no values are

masked. When training the model, the training flag will be automatically set to True. In other cases, the

user can explicitly set training to True when calling the layer.

This is different from setting trainable = False for the Dropout layer. In this case, the value of the

trainable flag does not affect the behavior of the layer, since Dropout does not have any weights that

could be frozen during training.

The Dropout layer constructor has the following arguments:

· rate – a floating point number in the range from 0 to 1, which represents the proportion of

elements of the initial data that are masked during the training process.

· noise_ shape – a one-dimensional integer tensor representing the shape of a binary exception mask

as (batch_ size, timesteps, features). The shape will be multiplied by the tensor of the initial data.

For example, if the initial data has a shape and you want the exclusion mask to be the same for all

time steps, you can use noise_ shape=(batch_ size, 1, features).

· seed – an integer to use as a random seed.

When calling a layer, two arguments are allowed:

· inputs – a tensor of the source data, it is possible to use a tensor of any rank.

· training – a Boolean flag indicating the operating mode of the layer.

To test the effectiveness of using Dropout technology, we will create a script and train several models

using this layer. We will not create overly complex models. Instead, let's take the script batch_ norm.py,

which was used when testing batch normalization. We will create a copy of this script in a file

dropout.py and add Dropout layers to each model.

First, we add two Dropout layers to the model with one hidden layer without using batch normalization.

We will insert new layers before each fully connected layer.

# Adding a Dropout to a model with one hidden layer

model1do = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(targets, activation=tf.nn.tanh) 

                         ])

model1do.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model1do.summary()

Please note that in all Dropout layers, we will be masking 30% of the neurons of the previous layer. 

Then, in a similar manner, we will add two Dropout layers to the model with one hidden layer and batch

normalization of the initial data. Please note that we are being a little disingenuous here. It is currently

not recommended to use batch normalization and Dropout simultaneously within this model, as this will

only reduce the overall result of the model. Let's test this statement with practical examples.
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# Adding Dropout to the model with batch normalization of the initial data 

# and one hidden layer

model1bndo = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                             keras.layers.BatchNormalization(),

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(targets, activation=tf.nn.tanh) 

                            ])

model1bndo.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model1bndo.summary()

Similarly, we add Dropout batches to models with three hidden layers.

# Adding a Dropout to a model with three hidden layers

model2do = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(40, activation=tf.nn.swish), 

                           keras.layers.Dropout(0.3),

                           keras.layers.Dense(targets, activation=tf.nn.tanh) 

                         ])

model2do.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model2do.summary()

# Adding Dropout to the model with batch normalization of the initial data 

# and three hidden layers

model2bndo = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),

                             keras.layers.BatchNormalization(),

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.BatchNormalization(),

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.BatchNormalization(),

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(40, activation=tf.nn.swish), 

                             keras.layers.Dropout(0.3),

                             keras.layers.Dense(targets, activation=tf.nn.tanh) 

                            ])

model2bndo.compile(optimizer='Adam', 

               loss='mean_squared_error', 

               metrics=['accuracy'])

model2bndo.summary()

After creating the models, we add code to start the new model training process.
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history1do = model1do.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model1do.save(os.path.join(path,'perceptron1do.h5'))

history1bndo = model1bndo.fit(train_nn_data, train_nn_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model1bndo.save(os.path.join(path,'perceptron1bndo.h5'))

history2do = model2do.fit(train_data, train_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model2do.save(os.path.join(path,'perceptron2do.h5'))

history2bndo = model2bndo.fit(train_nn_data, train_nn_target,

                      epochs=500, batch_size=1000,

                      callbacks=[callback],

                      verbose=2,

                      validation_split=0.1,

                      shuffle=True)

model2bndo.save(os.path.join(path,'perceptron2bndo.h5'))

We also add the ability to run models on a test dataset.

test_loss1do, test_acc1do = model1do.evaluate(test_data, test_target,

                                                            verbose=2) 

test_loss1bndo, test_acc1bndo = model1bndo.evaluate(test_nn_data, 

                                                    test_nn_target,

                                                    verbose=2) 

test_loss2do, test_acc2do = model2do.evaluate(test_data, test_target, 

                                                            verbose=2) 

test_loss2bndo, test_acc2bndo = model2bndo.evaluate(test_nn_data,

                                                    test_nn_target,

                                                    verbose=2)

In addition to changes in terms of training and testing models, we will also add a block for rendering

model results. First, let's change the code that creates dynamics graphs for the mean square error and

Accuracy during the training process. The changes here are not global, as we are just adding new

variables to the graph.
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# Rendering the results of training models with one hidden layer

plt.figure()

plt.plot(history1.history['loss'], label='Normalized inputs train')

plt.plot(history1.history['val_loss'], label='Normalized inputs validation')

plt.plot(history1do.history['loss'], label='Normalized inputs\nvs Dropout train')

plt.plot(history1do.history['val_loss'],

                                label='Normalized inputs\nvs Dropout validation')

plt.plot(history1bn.history['loss'],

                        label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history1bn.history['val_loss'],

                   label='Unnormalized inputs\nvs BatchNormalization validation')

plt.plot(history1bndo.history['loss'],

            label='Unnormalized inputs\nvs BatchNormalization and Dropout train')

plt.plot(history1bndo.history['val_loss'],

       label='Unnormalized inputs\nvs BatchNormalization and Dropout validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n1 hidden layer')

plt.legend(loc='upper right',ncol=2)

plt.figure()

plt.plot(history1.history['accuracy'], label='Normalized inputs trin')

plt.plot(history1.history['val_accuracy'], label='Normalized inputs validation')

plt.plot(history1do.history['accuracy'],

                                    label='Normalized inputs\nvs Dropout train')

plt.plot(history1do.history['val_accuracy'],

                               label='Normalized inputs\nvs Dropout validation')

plt.plot(history1bn.history['accuracy'],

                       label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history1bn.history['val_accuracy'],

                  label='Unnormalized inputs\nvs BatchNormalization validation')

plt.plot(history1bndo.history['accuracy'],

           label='Unnormalized inputs\nvs BatchNormalization and Dropout train')

plt.plot(history1bndo.history['val_accuracy'],

      label='Unnormalized inputs\nvs BatchNormalization and Dropout validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n1 hidden layer')

plt.legend(loc='lower right',ncol=2)
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# Rendering the results of training models with three hidden layers

plt.figure()

plt.plot(history2.history['loss'], label='Normalized inputs train')

plt.plot(history2.history['val_loss'], label='Normalized inputs validation')

plt.plot(history2do.history['loss'], label='Normalized inputs\nvs Dropout train')

plt.plot(history2do.history['val_loss'], 

                                 label='Normalizedinputs\nvs Dropout validation')

plt.plot(history2bn.history['loss'],

                        label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history2bn.history['val_loss'],

                   label='Unnormalized inputs\nvs BatchNormalization validation')

plt.plot(history2bndo.history['loss'],

            label='Unnormalized inputs\nvs BatchNormalization and Dropout train')

plt.plot(history2bndo.history['val_loss'],

       label='Unnormalized inputs\nvs BatchNormalization and Dropout validation')

plt.ylabel('$MSE$ $loss$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n3 hidden layers')

plt.legend(loc='upper right',ncol=2)

plt.figure()

plt.plot(history2.history['accuracy'], label='Normalized inputs train')

plt.plot(history2.history['val_accuracy'], label='Normalized inputs validation')

plt.plot(history2do.history['accuracy'], label='Normalized inputs\nvs Dropout train')

plt.plot(history2do.history['val_accuracy'],

                                    label='Normalized inputs\nvs Dropout validation')

plt.plot(history2bn.history['accuracy'],

                            label='Unnormalized inputs\nvs BatchNormalization train')

plt.plot(history2bn.history['val_accuracy'],

                       label='Unnormalized inputs\nvs BatchNormalization validation')

plt.plot(history2bndo.history['accuracy'],

                label='Unnormalized inputs\nvs BatchNormalization and Dropout train')

plt.plot(history2bndo.history['val_accuracy'],

           label='Unnormalized inputs\nvs BatchNormalization and Dropout validation')

plt.ylabel('$Accuracy$')

plt.xlabel('$Epochs$')

plt.title('Model training dynamics\n3 hidden layers')

plt.legend(loc='lower right',ncol=2)

The last changes in the script concern the display of model performance results on the test dataset.

Here, in addition to adding new data, we split the graphs: we will separately show the results of models

with one hidden layer, and we will place the results of models with three hidden layers on a new graph.
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plt.figure()

plt.bar(['Normalized inputs','\n\nNormalized inputs\nvs Dropout',

         'Unnormalized inputs\nvs BatchNornalization',

         '\n\nUnnormalized inputs\nvs BatchNornalization and Dropout'],

        [test_loss1,test_loss1do,

         test_loss1bn,test_loss1bndo])

plt.ylabel('$MSE$ $loss$')

plt.title('Test results\n1 hidden layer')

plt.figure()

plt.bar(['Normalized inputs','\n\nNormalized inputs\nvs Dropout',

         'Unnormalized inputs\nvs BatchNornalization',

         '\n\nUnnormalized inputs\nvs BatchNornalization and Dropout'],

        [test_loss2,test_loss2do,

         test_loss2bn,test_loss2bndo])

plt.ylabel('$MSE$ $loss$')

plt.title('Test results\n3 hidden layers')

plt.figure()

plt.bar(['Normalized inputs','\n\nNormalized inputs\nvs Dropout',

         'Unnormalized inputs\nvs BatchNornalization',

         '\n\nUnnormalized inputs\nvs BatchNornalization and Dropout'],

        [test_acc1,test_acc1do,

         test_acc1bn,test_acc1bndo])

plt.ylabel('$Accuracy$')

plt.title('Test results\n1 hidden layer')

plt.figure()

plt.bar(['Normalized inputs','\n\nNormalized inputs\nvs Dropout',

         'Unnormalized inputs\nvs BatchNornalization',

         '\n\nUnnormalized inputs\nvs BatchNornalization and Dropout'],

        [test_acc2,test_acc2do,

         test_acc2bn,test_acc2bndo])

plt.ylabel('$Accuracy$')

plt.title('Test results\n3 hidden layers')

plt.show()

The rest of the script code remained unchanged.

We will learn about the results of testing the models in the next section.

6.2.4 Comparative testing of models with Dropout

Another stage of work with our library has been completed. We have studied the Dropout method,

which combats the issue of feature co-adaptation and have built a class to implement this algorithm in

our models. In the previous section, we assembled a Python script for the comparative testing of

models using this method and without. Let's look at the results of such testing.

First, we look at the test training schedule for models with one hidden layer. The dynamics of the mean

square error of the models using Dropout was worse than that of models without it. This applies to both

the model trained on normalized data and the model using batch normalization layers for preprocessing
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the input data. You can see that both models using the Dropout layer worked synchronously. Their lines

on the graph are practically overlapping, both during the training and validation phases.

Similar conclusions can be drawn when analyzing the dynamics of Accuracy metrics. However, unlike

the MSE, accuracy values in the validation process are close to those of other models.

The evaluation of models on the test dataset also showed deterioration in model performance when

using the Dropout layer, both for mean square error and for Accuracy. The reasons for such a

phenomenon can only be speculated upon. One of the possible reasons can be attributed to the use of

models that are too simple. The models didn't have too many neurons, and masking some of them

reduces the capabilities of the model, which are already limited by the small number of neurons being

used.

Comparative model testing with Dropout
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Comparative model testing with Dropout

On the other hand, we chose uncorrelated variables at the data selection stage. Probably due to the

small number of features being used and the absence of strong correlations between them, co-

adaptation might not be highly developed in our models. As a result, the negative impact of using

Dropout in terms of degrading the model performance may have outweighed the positive effects of the

method.
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Comparative model testing with Dropout (test sample)

Comparative model testing with Dropout (test sample)

That is just my guess. I do not have enough information to draw certain conclusions. Additional tests

will be required. However, it is more the focus of scientific work, while our goal is the practical use of
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models. We conduct experiments with various architectural solutions and choose the best one for each

specific task.

Comparative model testing with Dropout

The second test was performed using a Dropout layer before each fully connected layer in models with

three hidden layers. Again, models with the Dropout layer performed worse than other models in the

learning process. However, during the validation process, the situation tends to change somewhat.

While models without the use of Dropout layers tend to decrease their performance on the validation

stage with an increase in the number of training epochs, models using this technology slightly improve

their positions or remain at a similar level.

This suggests that the use of a Dropout layer reduces the likelihood of model overfitting.

The graph showing the dynamics of Accuracy values during training confirms the conclusion made

earlier. With the increasing number of model training epochs, without the use of the Dropout layer,

there is a widening gap between the values in the training and validation phases. This indicates a

retraining of the model. For models using Dropout technology, the gap is narrowing. This supports the

earlier conclusion that the use of a Dropout layer reduces the tendency of the model to overfit.

On the test dataset, models using the Dropout layer showed worse results in both metrics.
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Comparative model testing with Dropout

Comparative model testing with Dropout (test sample)
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Comparative model testing with Dropout (test sample)

In this section, we have run comparative model testing with Dropout technology and without it. The

following conclusions can be drawn from the tests:

· The use of the Dropout technology helps reduce the risk of model overfitting.

· The effectiveness of the Dropout technology increases as the model size grows.

7. Testing trading capabilities of the model

We have done quite a bit of work studying various architectural solutions for organizing neural

networks. We have created a library for building various neural layers, and now with its help, we can

create different neural network models to find the best solution for our tasks. This is all very good and

useful, of course. However, we are doing this not just for the sake of science or self-enlightenment,

although that is certainly not a bad reason to study something. In this case, we embarked on the study

of the organization of neural networks and their architectural solutions with a practical purpose to find

a solution for use in the financial markets. There are two visions for such a solution:

· Creating an indicator based on a neural network model.

· Creating an Expert Advisor capable of executing trading operations based on the signals of the

neural network model.

We will not discuss which of the above options is preferable. In fact, this is a rhetorical question

because it depends on the user's personal preferences. In any case, we need to organize the correct

operation of the model and the interpretation of its signals.

At the same time, we would like to assess the expected profitability of our model. To conduct such

work, the MetaTrader 5 terminal offers the use of the Strategy Tester.
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In this chapter, we move from the theoretical study and creation of neural networks to the practical

application of the developed models in the financial sector. Our goal is to evaluate the effectiveness of

neural networks for creating indicators and Expert Advisors capable of performing trading operations in

financial markets. We'll start by examining the functionality of the MetaTrader 5 Strategy Tester,

which is a key tool for evaluating the performance of our models.

Next, we will move on to creating an Expert Advisor template using the MQL5 programming language.

This will allow us to apply our models in real trading conditions. Then we will focus on creating a model

for testing. In this part, we will see how to properly prepare and configure the model to produce the

most accurate and useful results.

After that, we will discuss the definition of Expert Advisor parameters, which includes setting various

parameters and options that optimize the Expert Advisor operation in accordance with the user's

trading strategies and goals. Finally, we will test the model using new data, which is a critical step in

assessing the model's ability to adapt to changing market conditions and predict future trading signals.

This chapter focuses on the practical application of the developed neural networks in real-world trading

strategies, covering model testing and optimization stages.

7.1 Introduction to MetaTrader 5 Strategy Tester

MetaTrader 5 provides a built-in strategy tester which enables the validation of trading robot

performance. This tool allows you to evaluate the Expert Advisor effectiveness and select the best input

parameters before deploying it on a live trading account.

The entire operation of the strategy tester is based on the historical quotes of currencies and stocks.

The tester automatically downloads tick history from the brokerage company's trading server and

takes into account contract specifications. Therefore, the developer doesn't need to do anything

manually. This allows for easy and highly accurate reproduction of all trading environment conditions,

down to millisecond intervals between ticks on different symbols. The robot analyzes the accumulated

quotes and executes virtual trades according to the algorithm embedded in it. This allows the

evaluation of how well the strategy would have performed in the past.

Moreover, the MetaTrader 5 strategy tester is multi-currency. All robots tested in it can receive

information about all financial instruments available on the registered account in the terminal and can

trade on them. Thus, the tool allows testing even complex Expert Advisors capable of analyzing multiple

currencies or stocks and their correlation.

The main advantage of such testing is the evaluation of a trading robot under conditions very close to

real without its actual operation in the market. Moreover, it takes much less time since historical ticks

are generated by the tester much faster than the real market. This is an undeniable advantage of the

strategy tester, but far from its only capability.

The MetaTrader 5 Strategy Tester offers several testing modes. They allow selecting the optimal

balance between speed and quality according to the user's needs. The 'Every tick' mode is intended for

the most accurate testing; in this case, the simulated conditions will be closest to the real ones. The '1

minute OHLC' mode allows testing a strategy faster with a sufficient level of accuracy. If a very quick

and rough estimate is needed, choose the 'Open prices only' mode, in which testing is conducted using

only bar opening prices. The highest quality is offered by the 'Every tick based on real ticks' mode, but

it also requires the maximum time investment.
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The capabilities of the tester are not limited to just testing. It can also be used to solve mass

optimization tasks. In the mathematical calculations mode, trading history is not used, and market

conditions are not modeled, while only the mathematical calculations embedded in the Expert Advisor

are executed.

Stress testing is an opportunity to further approximate the conditions of testing a trading robot to real

ones. The mode of arbitrary execution delays simulates network delays in transmitting and processing

trading requests, as well as simulates execution delays by dealers during real trading.

One of the main features of the strategy tester is the presentation of Expert Advisor testing results. It's

not just dry figures, such as the profit generated by the trading robot during testing. The presentation

also includes a wealth of statistical performance metrics:

· Profit and loss percentage ratio

· Number of winning and losing trades

· Risk factor

· Expected payoff

And this is far from a complete list. Additionally, the results of strategy testing are also provided in

graphical form, making the analysis of the trading strategy even more convenient and clear.

The existing visual testing mode allows real-time tracking of the robot's trading on historical price data.

All Expert Advisor trades are displayed on the chart, making them easy to analyze. The testing process

can be slowed down or paused to observe how trading is conducted at specific time intervals.

Visualization mode is not only an opportunity to see how the robot trades. In addition, it allows

checking the performance of custom technical indicators. For example, before purchasing through the

Market, you can assess its behavior on historical data.

An important function of the strategy tester is the optimization of the trading robot, which allows you

to find the best input parameters for a specific Expert Advisor. Various optimization modes allow finding

optimal parameters to make the trading robot as profitable and robust as possible, with minimal risk,

and so on.

During optimization, one trading robot is tested with different input parameters. After testing is

completed, the results of the runs can be compared, and the settings that best meet the requirements

placed on the robot can be selected.

The number of input parameter combinations during optimization can reach tens or hundreds of

thousands. As a result, optimization can become a very time-consuming process, which can still be

significantly reduced using genetic algorithms. This feature disables the sequential enumeration of all

input parameter combinations and selects only those that best meet the optimization criteria. In

subsequent stages, the optimal combinations are crossbred until the results stop improving. This

reduces the number of combinations and the overall optimization time many times over.

In addition, the strategy tester works in a multi-thread mode and allows the utilization of all CPU cores.

This will run an Expert Advisor on each core with its own set of parameters. Furthermore, for a large

pool of tasks, the strategy tester provides the ability to connect to cloud computing through the use of

the MQL5 Cloud Network. This is a network of cloud computing resources that combines thousands of

computers worldwide. The strategy tester can use its practically limitless computational power. With

the MQL5 Cloud Network, optimization that would take months in regular mode can be completed in just

a few hours.

https://www.mql5.com/en/market
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The strategy tester provides powerful tools for visual analysis of optimization results in both 2D and 3D

modes. For example, in a two-dimensional representation, you can analyze the dependencies of the

final result on two parameters simultaneously, while in 3D, you can see the entire picture of finding the

best result during optimization.

In addition to the built-in capabilities, you can use your own visualization methods. There is no need to

prepare, export, or process data in an external application. Simply display the optimization results on

the screen in real time during its execution.

The built-in forward testing feature helps eliminate "over-optimization" or parameter fitting. With this

option enabled, the history of currency and stock quotes is divided into two parts. Optimization occurs

in the first segment of the history, and the second segment is used only to confirm the results. If the

trading robot efficiency is equally high in both segments, it means that the trading system has the best

parameters and parameter fitting is practically eliminated.

The strategy tester is an indispensable tool for Expert Advisor developers. Without it, it is practically

impossible to write an efficient trading robot. It saves time and assists in creating a truly profitable tool

for use in financial markets.

7.2 Developing an Expert Advisor template using MQL5

To effectively assess the performance of our model in the strategy tester, we need to encapsulate it in

a trading robot. Hence, in this section, I decided to present a small template of an Expert Advisor

utilizing a neural network as the primary and sole decision-making block. I must clarify that this is just

a template, aimed at demonstrating implementation principles and approaches. Its code is considerably

simplified and is not intended for use on real accounts. Nevertheless, it is fully functional and can serve

as a foundation for constructing a working Expert Advisor. Additionally, I want to caution you that

financial market trading implies high-risk investments. You perform all your operations at your own risk

and under your full responsibility, including if you use Expert Advisors on your accounts. Of course,

unless the creators of such trading robots offer explicit guarantees, subject to your individual

agreements.

Regarding Expert Advisors, before installing them on your real trading accounts and entrusting them

with your funds, carefully study their parameters and configuration options. Also, validate their

performance across various modes in the strategy tester and on demo accounts.

I hope this clarification is comprehensible to everyone. Now, let's proceed to the implementation of the

template. Primarily, as I mentioned earlier, the presented template is significantly simplified, omitting

several essential functions required for Expert Advisors that are not related to the operation of our

model. In particular, the Expert Advisor completely lacks a money management block. For simplicity,

we use a fixed Lot. We also use a fixed StopLoss and set the range for take profit between MinTarget

and MaxTP. This approach to setting the take profit stems from the fact that in the models we are

testing, the second target variable precisely represented the distance to the nearest future extreme

point.
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sinput string          Model = "our_model.net";     

sinput int             BarsToPattern = 40;      

sinput bool            Common = true;

input ENUM_TIMEFRAMES  TimeFrame = PERIOD_M5;

input double           TradeLevel=0.9;

input double           Lot = 0.01;

input int              MaxTP= 500;

input double           ProfitMultiply = 0.8;

input int              MinTarget=100;

input int              StopLoss=300;

Additionally, I have opted for a simplified approach to model usage. Rather than creating and training

the model within the Expert Advisor, I approached it from a different angle. In all the scripts we created

to test the architectural solutions of neural layers, we saved the trained models. So why not simply load

one of the trained models? You can create and train your own model, and then just specify the file

name of the trained model in the external Model parameter and use it. All that remains is to specify the

storage location of the Common file, the number of bars describing one pattern BarsToPattern, and the

TimeFrame used. Also, to make a decision, we will indicate the minimum predicted probability of profit

TradeLevel.

To increase the probability of closing a trade at the take profit level, we add the ProfitMultiply

parameter in which we indicate the coefficient of confidence in the predicted movement strength. In

other words, when specifying the take profit level for an open position, we will adjust the size of the

expected movement by this coefficient.

Using the Common parameter to specify the location of the trained model file is quite important, as

strange as it may seem. The reason is that access to files in MetaTrader 5 is restricted within its

sandbox. Each terminal installed on the computer has its own sandbox. So, each of the two terminals

installed on the same computer works in its own sandbox and does not interfere with the second. For

cases where data exchange is needed between terminals on the same computer, a separate common

folder is used. So, the true value of the Common parameter indicates the use of this common folder.

When using the strategy tester optimization mode, each testing agent works in its own separate

sandbox, even within the same trading terminal. Therefore, to provide equal access to the trained

model for all testing agents, you need to place it in the common terminal folder and specify the

corresponding flag value.

After declaring the external parameters of our Expert Advisor, we include our library for working with

neural network models neuronnet.mqh and the standard library for trading operations Trade\Trade.mqh

in the global space.

#include "..\..\Include\NeuroNetworksBook\realization\neuronnet.mqh"

#include <Trade\Trade.mqh>

CNet *net;

CTrade *trade;

datetime lastbar = 0;

int h_RSI;

int h_MACD;

Next, we declare global variables:

· net – pointer to the model object

· trade – pointer to the object of trade operations
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· lastbar – time of the last analyzed bar, used to check the new candlestick opening event

· h_ RSI – handle of the RSI indicator

· h_ MACD – handle of the MACD indicator

Our template will contain a minimum set of functions. But this does not mean that your Expert Advisor

should contain exactly the same number of them.

In the OnInit function, we initialize the Expert Advisor. At the beginning of the function, we create a new

instance of a neural network object and immediately check the result of the operation. If the creation

of a new object is successful, we load the model from the specified file. Of course, we verify the result

of these operations.

int OnInit()

  {

//---

   if(!(net = new CNet()))

     {

      PrintFormat("Error creating Net: %d", GetLastError());

      return INIT_FAILED;

     }

   if(!net.Load(Model, Common))

     {

      PrintFormat("Error loading mode %s: %d", Model, GetLastError());

      return INIT_FAILED;

     }

   net.UseOpenCL(UseOpenCL);

After loading the model, we load the required indicators. Within the framework of this book, we trained

models on historical datasets from two indicators: RSI and MACD. As always, we check the result of the

operation.

   h_RSI = iRSI(_Symbol, TimeFrame, 12, PRICE_TYPICAL);

   if(h_RSI == INVALID_HANDLE)

     {

      PrintFormat("Error loading indicator %s", "RSI");

      return INIT_FAILED;

     }

   h_MACD = iMACD(_Symbol, TimeFrame, 12, 48, 12, PRICE_TYPICAL);

   if(h_MACD == INVALID_HANDLE)

     {

      PrintFormat("Error loading indicator %s", "MACD");

      return INIT_FAILED;

     }

The next step is to create an instance of an object to perform trading operations. Again, we check the

object creation result and set the order execution type.
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void OnDeinit(const int reason)

  {

   if(!!net)

      delete net;

   if(!!trade)

      delete trade;

   IndicatorRelease(h_RSI);

   IndicatorRelease(h_MACD);

  }

At the end of the function, we set the initial value for the time of the last bar and exit the function.

Immediately after the initialization function, we create the OnDeinit deinitialization function, in which we

delete the objects created in the program. We also close the indicators.

void OnDeinit(const int reason)

  {

   if(CheckPointer(net) == POINTER_DYNAMIC)

      delete net;

   if(CheckPointer(trade) == POINTER_DYNAMIC)

      delete trade;

   IndicatorRelease(h_RSI);

   IndicatorRelease(h_MACD);

  }

We write the entire algorithm of the Expert Advisor in the OnTick function. The terminal calls this

function when a new tick event occurs on the chart with the program running. At the beginning of the

function, we check if a new bar has opened. If the candlestick has already been processed, we exit the

function and wait for a new tick. The essence of this action is simple: we feed our model with

information only from closed candlesticks, and to ensure the information is as up-to-date as possible,

we do this at the opening of a new candlestick.

void OnTick()

  {

   if(lastbar >= iTime(_Symbol, TimeFrame, 0))

      return;

   lastbar = iTime(_Symbol, TimeFrame, 0);

There are no functions in our template that process every tick, so we will only perform actions at the

opening of a new candlestick. If you include functions in your program that need to process every tick,

such as trailing stops, moving orders to breakeven, or anything else, you will need to call these

functions before checking for the new candlestick event.

When a new candlestick event occurs, we load information from our indicators into local dynamic

arrays. Here we need to be sure to check the result of the operations.
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   double macd_main[], macd_signal[], rsi[];

   if(h_RSI == INVALID_HANDLE || CopyBuffer(h_RSI, 0, 1, BarsToPattern, rsi) <= 0)

     {

      PrintFormat("Error loading indicator %s data", "RSI");

      return;

     }

   if(h_MACD == INVALID_HANDLE || CopyBuffer(h_MACD, MAIN_LINE, 1, BarsToPattern, macd_main) <= 0 ||

      CopyBuffer(h_MACD, SIGNAL_LINE, 1, BarsToPattern, macd_signal) <= 0)

     {

      PrintFormat("Error loading indicator %s data", "MACD");

      return;

     }

Once the indicator data is loaded, we create an instance of a data buffer object to collect the current

state. Also, we run a loop to fill the data buffer with the current state of the indicators. Here we should

organize exactly the same sequence of values describing the current state, as we filled in the training

dataset file. Otherwise, the result of the model will be unpredictable.
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   CBufferType *input_data = new CBufferType();

   if(!input_data)

     {

      PrintFormat("Error creating Input data array: %d", GetLastError());

      return;

     }

   if(!input_data.BufferInit(BarsToPattern, 4, 0))

      return;

   for(int i = 0; i < BarsToPattern; i++)

     {

      if(!input_data.Update(i, 0, (TYPE)rsi[i]))

        {

         PrintFormat("Error adding Input data to array: %d", GetLastError());

         delete input_data;

         return;

        }

      if(!input_data.Update(i, 1, (TYPE)macd_main[i]))

        {

         PrintFormat("Error adding Input data to array: %d", GetLastError());

         delete input_data;

         return;

        }

      if(!input_data.Update(i, 2, (TYPE)macd_signal[i]))

        {

         PrintFormat("Error adding Input data to array: %d", GetLastError());

         delete input_data;

         return;

        }

      if(!input_data.Update(i, 3, (TYPE)(macd_main[i] - macd_signal[i])))

        {

         PrintFormat("Error adding Input data to array: %d", GetLastError());

         delete input_data;

         return;

        }

     }

   if(!input_data.Reshape(1,input_data.Total())

     return;

When we have fully gathered the description of the current state in the data buffer, we proceed to work

on our model. First, we validate the model pointer and then call the feed-forward method. After a

successful completion of the feed-forward method, we obtain its results in a local buffer. We do not

create a new instance of an object for the results buffer; instead, we use the input data buffer.
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   if(!net)

     {

      delete input_data;

      return;

     }

   if(!net.FeedForward(input_data))

     {

      PrintFormat("Error of Feed Forward: %d", GetLastError());

      delete input_data;

      return;

     }

Next comes the decision-making block based on signals from our model. As a result of the feed-forward

pass, the model returns two numbers. The first number is trained to determine the direction of the

upcoming movement, while the second one determines the distance to the nearest extreme point.

Thus, to execute operations, we will rely on both signals, which should be aligned.

First, we check the buy signal. The parameter responsible for the direction of movement must be

positive. We also immediately check for open positions. If there are open long positions, we refrain from

opening a new position and exit the function until the next tick.

Please note that we do not check for the presence of an open sell position. In our simplified version of

the EA, we trust the forecasts of our model and expect all open positions to be closed by the take profit

or stop loss. Consequently, we excluded the position management block from our Expert Advisor. As a

result, we expect the possibility of simultaneously holding two opposite positions, which is only possible

with position hedging. Therefore, testing such an Expert Advisor is possible only on the corresponding

accounts.

This approach allows us to assess the effectiveness of forecasts made by our model. But when building

Expert Advisors for real market usage, I would recommend considering and adding a position

management block to the Expert Advisor.
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   if(!net.GetResults(input_data))

     {

      PrintFormat("Error of Get Result: %d", GetLastError());

      delete input_data;

      return;

     }

   if(input_data.At(0) > 0.0)

     {

      bool opened = false;

      for(int i = 0; i < PositionsTotal(); i++)

        {

         if(PositionGetSymbol(i) != _Symbol)

            continue;

         if(PositionGetInteger(POSITION_TYPE) == POSITION_TYPE_BUY)

            opened = true;

        }

      if(opened)

        {

         delete input_data;

         return;

        }

If there are no open long positions, we check the strength of the signal (probability of movement in the

desired direction) and the expected movement to the upcoming extreme point. If at least one of the

parameters does not meet the requirements, we exit the function until the next tick.

      if(input_data.At(0) < TradeLevel ||

         input_data.At(1) < (MinTarget * SymbolInfoDouble(_Symbol, SYMBOL_POINT)))

        {

         delete input_data;

         return;

        }

If, however, a decision is made to open a position, we determine the stop loss and take profit levels and

send a buy order.

      double tp = SymbolInfoDouble(_Symbol, SYMBOL_BID) + MathMin(input_data.At(1) * 

                    ProfitMultiply, MaxTP * SymbolInfoDouble(_Symbol, SYMBOL_POINT));

      double sl = SymbolInfoDouble(_Symbol, SYMBOL_BID) - 

                  StopLoss * SymbolInfoDouble(_Symbol, SYMBOL_POINT);

      trade.Buy(Lot, _Symbol, 0, sl, tp);

     }

The algorithm for making a sell decision is organized in a similar way.
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   if(input_data.At(0) < 0)

     {

      bool opened = false;

      for(int i = 0; i < PositionsTotal(); i++)

        {

         if(PositionGetSymbol(i) != _Symbol)

            continue;

         if(PositionGetInteger(POSITION_TYPE) == POSITION_TYPE_SELL)

            opened = true;

        }

      if(opened)

        {

         delete input_data;

         return;

        }

      if(input_data.At(0) > -TradeLevel ||

         input_data.At(1) > -(MinTarget * SymbolInfoDouble(_Symbol, SYMBOL_POINT)))

        {

         delete input_data;

         return;

        }

      double tp = SymbolInfoDouble(_Symbol, SYMBOL_BID) + MathMax(input_data.At(1) * 

                   ProfitMultiply, -MaxTP * SymbolInfoDouble(_Symbol, SYMBOL_POINT));

      double sl = SymbolInfoDouble(_Symbol, SYMBOL_BID) + 

                  StopLoss * SymbolInfoDouble(_Symbol, SYMBOL_POINT);

      trade.Sell(Lot, _Symbol, 0, sl, tp);

     }

   delete input_data;

  }

After performing all the operations according to the described algorithm, we delete the buffer of the

current state and exit the function.

The Expert Advisor has been made very simplified, but it will also allow you to test the operation of our

model in the MetaTrader 5 strategy tester.

7.3 Creating a model for testing

In the previous section, we created a template for an Expert Advisor to test the feasibility of using our

neural network models for conducting trading operations in financial markets. This is a universal

template that can work with any model. However, it has limited parameters for the description of one

candlestick and for the configuration of the results layer. As a result of the model operation, it should

return a tensor of values that the decision-making block in the template can unambiguously interpret.

For testing purposes, I decided to build a new model that involves multiple types of neural layers. We

will create and train the model using a script. The script format is familiar to us from the numerous

tests that we examined in this book. We will create a new script in the file gpt_ not_ norm.mq5. We will

save the new script file in the gpt subdirectory of our book in accordance with the file structure.

At the script's global level, we will declare two constants:
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· BarsInHistory – number of bars in the training dataset

· ModelName – file name to save the trained model

Next, we define the external parameters of the script. First of all, this is the name of the file with the

training dataset StudyFileName. Please note that we are using a dataset without prior data

normalization. In the previous section, in our Expert Advisor template, we did not configure data

preprocessing, so the entire calculation relies on using batch normalization layers. The tests we

conducted earlier confirm the possibility of such a replacement.

The external parameter OutputFileName contains the name of the file for writing the dynamics of

changes in the model error during the training process.

We plan to use a block with the GPT architecture. For such an architecture, it's common to use a

parameter to specify the length of the internal buffer sequence for the pattern. To request this

parameter from the user, we will create an external parameter BarsToLine.

Next comes the set of parameters that has become standard for such scripts:

· NeuronsToBar – number of input layer neurons per bar

· UseOpenCL – flag for using OpenCL

· BatchSize – batch size between weight matrix updates

· LearningRate – learning rate

· HiddenLayers – number of hidden layers

· HiddenLayer – number of neurons in the hidden layer

· Epochs – number of iterations for updating the weight matrix before the training process stops.
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#define HistoryBars           40

#define ModelName             "gpt_not_norm.net"

//+------------------------------------------------------------------+

//| External parameters for the script                               |

//+------------------------------------------------------------------+

// Name of the file with the training sample

input string   StudyFileName  = "study_data_not_norm.csv";

// File name for recording error dynamics

input string   OutputFileName = "loss_study_gpt_not_norm.csv";

// Depth of the analyzed history

input int      BarsToLine     = 60;
// Number of input layer neurons per 1 bar

input int      NeuronsToBar   = 4;

// Use OpenCL

input bool     UseOpenCL      = false;

// Batch size to update the weight matrix

input int      BatchSize      = 10000;

// Learning factor

input double   LearningRate   = 0.0003;

// Number of hidden layers

input int      HiddenLayers   = 2;

// Number of neurons in one hidden layer

input int      HiddenLayer    = 60;

// Number of iterations to update the weight matrix

input int      Epochs         = 5000;

After declaring external parameters, we add our neural network model library to the script.

//+------------------------------------------------------------------+

//| Connecting the neural network library                            |

//+------------------------------------------------------------------+

#include "..\..\..\Include\NeuroNetworksBook\realization\neuronnet.mqh"

This is where the work in the global field ends. Let's continue writing the script code in the body of the

OnStart function. In the body of the function, we use a structured approach to call individual functions,

each of which performs specific actions.
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void OnStart(void)

  {

   VECTOR loss_history;

//--- prepare a vector to store the history of network errors

   if(!loss_history.Resize(0, Epochs))

     {

      Print("Not enough memory for loss history");

      return;

     }

   CNet net;

//--- 1. network initialization

   if(!NetworkInitialize(net))

      return;

//--- 2. loading training sample data

   CArrayObj data;

   CArrayObj result;

   if(!LoadTrainingData(StudyFileName, data, result))

      return;

//--- 3. network training

   if(!NetworkFit(net, data, result, loss_history))

      return;

//--- 4. saving network error history

   SaveLossHistory(OutputFileName, loss_history);

   Print("Done");

  }

The first function in our script is the model initialization function NetworkInitialize. In its parameters,

this function receives a pointer to the model object that needs to be initialized.

The function body provides two options for model initialization. First, we attempt to load a pre-trained

model from the file specified in the external parameters of the script and check the operation result. If

the model is successfully loaded, we skip the block that creates a new model and continue working with

the loaded model. This capability enables us to stop and resume the learning process if necessary.

bool NetworkInitialize(CNet &net)

  {

   if(net.Load(ModelName))

     {

      printf("Loaded pre-trained model %s", ModelName);

      net.SetLearningRates((TYPE)LearningRate,(TYPE)0.9, (TYPE)0.999);

      net.UseOpenCL(UseOpenCL);

      net.LossSmoothFactor(BatchSize);

      return true;

     }

If the loading of a pre-trained model fails, we create a new neural network. First, we create a dynamic

array to store pointers to objects describing neural layers and then we immediately call the

CreateLayersDesc function to create the architecture description of our model.
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   CArrayObj layers;

//--- create a description of the network layers

   if(!CreateLayersDesc(layers))

      return false;

As soon as our dynamic array of objects contains the complete description of the model to be created,

we call the model generation method, specifying in the parameters a pointer to the dynamic array

describing the model, the loss function, and the model optimization parameters.

//--- initialize the network

   if(!net.Create(&layers, (TYPE)LearningRate, (TYPE)0.9, (TYPE)0.999, LOSS_MSE,

                                                                    0, (TYPE)0))

     {

      PrintFormat("Error of init Net: %d", GetLastError());

      return false;

     }

We ensure to verify the result of the operation.

After creating the model, we set the user-specified flag for using OpenCL technology and the error

smoothing range.

   net.UseOpenCL(UseOpenCL);

   net.LossSmoothFactor(BatchSize);

   return true;

  }

This concludes the model initialization function. Let's now consider the algorithm of the

CreateLayersDesc function that creates the architecture description of the model. In the parameters,

the function receives a pointer to a dynamic array object describing the model architecture. In the

body of the function, we immediately clear the received array.

bool CreateLayersDesc(CArrayObj &layers)

  {

   layers.Clear();

First, we create the initial data layer. The algorithm for creating all neural layers will be the same, so

we begin by initiating a new object for describing the neural layer. As always, we verify the result of the

operation, that is, check the creation of a new object.

   CLayerDescription *descr;

//--- create an initial data layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

Once the neural layer description object is created, we fill it with data sufficient to unambiguously

understand the architecture of the neural layer being created.
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   descr.type         = defNeuronBase;

   int prev_count = descr.count = NeuronsToBar * GPT_InputBars;

   descr.window       = 0;

   descr.activation   = AF_NONE;

   descr.optimization = None;

We will input information about the last three candlesticks into the created model. In fact, this is not

enough, both in terms of the amount of information for the neural network to make a decision and from

the practical trading perspective. However, we should remember that we will use blocks with the GPT

architecture in our model. This architecture involves the accumulation of historical data inside a block,

compensating for the lack of information. At the same time, using a small amount of initial data allows

for a significant reduction in computational operations at each iteration. Thus, the size of the initial

data layer is determined as the product of the number of elements to describe one candlestick and the

number of analyzed candlesticks. In our case, the number of description elements for one candlestick

is specified in the external parameter NeuronsToBar, and the number of analyzed candlesticks is

specified by the GPT_ InputBars constant.

The initial data layer does not use either an activation function or parameter optimization. Note that we

write the initial data directly to the results buffer.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Once we have filled the architecture description object of the neural layer with the necessary set of

data, we add it to our dynamic array of pointers to objects.

I would like to remind you that we did not pre-process the initial data. Therefore, in the neural network

architecture, we have included the creation of a batch data normalization layer immediately after the

initial data layer. According to the above algorithm, we instantiate a new object describing the neural

layer. It is important to verify the result of the object creation operation, as in the next stage, we will

be populating the elements of this object with the necessary description of the architecture of the

created neural layer. Attempting to access the object elements with an invalid pointer will result in a

critical error.

//--- create a data normalization layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

In the description of the neural layer being created, we specify the type of the neural layer

defNeuronBatchNorm, which corresponds to the batch normalization layer. We set the sizes of the

neural layer and the window of initial data to be equal to the size of the previous input data neural

layer.

We will indicate the batch size at the batch size level between updates of the weight matrix, which the

user specified in the external parameter BatchSize.
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Similar to the previous layer, the batch normalization layer does not employ an activation function.

However, it introduces the Adam optimization method for trainable parameters.

   descr.type         = defNeuronBatchNorm;

   descr.count        = prev_count;

   descr.window       = prev_count;

   descr.activation   = AF_NONE;

   descr.optimization = Adam;

   descr.batch        = BatchSize;

After specifying all the necessary parameters for describing the neural layer to be created, we add a

pointer to the object to the dynamic array of pointers describing the architecture of our model.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

As we have discussed previously, four parameters in the description of one candlestick might be

insufficient. Therefore, it would be beneficial to add a few more parameters. To use machine learning

methods in conditions of a shortage of parameters, a number of approaches have been developed that

have been combined into the field of   Feature Engineer. One such approach involves the use of

convolutional layers, in which the number of filters exceeds the size of the input window. The logic of

this approach is that the description vector of one element is considered as the coordinates of a certain

point representing the current state in an N-dimensional space, where N is the length of the description

vector of one element. By performing convolution, we project this point onto the convolution vector. We

use exactly this property when compressing data and reducing its dimensionality. The same property

will be used to increase data dimensionality. As you can see, there is no contradiction here with the

previously studied approach to using convolutional layers. We simply use the number of filters

exceeding the description vector of one element and thereby increase the space dimension. Let's use

the described method and create the next convolutional layer with the number of filters being twice the

number of elements in the description of one candlestick. It should be noted that in this case we are

making a convolutional layer within the description of one candlestick, so the size of the initial data

window and its step size will be equal to the size of the description vector of one candlestick.

The algorithm for creating the description of the neural layer remains the same. First, we create a new

instance of the neural layer description object and check the result of the operation. 

//--- Convolutional layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

Then we fill in the required information.
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   descr.type = defNeuronConv;

   prev_count = descr.count = prev_count / NeuronsToBar;

   descr.window = NeuronsToBar;

   int prev_window = descr.window_out = 2 * NeuronsToBar;

   descr.step = NeuronsToBar;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

We pass a pointer to the populated instance of the object into the dynamic array describing the

architecture of the model being created.

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

After the information passes through the convolutional layer, we expect to obtain a tensor with eight

elements describing the state of one candlestick. However, we know that fully connected models do not

evaluate the dependence between elements, whereas such dependencies are typically strong when

analyzing time series data.

Hence, at the next stage, we aim to analyze such dependencies. We discussed such analysis during our

introduction to convolutional networks. Despite seeming peculiar, we employ the same type of neural

layers to address two seemingly different tasks. In fact, we are performing a similar task but with

different data. In the preceding convolutional layer, we decomposed the description vector of a single

candlestick into a larger number of elements. We can look at this task from another perspective. As we

discussed during the study of the convolutional layer, the convolution process involves determining the

similarity between two functions. That is, in each filter, we identify the similarity of the original data

with some reference function. Each filter uses its own reference function. By conducting convolution

operations on the scale of a single bar, we sought the similarity of each bar with some reference.

Now we want to analyze the dynamics of changes in candlestick parameters. To do this, we need to

perform convolution between identical elements of description vectors for different candles. After

convolution, the previous layer returned three values sequentially (the number of analyzed

candlesticks) from each filter. So, the next step is to create a convolutional layer with a window of

initial data and a step equal to the number of analyzed candlesticks. In this convolutional layer, we will

also use eight filters.

Let's create a description for the convolutional neural layer following the algorithm mentioned earlier.
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//--- Convolutional layer 2

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronConv;

   descr.window = prev_count;

   descr.step = prev_count;

   prev_count = descr.count = prev_window;

   prev_window = descr.window_out = 8;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

Thus, after preprocessing the data in one batch normalization layer and two consecutive convolutional

layers, we obtained a tensor with 64 elements (8 * 8). Let me remind you that we fed a tensor of 12

elements to the input of the neural network: 3 candlesticks with 4 elements each.

Next, we will process the signal in a block with the GPT architecture. In it, we will create four sequential

neural layers with eight attention heads in each. We have exposed the size of the depth of analyzed

data in the external parameters of the script. This will allow us to conduct training with different depths

and choose the optimal parameter based on the trade-off between training costs and model

performance. The algorithm for creating a description of the neural layer remains the same.
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//--- GPT layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

   descr.type = defNeuronGPT;

   descr.count = BarsToLine;

   descr.window = prev_count * prev_window;

   descr.window_out = prev_window;

   descr.step = 8;

   descr.layers = 4;

   descr.activation = AF_NONE;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

After the GPT block, we will create a block of fully connected neural layers. All layers in the block will

be identical. We included the number of layers and neurons in each into the external parameters of the

script. According to the algorithm proposed above, we create a new instance of the neural layer

description object and check the result of the operation.

//--- Hidden fully connected layers

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

After successfully creating a new object instance, we populate it with the necessary data. As

mentioned above, we will take the number of neurons in the layer from the external parameter

HiddenLayer. I chose the activation function Swish. Certainly, for greater script flexibility, more

parameters can be moved to external settings, and you can conduct multiple training cycles with

different parameters to find the best configuration for your model. This approach will require more time

and expense for training the model but will allow you to find the most optimal values for the model

parameters. 

   descr.type = defNeuronBase;

   descr.count = HiddenLayer;

   descr.activation = AF_SWISH;

   descr.optimization = Adam;

   descr.activation_params[0] = 1;

Since we plan to create identical neural layers, we then create a loop with a number of iterations equal

to the number of neural layers to be created. In the body of the loop, we will add the created neural

layer description to the dynamic array of architecture descriptions for the model being created. And, of

course, we check the result of the operations at each iteration of the loop.
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   for(int i = 0; i < HiddenLayers; i++)

     {

      if(!layers.Add(descr))

        {

         PrintFormat("Error adding layer: %d", GetLastError());

         delete descr;

         return false;

        }

     }

To complete the model, we will create a results layer. This is a fully connected layer that contains two

neurons with the tanh activation function. The choice of this activation function is based on the

aggregate assessment of the target values of the trained model:

· The first element of the target value takes 1 for buy targets and −1 for sell targets, which is best

configured by the hyperbolic tangent function tanh.

· We trained the models on the EURUSD pair, therefore, the value of the expected movement to the

nearest extremum should be in the range from −0.05 to 0.05. In this range of values, the graph of

the hyperbolic tangent function tanh is close to linear.

If you plan to use the model on instruments with an absolute value of the expected movement to the

nearest extremum of more than 1, you can scale the target result. Then use reverse scaling when

interpreting the model signal. You might also consider using a different activation function.

We use the same algorithm to create a description of the neural layer in the architecture of the

created model. First, we create a new instance of the neural layer description object and check the

result of the operation.

//--- Results layer

   if(!(descr = new CLayerDescription()))

     {

      PrintFormat("Error creating CLayerDescription: %d", GetLastError());

      return false;

     }

We then populate the created object with the necessary information: the type of neural layer, the

number of neurons, the activation function, and the optimization method for the model parameters.

   descr.type         = defNeuronBase;

   descr.count        = 2;

   descr.activation   = AF_TANH;

   descr.optimization = Adam;

We add a pointer to the populated object to the dynamic array describing the architecture of the model

being created and check the operation result.
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   if(!layers.Add(descr))

     {

      PrintFormat("Error adding layer: %d", GetLastError());

      delete descr;

      return false;

     }

   return true;

  }

We completed the function.

Following in the script algorithm is the LoadTrainingData function that loads the training dataset. In the

parameters, the function receives a string variable with the name of the file to load and pointers to two

dynamic array objects: data for patterns and result for target values.

bool LoadTrainingData(string path, CArrayObj &data, CArrayObj &result)

  {

Let me remind you that we will load the training sample without preliminary normalization of the initial

data from the file study_ data_ not_ norm.csv since we plan to use the model in real-time, and we will use

a batch normalization layer to prepare the initial data.

The algorithm for loading the source data will completely repeat what we previously considered while

performing the same task in the GPT architecture testing script. Let’s briefly recap on the process. To

load the training dataset, we declare two new variables to store pointers to data buffers, in which we

will read patterns and their target values one by one from the file (pattern and target respectively). We

will create the object instances later. This is because we will need new object instances to load each

pattern. Therefore, we will create objects in the body of the loop before the actual process of loading

data from the file.

   CBufferType *pattern;

   CBufferType *target;

After completing the preparatory work, we open the file with the training sample to read the data.

When opening a file, among other flags, we specify FILE_ SHARE_ READ. This flag opens shared access to

the file for data reading. That is, by adding this flag, we do not block access to the file from other

applications for reading the file. This will allow us to run several scripts in parallel with different

parameters, and they will not block each other’s access to the file. Of course, we can run several

scripts in parallel only if the hardware capacity allows it.

//--- open the file with the training sample

   int handle = FileOpen(path, FILE_READ | FILE_CSV | FILE_ANSI | FILE_SHARE_READ,

                                                                    ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error opening study data file: %d", GetLastError());

      return false;

     }

Make sure to check the operation result. In case of a file opening error, we inform the user about the

error, delete all previously created objects, and exit the program.

After successfully opening the file, we create a loop to read data from the file. The operations in the

body of the loop will be repeated until one of the following events occurs:
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· The end of the file is reached.

· The user interrupts program execution.

//--- show the progress of loading training data in the chart comment

   uint next_comment_time = 0;

   uint OutputTimeout     = 250; // not more often than once every 250 milliseconds

//--- organizing a training dataset loading loop

   while(!FileIsEnding(handle) && !IsStopped())

     {

      if(!(pattern = new CBufferType()))

        {

         PrintFormat("Error creating Pattern data array: %d", GetLastError());

         return false;

        }

      if(!pattern.BufferInit(1, NeuronsToBar * GPT_InputBars))

         return false;

In the body of the loop, we first create new instances of objects to record the current pattern and its

target values. Again, we immediately check the result of the operation. If an error occurs, we inform

the user about the error, delete previously created objects, close the file, and exit the program. It is

very important to delete all objects and close the file before exiting the program.

      if(!(target = new CBufferType()))

        {

         PrintFormat("Error creating Pattern Target array: %d", GetLastError());

         return false;

        }

      if(!target.BufferInit(1, 2))

         return false;

After this, we organize a nested loop with the number of iterations equal to the full data pattern. We

have created training samples of 40 candlesticks per pattern. Now, we need to sequentially read all the

data. However, our model does not require such a large pattern description for training. Therefore, we

will skip unnecessary data and will only write the last required data to the buffer.

      int skip = (HistoryBars - GPT_InputBars) * NeuronsToBar;

      for(int i = 0; i < NeuronsToBar * HistoryBars; i++)

        {

         TYPE temp = (TYPE)FileReadNumber(handle);

         if(i < skip)

            continue;

         pattern.m_mMatrix[0, i - skip] = temp;

        }

After loading the current pattern data in full, we organize a similar loop to load target values. This time

the number of iterations of the loop will be equal to the number of target values in the training dataset,

that is, in our case, two. Before starting the loop, we will check the state of the pattern saving flag. We

enter the loop only if the pattern description has been loaded in full.
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      for(int i = 0; i < 2; i++)

         target.m_mMatrix[0, i] = (TYPE)FileReadNumber(handle);

After the data loading loops have been executed, we move on to the block in which pattern information

is added to our dynamic arrays. We add pointers to objects to the dynamic array of descriptions of

patterns and target results. We also check the results of all operations.

      if(!data.Add(pattern))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

      if(!result.Add(target))

        {

         PrintFormat("Error adding study data to array: %d", GetLastError());

         return false;

        }

After successfully adding to the dynamic arrays, we inform the user about the number of loaded

patterns and proceed to load the next pattern.

      //--- show the loading progress in the chart comment (no more than 1 time every 250 milliseconds)

      if(next_comment_time < GetTickCount())

        {

         Comment(StringFormat("Patterns loaded: %d", data.Total()));

         next_comment_time = GetTickCount() + OutputTimeout;

        }

     }

   FileClose(handle);

   Comment(StringFormat("Patterns loaded: %d", data.Total()));

   return(true);

  }

After successfully loading all the data from the training dataset, we close the file and complete the data

loading function.

Next, we move on to the procedure for training our model in the NetworkFit function. In its parameters,

the function receives pointers to three objects:

· trainable model

· dynamic array of system state descriptions

· dynamic array of target results

bool NetworkFit(CNet &net, const CArrayObj &data, const CArrayObj &result, VECTOR &loss_history)

  {

In the body of the method, we first do a little preparatory work. We start by preparing local variables.

   int patterns = data.Total();

   int count = -1;

   TYPE min_loss = FLT_MAX;

After completing the preparatory work, we organize nested loops to train our model. The external loop

will count the number of updates to the weight matrices, and in the nested loop, we will iterate over the

patterns of our training dataset.
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Let me remind you that in the GPT architecture, historical data is accumulated in a stack. Therefore,

for the model to work correctly, the historical sequence of data input to the model is very important,

similar to recurrent models. For this reason, we cannot shuffle the training dataset within a single

training batch, and we will feed the model with patterns in chronological order. However, for model

training, we can use random batches from the entire training dataset. It is worth noting that when

determining the training batch, its size should be increased by the size of the internal accumulation

sequence of the GPT block, as maintaining their chronological sequence is necessary for correctly

determining dependencies between elements.

Thus, before running the nested loop, we define the boundaries of the current training batch.  

In the body of the nested loop, before proceeding with further operations, we check the flag for the

forced termination of the program, and if necessary, we interrupt the function execution.

//--- loop through epochs

   for(int epoch = 0; epoch < Epochs; epoch++)

     {

      ulong ticks = GetTickCount64();

      //--- training in batches

      //--- selection of a random pattern

      int k = (int)((double)(MathRand() * MathRand()) / MathPow(32767.0, 2) * (patterns - BarsToLine - 1));

      k = fmax(k, 0);

      for(int i = 0; (i < (BatchSize + BarsToLine) && (k + i) < patterns); i++)

        {

         //--- check if training stopped

         if(IsStopped())

           {

            Print("Network fitting stopped by user");

            return true;

           }

First, we perform the feed-forward pass through the model by calling the net.FeedForward method. In

the parameters of the feed-forward method, we pass a pointer to the object describing the current

pattern state and check the result of the operation. If an error occurs during method execution, we

inform the user about the error, delete the created objects, and exit the program.

         if(!net.FeedForward(data.At(k + i)))

           {

            PrintFormat("Error in FeedForward: %d", GetLastError());

            return false;

           }

After the successful execution of the feed-forward method, we check the fullness of the buffer of our

GPT block. If the buffer is not yet full, move on to the next iteration of the loop.

         if(i < BarsToLine)

            continue;

The backpropagation method net.Backpropagation is called only after the cumulative sequence of the

GPT block is filled. This time, in the parameters of the method, we pass a pointer to the object

representing the target values. It is very important to check the result of the operation. If an error

occurs, we perform the operations as if there was an error in the direct method.
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         if(!net.Backpropagation(result.At(k + i)))

           {

            PrintFormat("Error in Backpropagation: %d", GetLastError());

            return false;

           }

        }

Using the feed-forward and backpropagation methods, we have executed the respective algorithms for

training our model. At this stage, the error gradient has already been propagated to each trainable

parameter. All that remains is to update the weight matrices. However, we perform this operation not

at every training iteration but only after accumulating a batch. In this particular case, we will update

the weight matrices after completing the iterations of the nested loop.

      //--- reconfigure the network weights

      net.UpdateWeights(BatchSize);

      printf("Use OpenCL %s, epoch %d, time %.5f sec", (string)UseOpenCL, epoch, (GetTickCount64() - ticks) / 1000.0);

As you have seen in the model testing graphs, the model error dynamics almost never follow a smooth

line. Saving the model with minimal error will allow us to save the most appropriate parameters for our

model. Therefore, we first check the current model error and compare it to the minimum error

achieved during training. If the error has dropped, we save the current model and update the minimum

error variable.

      //--- notify about the past epoch

      TYPE loss = net.GetRecentAverageLoss();

      Comment(StringFormat("Epoch %d, error %.5f", epoch, loss));

      //--- remember the epoch error for saving to a file

      loss_history[epoch] = loss;

      if(loss < min_loss)

         //--- saving the model with minimal error

         if(net.Save(ModelName))

           {

            min_loss = loss;

            count = -1;

           }

Additionally, we have introduced the count counter. We will use it to count the number of update

iterations from the last minimum error value. If its value exceeds the specified threshold (in the

example, it is set to 10 iterations), then we interrupt the training process.

      if(count >= 10)

         break;

      count++;

     }

   return true;

  }

After completing a full training cycle, we will need to save the accumulated dynamics of the model

error changes during the training process to a file. To do this, we have created the SaveLossHistory

function. In the parameters, the function receives a string variable with the file name for storing the

data and a vector of errors during the model training process.
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In the function body, we open the file for writing. In this case, we use the file name that the user

specified in the parameters. We immediately check the result. If an error occurs when opening the file,

we inform the user and exit the function.

void SaveLossHistory(string path, const VECTOR &loss_history)

  {

   int handle = FileOpen(OutputFileName, FILE_WRITE | FILE_CSV | FILE_ANSI,

                                                             ",", CP_UTF8);

   if(handle == INVALID_HANDLE)

     {

      PrintFormat("Error creating loss file: %d", GetLastError());

      return;

     }

   for(ulong i = 0; i < loss_history.Size(); i++)

      FileWrite(handle, loss_history[i]);

   FileClose(handle);

   PrintFormat("The dynamics of the error change is saved to a file %s\\MQL5\\Files\\%s",

                                 TerminalInfoString(TERMINAL_DATA_PATH), OutputFileName);

  }

If the file was opened successfully, we organize a loop in which we write, one by one, all the values of

the model error accumulation vector during training. After completing the full data writing loop, we

close the file and inform the user about the location of the file.

With this, our script for creating and training the model is complete, and we can begin training the

model on the previously created dataset of non-normalized training data from the file

study_ data_ not_ norm.csv.

The next step is to start the model training process. Here you need to be patient, as the learning

process is quite long. Its duration depends on the hardware used. For example, I started training a

model with the parameters shown in the screenshot below.

On my Intel Core i7-1165G7 laptop, it takes 35-36 seconds to compute one batch between weight

matrix updates. So, full training of the model with 5000 iterations of weight updates will take

approximately 2 days of continuous operation. However, if you notice that training has halted and the

minimum error hasn't changed for an extended period, you can manually stop the model training. If the

achieved performance doesn't meet the requirements, you can continue training the model with

different values for the learning rate and batch size for weight updates. The common approach to

selecting parameters is as follows:

· The learning rate: training starts with a larger learning rate, and during training, we gradually

decrease the learning rate. 

· Weight matrix update batch size: training starts with a small batch and gradually increases.
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Model training parameters 

The techniques mentioned above allow initial fast and rough training of the model followed by finer

tuning. If during the model training process, the error consistently increases, it indicates an excessively

high learning rate. Using a large batch for weight matrix updates helps to adjust the weight matrices in

the most prioritized direction, but it requires more time to perform operations between weight updates.

On the other hand, a small batch leads to faster and more chaotic parameter updates, while still

maintaining the overall trend. However, when using small batch sizes, it is recommended to decrease

the learning rate to reduce model overfitting to specific parts of the training dataset.

7.4 Determining Expert Advisor parameters

After we have trained the model, before running it in the trading strategy, we need to learn how to use

it. First and foremost, we need to understand its signals. As you know, after the feed-forward pass, our

model returns two values:

· The probable direction of movement (the absolute value shows the probability of movement, and

the sign shows the direction).

· The expected strength of movement (the absolute value shows the force of motion, and the sign

shows the direction).

For each parameter, you need to find the decision threshold. A too-high value can filter out a large

number of profitable trades or not provide any signals for trading operations at all. A too-small value

can lead to a large number of false signals and even make trading unprofitable. Therefore, it is now very

important to find the optimal parameters of the Expert Advisor to work with our trained model.

The best tool to do this is the MetaTrader 5 strategy tester. In the terminal, press Ctrl + R and navigate

to the tester. In the Settings tab, in the Expert field, select our Expert Advisor and set the testing

parameters.

We trained the model on EURUSD historical data from 2015 to 2020 on the M5 timeframe. We will use

the same historical data to determine the optimal parameters of the Expert Advisor. According to the
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general neural network training rule, the performance of the model should be verified on a validation

dataset. However, in this case, we simply determine the optimal parameters for the Expert Advisor

when the model is running on the training dataset.

We know that our Expert Advisor analyzes entry points only at the opening of the candlestick, so to

check the presence of signals from the model, it would be possible to test only at the opening prices.

However, we also need to understand the quality of these signals. At the same time, we want to

conduct the initial rough selection of parameters with minimal time and resources. Therefore, let's

choose the testing mode based on the control points of the M1 timeframe.

We need to optimize the parameters, so we choose the optimization mode. To select the optimization

mode, it's desirable to know the number of upcoming iterations. Counting them requires no effort, as

they are automatically calculated when selecting Expert Advisor parameters for optimization. Let's go

to the parameters tab and set the initial values of the parameters in the Value column. I would like to

point out that parameters such as the model file name and the number of candles in the current

pattern are not optimized because they should match the model being used.

Optimization of Expert Advisor parameters

In the first stage, we will roughly optimize only one parameter: the TradeLevel decision-making

threshold. Select the checkbox of this parameter. At the output of our model, we used the hyperbolic

tangent (tanh) as the activation function. Therefore, the output values of neurons are normalized in the

range from −1 to 1. The sign shows the direction of movement. This means that the decision-making

level can be in the range from 0 to 1. Obviously, making trades with a probability of making a profit of

less than 50% looks risky, to say the least. Therefore, let's try to choose the level of decision-making

in the range from 0.5 to 1.0. Recall that this is the first and rough selection of the parameter, so we

will use step 0.05. The strategy tester immediately counted 11 iterations for us. As you can see, there

are quite a few of them. Let's go back to the Settings tab and select the Slow complete algorithm

optimization type. We also select optimization for the maximum balance and start the optimization

process by clicking on the Start button.
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Optimization of Expert Advisor parameters

The screenshot below shows the optimization results. As you can see, with a decision threshold of 0.65

or higher, the Expert Advisor does not execute any trades. From this, we can conclude that during the

training process, our neural network did not identify patterns with a probability of one-directional

movement equal to or greater than 65%. You should not be alarmed by the loss incurred by the Expert

Advisor at this stage, as we have only conducted preliminary rough optimization with a crude

determination of the decision-making level. Next, we have to optimize a few more parameters of our

Expert Advisor.

Results of the first optimization
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Results of the first optimization

First, let's try to optimize the parameter of the minimum strength of the upcoming movement

MinTarget in order to filter out minor fluctuations. The goal of this iteration is to select the strongest

movements. This is because the probability of such patterns triggering in practice is higher, and minor

fluctuations may not have enough momentum to reach the target or may not trigger at all. Moreover,

using orders with a low level of profitability reduces the risk-reward ratio.

We will optimize the parameter in the range from 50 to 600 points in increments of 50 points. In this

iteration, we need to check 12 runs of the Expert Advisor.

Selection of the threshold value of decision-making

Based on the results of this parameter optimization, we can observe the emergence of the first

profitable runs with a decision level of 500 and 600 points. However, with such parameter choices, the

number of completed trading operations significantly decreases. Indeed, we want to extract the

maximum potential from our model. It seems that values of the decision-making threshold around 350-

400 pips are the most promising, with a trade count exceeding 1000 and being closest to the

breakeven point. Let's take a small gamble and continue optimizing the parameters with the specified

parameter range.
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Results of Decision Threshold Optimization

Next, let's move on to optimizing the stop-loss parameter, which limits the risks for each trade. We will

optimize this parameter in the range from 50 to 500 pips with a step size of 50 pips.

As mentioned above, we have not defined a clear value for the MinTarget parameter. Therefore, for the

current optimization process, we will use two optimized parameters. At the same time, the parameter

for the forecast strength threshold of the upcoming impulse will only take two permissible values.

Results of Decision Threshold Optimization

Thus, the strategy tester counted 20 passes of the current optimization process.

It is worth noting one more circumstance. In the upcoming optimization process, we are going to find

the optimal stop-loss level. Here, it should be noted that in real trading, stop-loss and take-profit levels

are handled by the broker on each tick. To get loss values as close as possible to real levels when the

stop-loss is triggered, it will be necessary to optimize with each tick processed. Therefore, we go to the

Settings tab and change the simulation mode to Every tick based on real ticks, which will switch the

strategy tester to the mode of processing real historical ticks. We will also change the optimization

mode to Fast genetic based algorithm. This will allow the tester to filter out passes whose results will be

significantly worse than those already conducted.
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Optimization of stop-loss parameters

Optimization of stop-loss parameters

As a result of optimizing the parameters, unfortunately, we still do not see any profitable passes.

However, there is a clear superiority of a larger decision-making parameter based on the strength of

the upcoming MinTarget momentum. At the same time, fairly close results were obtained for three

stop-loss levels in the range of 300-400 points.

Thus, for further optimization of parameters, we take MinTarget at the level of 400 points, and we will

continue optimizing the stop loss in the range of 300-400 points.
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Stop-loss selection results

Stop-loss selection results

The next parameter to be optimized is the coefficient of confidence in the predicted strength of the

expected momentum. This is the coefficient by which we will multiply the value of the second

parameter returned by our model when calculating the take profit for the opened position. We will not

overestimate the expected momentum value. Therefore, the upper limit of parameter optimization will

be equal to one. We will set the lower limit of optimization at the level of 0.5, which is equivalent to

50% of the predicted momentum. With a step of 0.05, we get 11 optimization passes. Multiplying this

number by 3 stop-loss options, we will get 33 passes of the upcoming parameter optimization.
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Optimization of the confidence factor

As a result of optimization, we make a clear choice of a stop loss parameter at the level of 400 points

and a confidence coefficient at the level of 0.8.

Results of Confidence Factor Optimization

Results of Confidence Factor Optimization

Unfortunately, we must admit the failure of our endeavor. We never got a profitable combination of

parameters. Let's go back to the MinTarget parameter expressing the threshold decision-making value

based on the strength of the predicted momentum. During the previous optimization of this parameter,

we got the maximum profit at the level of 500 points. Let's conduct a small re-optimization of this

parameter in the range from 400 to 500 points with a step of 50 points.
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Re-optimization of the decision-making parameter

As a result of optimization, we get a profitable combination of parameters at the level of 500 points. I

must say that the level of profit received is almost twice as much as previously received. At the same

time, the number of trading operations decreased, while the profit factor remained at the level of 1.22.

Results of optimization of the decision-making parameter

Optimization of the profitability constraint parameter

Next, we optimize the MaxTP parameter indicating the maximum take profit limit. This parameter will

act as a safeguard against inflated expectations. If the model predicts an exaggerated movement with

new values, the Expert Advisor will limit the take profit level to this value, which we will determine from

the statistics of the training dataset. We optimize the value of the MaxTP parameter in the range from

300 to 900 points in increments of 100 points.

Based on the optimization results, it can be noticed that when the parameter is increased beyond 600,

the performance of the Expert Advisor does not change. Consequently, the level of expected movement

does not exceed 600 points for the entire training sample. Therefore, we can safely limit the maximum

profit level to 600 points.
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Results of optimization of the profitability constraint parameter

Results of optimization of the profitability constraint parameter

Fine-tuning the decision-making parameter

Finally, we will fine-tune the decision-making parameter based on the movement probability level

TradeLevel. Earlier, we conducted a rough optimization of this parameter with a step of 0.05 and

settled on a level of 0.6. Now we will try to optimize the parameter with a step of 0.01 in the vicinity of

the previously chosen level. Thus, we will optimize the parameter in the range of 0.56–0.64.

Strangely enough, the optimization we conducted only confirmed the correctness of the previously

chosen decision-making parameter value at the level of 0.6. Any deviation of the parameter from this

value has a negative impact on the profitability of our Expert Advisor.
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Results of fine-tuning the decision-making parameter

Results of fine-tuning the decision-making parameter

So, as a result of the optimization work, we have the following set of parameters that allow for

profitability on the training dataset.

It should be noted that to determine the optimal set of parameters, we went through quite a few

iterations of their optimization. At the same time, the MetaTrader 5 strategy tester allows you to

optimize any number of parameters in one run of the optimization process. However, you will have to

pay for it with time and computing resources. If we calculate the total number of passes made for all

iterations of optimization, we get about 95 passes. If we were to run simultaneous optimization of all

the parameters mentioned above, the total number of possible parameter combinations for conducting

passes would exceed 100,000. One can hope for a reduction in the number of passes through the use

of genetic algorithms, but still, their number will significantly exceed what we've conducted.

Consequently, it will take much more time to optimize the parameters.
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A set of optimized parameters

Now, after determining the optimal set of parameters, let's test the model's performance on new data. 

7.5 Testing the model on new data

In the previous section, we optimized the parameters of our Expert Advisor on the training dataset and

determined the optimal set of parameters. Now we need to test the performance of our model on new

data. We are creating a model to potentially earn money in the financial market, aren’t we? So far, we

have only trained the model and optimized the EA parameters using historical data for the period from

2015 to 2020 inclusive. We have identified the optimal set of parameters that allow us to make a profit

on historical data. While we cannot travel back in time and make money on historical data, we can run

our Expert Advisor on a trading account and hope for a comparable return in the future. To confirm or

refute the possibility of future profitability, let's test our Expert Advisor with the trained model and

optimized parameters on historical data outside the training set using data for 2021. Thus, we will test

the profitability of the model on new data.

As in the case of parameter optimization, we go to the MetaTrader 5 strategy tester and in the Settings

tab, specify the testing period 2021, select the type of modeling based on real ticks and disable

parameter optimization. Also, do not forget to specify the correct financial instrument and timeframe.

After that, we will go to the EA parameters tab and specify the values of the parameters that we

defined in the previous section. Start the testing process with the Start button.

Forward testing of the model
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Forward testing of the model

During the testing period, the Expert Advisor made a profit over a long time interval. In general, the

year was closed with a positive result. It should be noted that for testing the model, we use a rather

simplified Expert Advisor algorithm without the use of money management and position tracking

features. But even in this version, the EA shows profit. This is indicative of the overall profitability of the

trading signals generated by the model. Potentially, adding money management and position tracking

features will increase the profitability of Expert Advisor performance.

Results of forward testing of the model

The balance change chart shows sideways movement in the first half of the year, but from May, there

is a clear trend of capital growth.
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Results of forward testing of the model

Analysis of the Expert Advisor performance on new data showed that on some variables it even

surpasses the values obtained on the training set. For instance, the profit factor on the new data was

1.48, whereas, during the parameter optimization on the training set, this indicator was at 1.22. The

margin level in this case is not indicative, as all trades were made with a minimal volume, which greatly

inflated this indicator.

Results of forward testing of the model

In total, for the whole of 2021, the EA opened 36 positions, 21 of which were closed with a profit. This

accounted for 58.33% of the total number of positions. The obtained value is very close to the 60%

expected return from the model's signals. Let me remind you that the threshold level for conducting

trading operations is a 60% probability of the price moving in the predicted direction (parameter

TradeLevel=0.6).

The maximum number of consecutive losing trades is three, while the maximum number of profitable

trades is six.

Results of forward testing of the model
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We did not integrate time-based transaction filtering into our Expert Advisor, nor did we provide time

benchmarks for the training model. As a result, we see that the Expert Advisor opens positions more or

less evenly throughout all trading sessions. 

Results of forward testing of the model

However, throughout the week, we see a significant advantage in opening positions on Wednesday

(about 30%). Friday and Monday follow next. The fewest positions are opened on Tuesday and

Thursday.

Results of forward testing of the model

The Expert Advisor achieves the highest profitability on Wednesday and Monday. At the same time, the

profit-to-loss ratio is better on Monday. On Friday, the profit and loss are balanced around the break-

even point. However, on Tuesday and Thursday, the losses exceed the profits obtained. Such analysis

potentially allows us to increase the profitability of the Expert Advisor by excluding inherently

unprofitable trades. For instance, if we add a filter for opening positions based on the days of the week,

we can increase the overall profitability of the Expert Advisor by making trades only on Monday and

Wednesday.

Results of forward testing of the model

In general, the result of the Expert Advisor profitability on new data allows for the following conclusions:
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1. During technical analysis, it's possible to identify certain patterns that can generate quite stable

signals for executing trades with profitability of at least 60%.

2. The use of neural network models makes it possible to identify such patterns.

3. Building an Expert Advisor based on neural networks allows for stable profitability over an extended

period of time.

Conclusion

We have reached the end of the book. Throughout its pages, we have explored some of the most

popular architectural solutions from various domains. These include convolutional models used in image

recognition tasks, recurrent models for processing temporal sequences, and the Transformer with the

Self-Attention mechanism, developed for solving language-related tasks.

My intention in showcasing these diverse architectural solutions wasn't merely to provide examples. It's

a reminder to never fear to experiment. While it's easier to follow the beaten path, it only leads to

repeating what has already been achieved, no matter how good these achievements may be. While

there is nothing inherently wrong with this, true innovation and personal growth come from venturing

off-road and embracing the unknown. The outcomes of such journeys are uncertain as they may lead to

acclaim and success or fade into obscurity. Yet, I firmly believe that every effort contributes to our

growth. As you move forward, I hope you find success in achieving your goals.

In this book, we have built a library that will assist you in implementing your own neural network

models, training them on historical data, and testing their performance in the strategy tester using the

provided Expert Advisor template. I wish you to find the model that will bring you profit and prosperity.

It is important to remember: Make sure to thoroughly verify and comprehensively test the Expert

Advisor before entrusting it with your savings.

See you soon. You can always find more information on mql5.com website.

https://www.mql5.com/
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