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1 Introduction

1.1 About R

R is published under the GPL (GNU Public License) and exists for all major
platforms. R is described on the R Homepage as follows:

”R is a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX platforms,
Windows and MacOS. To download R, please choose your preferred
CRAN-mirror.”

See R Homepage for manuals and documentations. There are a number of books
on R. See http://www.R-project.org/doc/bib/R.bib for a bibliography of
the R-related publications. Dalgaard [2008] and Fox [2002] are nice introductory
books. For an advanced book see Venables and Ripley [2002] which is a classic
reference. Kleiber and Zeileis [2008] covers econometrics. See also CRAN Task
View: Computational Econometrics. For weaving R and LATEXsee Sweave http:
//www.stat.uni-muenchen.de/~leisch/Sweave/. For reproducible research
using R see Koenker and Zeileis [2007]. To cite R in publications you can refer
to: R Development Core Team [2008]

1.2 About these pages

This is a brief manual for beginners in Econometrics. For latest version see http:
//people.su.se/~ma/R_intro/R_intro.pdf. For the Sweave file producing
these pages see http://people.su.se/~ma/R_intro/R_intro.Rnw. The sym-
bol # is used for comments. Thus all text after # in a line is a comment. Lines
following > are R-commands executed at the R prompt which as standard
looks like >. This is an example:

> myexample <- "example"

> myexample

[1] "example"
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R-codes including comments of codes that are not executed are indented as
follows:

myexample <- "example" # creates an object named <myexample>

myexample

The characters within < > refer to verbatim names of files, functions etc. when it
is necessary for clarity. The names <mysomething> such as <mydata>,<myobject>
are used to refer to a general dataframe, object etc.

1.3 Objects and files

R regards things as objects. A dataset, vector, matrix, results of a regression,
a plot etc. are all objects. One or several objects can be saved in a file. A file
containing R-data is not an object but a set of objects.

Basically all commands you use are functions. A command: something(object),
does something on an object. This means that you are going to write lots of
parentheses. Check that they are there and check that they are in the right
place.

2 First things

2.1 Installation

R exists for several platforms and can be downloaded from [CRAN-mirror].

2.2 Working with R

It is a good idea to create a directory for a project and start R from there. This
makes it easy to save your work and find it in later sessions.

If you want R to start in a certain directory in MS-Windows, you have to
specify the <start in directory> to be your working directory. This is done
by changing the <properties> by clicking on the right button of the mouse
while pointing at your R-icon, and then going to <properties>.

Displaying the working directory within R:

> getwd()

[1] "/home/ma/1/R/R_begin/R_Brief_Guide"

Changing the working directory to an existing directory </home/ma/project1>

setwd("/home/ma/project1")
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2.3 Naming in R

Do not name an object as <my_object> or <my-object> use instead <my.object>.
Notice that in R <my.object> and <My.object> are two different names. Names
starting with a digit (<1a>) is not accepted. You can instead use <a1>)

You should not use names of variables in a data-frame as names of objects. If
you do so, the object will shadow the variable with the same name in another
object. The problem is then that when you call this variable you will get the
object – the object shadows the variable / the variable will be masked by the
object with the same name.

To avoid this problem:

1- Do not give a name to an object that is identical to the name of a variable
in your data frames.

2- If you are not able to follow this rule, refer to variables by referring to the
variable and the dataset that includes the variable. For example the variable
<wage> in the data frame <df1> is called by:

df1$wage.

The problem of ”shadowing” concerns R functions as well. Do not use object
names that are the same as R functions. <conflicts(detail=TRUE)> checks
whether an object you have created conflicts with another object in the R
packages and lists them. You should only care about those that are listed
under <.GlobalEnv> – objects in your workspace. All objects listed under
<.GlobalEnv> shadows objects in R packages and should be removed in order
to be able to use the objects in the R packages.

The following example creates <T> that should be avoided (since <T> stands for
<TRUE>), checks conflicts and resolves the conflict by removing <T>.

T <- "time"

conflicts(detail=TRUE)

rm(T)

conflicts(detail=TRUE)

You should avoid using the following one-letter words <c,C,D,F,I,q,t,T> as
names. They have special meanings in R.

Extensions for files

It is a good practice to use the extension <R> for your files including R-codes.
A file <lab1.R> is then a text-file including R-codes.

The extension <rda> is appropriate for work images (i.e files created by <save()>).
The file <lab1.rda> is then a file including R-objects.

The default name for the saved work image is <.RData>. Be careful not to
name a file as <.RData> when you use <RData> as extension, since you will then
overwrite the <.Rdata> file.
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2.4 Saving and loading objects and images of working
spaces

Download the file <DataWageMacro.rda> http://people.su.se/~ma/R_intro/
data/.

You can read the file <DataWageMacro.rda> containing the data frames <lnu>
and <macro> as follows.

load("DataWageMacro.rda")

ls() # lists the objects

The following command saves the object <lnu> in a file <mydata.rda>.

save(lnu, file="mydata.rda")

To save an image of the your workspace that will be automatically loaded when
you next time start R in the same directory.

save.image()

You can also save your working image by answering <yes> when you quit and
are asked
<Save workspace image? [y/n/c]:>.

In this way the image of your workspace is saved in the hidden file <.RData>.

You can save an image of the current workspace and give it a name <myimage.rda>.

save.image("myimage.rda")

2.5 Overall options

<options()> can be used to set a number of options that governs various aspects
of computations and displaying results.

Here are some useful options. We start by setting the line with to 60 characters.

> options(width = 60)

options(prompt=" R> ") # changes the prompt to < R> >.

options(scipen=3) # From R version 1.8. This option

# tells R to display numbers in fixed format instead of

# in exponential form, for example <1446257064291> instead of

# <1.446257e+12> as the result of <exp(28)>.

options() # displays the options.
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2.6 Getting Help

help.start() # invokes the help pages.

help(lm) # help on <lm>, linear model.

?lm # same as above.

3 Elementary commands

ls() # Lists all objects.

ls.str() # Lists details of all objects

str(myobject) # Lists details of <myobject>.

list.files() # Lists all files in the current directory.

dir() # Lists all files in the current directory.

myobject # Prints simply the object.

rm(myobject) # removes the object <myobject>.

rm(list=ls()) # removes all the objects in the working space.

save(myobject, file="myobject.rda")

# saves the object <myobject> in a file <myobject.rda>.

load("mywork.rda")# loads "mywork.rda" into memory.

summary(mydata) # Prints the simple statistics for <mydata>.

hist(x,freq=TRUE) # Prints a histogram of the object <x>.

# <freq=TRUE> yields frequency and

# <freq=FALSE> yields probabilities.

q() # Quits R.

The output of a command can be directed in an object by using < <- > , an
object is then assigned a value. The first line in the following code chunk creates
vector named <VV> with a values 1,2 and 3. The second line creates an object
named <VV> and prints the contents of the object <VV>.

> VV <- c(1, 2, 3)

> (VV <- 1:2)

[1] 1 2

4 Data management

4.1 Reading data in plain text format:

Data in columns

The data in this example are from a text file: <tmp.txt>, containing the variable
names in the first line (separated with a space) and the values of these variables
(separated with a space) in the following lines.

5

 http://people.su.se/~ma/R_intro/data/tmp.txt


The following reads the contents of the file <tmp.txt> and assigns it to an object
named <dat>.

> FILE <- "http://people.su.se/~ma/R_intro/data/tmp.txt"

> dat <- read.table(file = FILE, header = TRUE)

> dat

wage school public female
1 94 8 1 0
2 75 7 0 0
3 80 11 1 0
4 70 16 0 0
5 75 8 1 0
6 78 11 1 0
7 103 11 0 0
8 53 8 0 0
9 99 8 1 0

The argument <header = TRUE> indicates that the first line includes the names
of the variables. The object <dat> is a data-frame as it is called in R.

If the columns of the data in the file <tmp.txt> were separated by <,>, the
syntax would be:

read.table("tmp.txt", header = TRUE, sep=",")

Note that if your decimal character is not <.> you should specify it. If the
decimal character is <,>, you can use <read.csv> and specify the following ar-
gument in the function <dec=",">.

4.2 Non-available and delimiters in tabular data

We have a file <data1.txt> with the following contents:

1 . 9

6 3 2

where the first observation on the second column (variable) is a missing value
coded as <.>. To tell R that <.> is a missing value, you use the argument:
<na.strings=".">

> FILE <- "http://people.su.se/~ma/R_intro/data/data1.txt"

> read.table(file = FILE, na.strings = ".")

V1 V2 V3
1 1 NA 9
2 6 3 2
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Sometimes columns are separated by other separators than spaces. The sepa-
rator might for example be <,> in which case we have to use the argument
<sep=",">.

Be aware that if the columns are separated by <,> and there are spaces in some
columns like the case below the <na.strings="."> does not work. The NA is
actually coded as two spaces, a point and two spaces, and should be indicated
as: <na.strings=" . ">.

1, . ,9

6, 3 ,2

Sometimes missing value is simply <blank> as follows.

1 9

6 3 2

Notice that there are two spaces between 1 and 9 in the first line implying that
the value in the second column is blank. This is a missing value. Here it is
important to specify <sep=" "> along with <na.strings=""> .

4.3 Reading and writing data in other formats

Attach the library <foreign> in order to read data in various standard packages
data formats. Examples are SAS, SPSS, STATA, etc.

library(foreign)

# reads the data <wage.dta> and put it in the object <lnu>

lnu <- read.dta(file="wage.dta")

<read.ssd()> , <read.spss()> etc. are other commands in the foreign package
for reading data in SAS and SPSS format.

It is also easy to write data in a foreign format. The following codes writes the
object <lnu> to stata-file <lnunew.dta>.

library(foreign)

write.dta(lnu,"lnunew.dta")

4.4 Examining the contents of a data-frame object

Here we use data from Swedish Level of Living Surveys LNU 1991.

> FILE <- "http://people.su.se/~ma/R_intro/data/lnu91.txt"

> lnu <- read.table(file = FILE, header = TRUE)
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Attaching the <lnu> data by <attach(lnu)> allows you to access the contents
of the dataset <lnu> by referring to the variable names in the <lnu>. If you
have not attached the <lnu> you can use <lnu$female> to refer to the variable
<female> in the data frame <lnu>. When you do not need to have the data
attached anymore, you can undo the <attach()> by <detach()>

A description of the contents of the data frame lnu.

> str(lnu)

'data.frame': 2249 obs. of 6 variables:
$ wage : int 81 77 63 84 110 151 59 109 159 71 ...
$ school : int 15 12 10 15 16 18 11 12 10 11 ...
$ expr : int 17 10 18 16 13 15 19 20 21 20 ...
$ public : int 0 1 0 1 0 0 1 0 0 0 ...
$ female : int 1 1 1 1 0 0 1 0 1 0 ...
$ industry: int 63 93 71 34 83 38 82 50 71 37 ...

> summary(lnu)

wage school expr
Min. : 17.00 Min. : 4.00 Min. : 0.00
1st Qu.: 64.00 1st Qu.: 9.00 1st Qu.: 8.00
Median : 73.00 Median :11.00 Median :18.00
Mean : 80.25 Mean :11.57 Mean :18.59
3rd Qu.: 88.00 3rd Qu.:13.00 3rd Qu.:27.00
Max. :289.00 Max. :24.00 Max. :50.00

public female industry
Min. :0.0000 Min. :0.0000 Min. :11.00
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:50.00
Median :0.0000 Median :0.0000 Median :81.00
Mean :0.4535 Mean :0.4851 Mean :69.74
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:93.00
Max. :1.0000 Max. :1.0000 Max. :95.00

4.5 Creating and removing variables in a data frame

Here we create a variable <logwage> as the logarithm of <wage>. Then we
remove the variable.

> lnu$logwage <- log(lnu$wage)

> lnu$logwage <- NULL

Notice that you do not need to create variables that are simple transforma-
tions of the original variables. You can do the transformation directly in your
computations and estimations.
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4.6 Choosing a subset of variables in a data frame

# Read a <subset> of variables (wage,female) in lnu.

lnu.female <- subset(lnu, select=c(wage,female))

# Putting together two objects (or variables) in a data frame.

attach(lnu)

lnu.female <- data.frame(wage,female)

# Read all variables in lnu but female.

lnux <- subset(lnu, select=-female)

# The following keeps all variables from wage to public as listed above

lnuxx <- subset(lnu, select=wage:public)

4.7 Choosing a subset of observations in a dataset

attach(lnu)

# Deleting observations that include missing value in a variable

lnu <- na.omit(lnu)

# Keeping observations for female only.

fem.data <- subset(lnu, female==1)

# Keeping observations for female and public employees only.

fem.public.data <- subset(lnu, female==1 & public==1)

# Choosing all observations where wage > 90

highwage <- subset(lnu, wage > 90)

4.8 Replacing values of variables

We create a variable indicating whether the individual has university education
or not by replacing the values in the schooling variable.

Copy the schooling variable.

> lnu$university <- lnu$school

Replace university value with 0 if years of schooling is less than 13 years.

> lnu$university <- replace(lnu$university, lnu$university <

+ 13, 0)

Replace university value with 1 if years of schooling is greater than 12 years

> lnu$university <- replace(lnu$university, lnu$university >

+ 12, 1)
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The variable <lnu$university> is now a dummy for university education. Re-
member to re-attach the data set after recoding. For creating category variables
you can use <cut>. See further the section on <factors> below.

> attach(lnu, warn.conflicts = FALSE)

> table(university)

university
FALSE TRUE
1516 733

To create a dummy we could simply proceed as follows:

> university <- school > 12

> table(university)

university
FALSE TRUE
1516 733

However, we usually do not need to create dummies. We can compute on
<school > 12> directly,

> table(school > 12)

FALSE TRUE
1516 733

4.9 Replacing missing values

We create a vector. Recode one value as missing value. And Then replace the
missing with the original value.

a <- c(1,2,3,4) # creates a vector

is.na(a) <- a ==2 # recode a==2 as NA

a <- replace(a, is.na(a), 2)# replaces the NA with 2

# or

a[is.na(a)] <- 2

4.10 Factors

Sometimes our variable has to be redefined to be used as a category variable
with appropriate levels that corresponds to various intervals. We might wish to
have schooling categories that corresponds to schooling up to 9 years, 10 to 12
years and above 12 years. This could be coded by using <cut()>. To include
the lowest category we use the argument <include.lowest=TRUE>.
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> SchoolLevel <- cut(school, c(9, 12, max(school),

+ include.lowest = TRUE))

> table(SchoolLevel)

SchoolLevel
(1,9] (9,12] (12,24]
608 908 733

Labels can be set for each level. Consider the university variable created in the
previous section.

> SchoolLevel <- factor(SchoolLevel, labels = c("basic",

+ "gymnasium", "university"))

> table(SchoolLevel)

SchoolLevel
basic gymnasium university
608 908 733

The factor defined as above can for example be used in a regression model. The
reference category is the level with the lowest value. The lowest value is 1 that
corresponds to verb+<Basic>+ and the column for <Basic> is not included in
the contrast matrix. Changing the base category will remove another column
instead of this column. This is demonstrated in the following example:

> contrasts(SchoolLevel)

gymnasium university
basic 0 0
gymnasium 1 0
university 0 1

> contrasts(SchoolLevel) <- contr.treatment(levels(SchoolLevel),

+ base = 3)

> contrasts(SchoolLevel)

basic gymnasium
basic 1 0
gymnasium 0 1
university 0 0

The following redefines <school> as a numeric variable.

> lnu$school <- as.numeric(lnu$school)
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4.11 Aggregating data by group

Let us create a simple dataset consisting of 3 variables V1, V2 and V3. V1 is
the group identity and V2 and V3 are two numeric variables.

> (df1 <- data.frame(V1 = 1:3, V2 = 1:9, V3 = 11:19))

V1 V2 V3
1 1 1 11
2 2 2 12
3 3 3 13
4 1 4 14
5 2 5 15
6 3 6 16
7 1 7 17
8 2 8 18
9 3 9 19

By using the command <aggregate> we can create a new data.frame consisting
of group characteristics such as <sum> , <mean> etc. Here the function sum is
applied to <df1[,2:3]> that is the second and third columns of <df1> by the
group identity <V1>.

> (aggregate.sum.df1 <- aggregate(df1[, 2:3], list(df1$V1),

+ sum))

Group.1 V2 V3
1 1 12 42
2 2 15 45
3 3 18 48

> (aggregate.mean.df1 <- aggregate(df1[, 2:3], list(df1$V1),

+ mean))

Group.1 V2 V3
1 1 4 14
2 2 5 15
3 3 6 16

The variable <Group.1> is a factor that identifies groups.

The following is an example of using the function aggregate. Assume that
you have a data set <dat> including a unit-identifier <dat$id>. The units are
observed repeatedly over time indicated by a variable dat$Time.

> (dat <- data.frame(id = rep(11:12, each = 2),

+ Time = 1:2, x = 2:3, y = 5:6))
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id Time x y
1 11 1 2 5
2 11 2 3 6
3 12 1 2 5
4 12 2 3 6

This computes group means for all variables in the data frame and drops the vari-
able <Time> and the automatically created group-indicator variable <Group.1>.

> (Bdat <- subset(aggregate(dat, list(dat$id), FUN = mean),

+ select = -c(Time, Group.1)))

id x y
1 11 2.5 5.5
2 12 2.5 5.5

Merge <Bdat> and <dat$id> to create a data set with repeated group averages
for each observation on <id> and of the length as <id>.

> (dat2 <- subset(merge(data.frame(id = dat$id),

+ Bdat), select = -id))

x y
1 2.5 5.5
2 2.5 5.5
3 2.5 5.5
4 2.5 5.5

Now you can create a data set including the <id> and <Time> indicators and
the deviation from mean values of all the other variables.

> (within.data <- cbind(id = dat$id, Time = dat$Time,

+ subset(dat, select = -c(Time, id)) - dat2))

id Time x y
1 11 1 -0.5 -0.5
2 11 2 0.5 0.5
3 12 1 -0.5 -0.5
4 12 2 0.5 0.5

4.12 Using several data sets

We often need to use data from several datasets. In R it is not necessary to put
these data together into a dataset as is the case in many statistical packages
where only one data set is available at a time and all stored data are in the form
of a table.
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It is for example possible to run a regression using one variable from one data
set and another variable from another dataset as long as these variables have
the same length (same number of observations) and they are in the same order
(the i:th observation in both variables correspond to the same unit). Consider
the following two datasets:

> data1 <- data.frame(wage = c(81, 77, 63, 84, 110,

+ 151, 59, 109, 159, 71), female = c(1, 1, 1,

+ 1, 0, 0, 1, 0, 1, 0), id = c(1, 3, 5, 6, 7,

+ 8, 9, 10, 11, 12))

> data2 <- data.frame(experience = c(17, 10, 18,

+ 16, 13, 15, 19, 20, 21, 20), id = c(1, 3,

+ 5, 6, 7, 8, 9, 10, 11, 12))

We can use variables from both datasets without merging the datasets. Let us
regress <data1$wage> on <data1$female> and <data2$experience>.

> lm(log(data1$wage) ~ data1$female + data2$experience)

Call:
lm(formula = log(data1$wage) ~ data1$female + data2$experience)

Coefficients:
(Intercept) data1$female data2$experience

4.641120 -0.257909 0.001578

We can also put together variables from different data frames into a data frame
and do our analysis on these data.

> (data3 <- data.frame(data1$wage, data1$female,

+ data2$experience))

data1.wage data1.female data2.experience
1 81 1 17
2 77 1 10
3 63 1 18
4 84 1 16
5 110 0 13
6 151 0 15
7 59 1 19
8 109 0 20
9 159 1 21
10 71 0 20

We can merge the datasets. If we have one common variable in both data sets,
the data is merged according to that variable.

> (data4 <- merge(data1, data2))
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id wage female experience
1 1 81 1 17
2 3 77 1 10
3 5 63 1 18
4 6 84 1 16
5 7 110 0 13
6 8 151 0 15
7 9 59 1 19
8 10 109 0 20
9 11 159 1 21
10 12 71 0 20

Notice that unlike some other softwares, we do not need the observations to
appear in the same order as defined by the <id>.

If we need to match two data sets using a common variable (column) and the
common variable have different names in the datasets, we either can change the
names to the same name or use the data as they are and specify the variables
that are to be used for matching in the data sets. If the matching variable
in <data2> and <data1> are called <id2> and <id> you can use the following
syntax:

merge(data1,data2, by.x="id", by.y="id2")

<by.x="id", by.y="id2"> arguments says that id is the matching variable
in data1 and id2 is the matching variable in data2.

You can also put together the datasets in the existing order with help of <data.frame>
or <cbind>. The data are then matched, observation by observation, in the ex-
isting order in the data sets. This is illustrated by the following example.

> data1.noid <- data.frame(wage = c(81, 77, 63),

+ female = c(1, 0, 1))

> data2.noid <- data.frame(experience = c(17, 10,

+ 18))

> cbind(data1.noid, data2.noid)

wage female experience
1 81 1 17
2 77 0 10
3 63 1 18

If you want to add a number of observations at the end of a data set, you use
<rbind>. The following example splits the clumns 2,3 and 4 in <data4> in two
parts and then puts themtogether by <rbind>.

> data.one.to.five <- data4[1:5, 2:4]

> data.six.to.ten <- data4[6:10, 2:4]

> rbind(data.one.to.five, data.six.to.ten)
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wage female experience
1 81 1 17
2 77 1 10
3 63 1 18
4 84 1 16
5 110 0 13
6 151 0 15
7 59 1 19
8 109 0 20
9 159 1 21
10 71 0 20

5 Basic statistics

Summary statistics for all variables in a data frame:

summary(mydata)

Mean, Median, Standard deviation, Maximum, and Minimum of a variable:

mean (myvariable)

median (myvariable)

sd (myvariable)

max (myvariable)

min (myvariable)

# compute 10, 20, ..., 90 percentiles

quantile(myvariable, 1:9/10)

When R computes <sum> , <mean> etc on an object containing <NA>, it returns
<NA>. To be able to apply these functions on observations where data exists,
you should add the argument <na.rm=TRUE>. Another alternative is to remove
all lines of data containing <NA> by <na.omit>.

> a <- c(1, NA, 3, 4)

> sum(a)

[1] NA

> sum(a, na.rm = TRUE)

[1] 8

> table(a, exclude = c())

a
1 3 4 <NA>
1 1 1 1
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You can also use <sum(na.omit(a))> that removes the NA and computes the
sum or <sum(a[!is.na(a)])> that sums the elements that are not NA (!is.na)
in <a>.

5.1 Tabulation

Read a dataset first.

Cross Tabulation

> attach(lnu, warn.conflicts = FALSE)

> table(female, public)

public
female 0 1

0 815 343
1 414 677

> (ftable.row <- cbind(table(female, public), total = table(female)))

0 1 total
0 815 343 1158
1 414 677 1091

> (ftable.col <- rbind(table(female, public), total = table(public)))

0 1
0 815 343
1 414 677
total 1229 1020

# Try this:

# relative freq. by rows: female

ftable.row/c(table(female))

# relative freq. by columns: public

ftable.col/rep(table(public),each=3)

# rep(table(public),each=3) repeats

#each value in table(public) 3 times

Creating various statistics by category. The following yields average wage for
males and females.

> tapply(wage, female, mean)

0 1
88.75302 71.23190
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Using <length>, <min>, <max>, etc yields number of observations, minimum,
maximum etc for males and females.

> tapply(wage, female, length)

0 1
1158 1091

The following example yields average wage for males and females in the private
and public sector.

> tapply(wage, list(female, public), mean)

0 1
0 89.52883 86.90962
1 71.54589 71.03988

The following computes the average by group creating a vector of the same
length. Same length implies that for the group statistics is retained for all
members of each group. Average wage for males and females:

> attach(lnu, warn.conflicts = FALSE)

> lnu$wage.by.sex <- ave(wage, female, FUN = mean)

The function <mean> can be substituted with <min>, <max>, <length> etc.
yielding group-wise minimum, maximum, number of observations, etc.

6 Matrixes

In R we define a matrix as follows (see ?matrix in R):

A matrix with 3 rows and 4 columns with elements 1 to 12 filled by columns.

> matrix(1:12, 3, 4)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

A matrix with 3 rows and 4 columns with elements 1,2,3, ..., 12 filled by rows:

> (A <- matrix(1:12, 3, 4, byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
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> dim(A)

[1] 3 4

> nrow(A)

[1] 3

> ncol(A)

[1] 4

6.1 Indexation

The elements of a matrix can be extracted by using brackets after the matrix
name and referring to rows and columns separated by a comma. You can use
the indexation in a similar way to extract elements of other types of objects.

A[3,] # Extracting the third row
A[,3] # Extracting the third column
A[3,3] # the third row and the third column
A[-1,] # the matrix except the first row
A[,-2] # the matrix except the second column

Evaluating some condition on all elements of a matrix

> A > 3

[,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE TRUE
[2,] TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE

> A == 3

[,1] [,2] [,3] [,4]
[1,] FALSE FALSE TRUE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE

Listing the elements fulfilling some condition

> A[A > 6]

[1] 9 10 7 11 8 12
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6.2 Scalar Matrix

A special type of matrix is a scalar matrix which is a square matrix with the
same number of rows and columns, all off-diagonal elements equal to zero and
the same element in all diagonal positions. The following exercises demonstrates
some matrix facilities regarding the diagonals of matrixes. See also ?upper.tri
and ?lower.tri.

> diag(2, 3, 3)

[,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 2 0
[3,] 0 0 2

> diag(diag(2, 3, 3))

[1] 2 2 2

6.3 Matrix operators

Transpose of a matrix

Interchanging the rows and columns of a matrix yields the transpose of a matrix.

> t(matrix(1:6, 2, 3))

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

Try matrix(1:6,2,3) and matrix(1:6,3,2, byrow=T).

Addition and subtraction

Addition and subtraction can be applied on matrixes of the same dimensions or
a scalar and a matrix.

# Try this

A <- matrix(1:12,3,4)

B <- matrix(-1:-12,3,4)

C1 <- A+B

D1 <- A-B

Scalar multiplication

# Try this

A <- matrix(1:12,3,4); TwoTimesA = 2*A

c(2,2,2)*A

c(1,2,3)*A

c(1,10)*A
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Matrix multiplication

For multiplying matrixes R uses <%∗%> and this works only when the matrixes
are conform.

E <- matrix(1:9,3,3)

crossproduct.of.E <- t(E)%*%E

# Or another and more efficient way of obtaining crossproducts is:

crossproduct.of.E <- crossprod(E)

Matrix inversion

The inverse of a square matrix A denoted as A−1 is defined as a matrix that
when multiplied with A results in an Identity matrix (1’s in the diagonal and
0’s in all off-diagonal elements.)

AA−1 = A−1A = I

FF <- matrix((1:9),3,3)

detFF<- det(FF) # we check the determinant

B <- matrix((1:9)^2,3,3) # create an invertible matrix

Binverse <- solve(B)

Identity.matrix <- B%*%Binverse

7 Ordinary Least Squares

The function for running a linear regression model using OLS is <lm()>. In the
following example the dependent variable is <log(wage)> and the explanatory
variables are <school> and <female>. An intercept is included by default.
Notice that we do not have to specify the data since the data frame <lnu>
containing these variables is attached. The result of the regression is assigned
to the object named <reg.model>. This object includes a number of interesting
regression results that can be extracted as illustrated further below after some
examples for using <lm>.

Read a dataset first.

> reg.model <- lm(log(wage) ~ school + female)

> summary(reg.model)

Call:
lm(formula = log(wage) ~ school + female)

Residuals:
Min 1Q Median 3Q Max

-1.46436 -0.15308 -0.01852 0.13542 1.10402
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.087730 0.022203 184.10 <2e-16 ***
school 0.029667 0.001783 16.64 <2e-16 ***
female -0.191109 0.011066 -17.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2621 on 2246 degrees of freedom
Multiple R-squared: 0.2101, Adjusted R-squared: 0.2094
F-statistic: 298.8 on 2 and 2246 DF, p-value: < 2.2e-16

Sometimes we wish to run the regression on a subset of our data.

lm (log(wage) ~ school + female, subset=wage>100)

Sometimes we need to use transformed values of the variables in the model. The
transformation should be given as the in the function <I()>. I() means Identity
function. <expr^2> is <expr> squared.

lm (log(wage) ~ school + female + expr + I(expr^2))

Interacting variables: <female>, <school>

lm (log(wage) ~ female*school, data=lnu)

Same as:

lm (log(wage) ~ female + school + female:school, data= lnu)

A model with no intercept.

reg.no.intercept <- lm (log(wage) ~ female - 1)

A model with only an intercept.

reg.only.intercept <- lm (log(wage) ~ 1 )

The following example runs <lm> for females and males in the private and public
sector separately as defined by the variables <female> and <public>. The data
<lnu> are split into four cells: males in private (0,0), females in private (1,0),
males in public (0,1) and females in public (1,1). The obtained object <by.reg>
is a list and to display the <summary()> of each element we use <lapply> (list
apply).
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by.reg <- by(lnu, list(female,public),

function(x) lm(log(wage) ~ school, data=x))

# summary of the separate regressions

lapply(by.reg, summary)

# summary for the second element in the

#list i.e females in private sector.

summary(by.reg[[2]])

The following lists mean of variables for male and female workers (the first line),
creates a list named by.female.lnu of two data sets (the second line) and runs
regressions for male and female workers (the third and fourth lines).

by(lnu, list(female), mean)

by.female.lnu <- by(lnu, list(female),

function(x) x); str(by.female.lnu)

summary(lm(log(wage) ~ school, data=by.female.lnu[[1]]))

summary(lm(log(wage) ~ school, data=by.female.lnu[[2]]))

7.1 Extracting the model formula and results

The model formula

(equation1 <- formula(reg.model))

log(wage) ~ school + female

The estimated coefficients

> coefficients(reg.model)

(Intercept) school female
4.08772967 0.02966711 -0.19110920

The standard errors

> coef(summary(reg.model))[, 2]

(Intercept) school female
0.022203334 0.001782725 0.011066176

<coef(summary(reg.model))[,1:2]> yields both <Estimate> and <Std.Error>

The t-values

> coef(summary(reg.model))[, 3]

(Intercept) school female
184.10432 16.64144 -17.26967
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Try also <coef(summary(reg.model))>. Analogously you can extract other
elements of the lm-object by:

The variance-covariance matrix: <vcov(reg.model)> :

Residual degrees of freedom:
<df.residual(reg.model)>

The residual sum of squares:
<deviance(reg.model)>

And other components:
<residuals(reg.model)>
<fitted.values(reg.model)>
<summary(reg.model)$r.squared>
<summary(reg.model)$adj.r.squared>
<summary(reg.model)$sigma>
<summary(reg.model)$fstatistic>

7.2 White’s heteroskedasticity corrected standard errors

The package <car> and <sandwich> and <Design> has predefined functions
for computing robust standard errors. There are different weighting options.

The White’s correction

> library(car)

> f1 <- formula(log(wage) ~ female + school)

> sqrt(diag(hccm(lm(f1), type = "hc0")))

(Intercept) female school
0.022356311 0.010920889 0.001929391

Using the library <sandwich>.

> library(sandwich)

> library(lmtest)

> coeftest(lm(f1), vcov = (vcovHC(lm(f1), "HC0")))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0877297 0.0223563 182.845 < 2.2e-16 ***
female -0.1911092 0.0109209 -17.499 < 2.2e-16 ***
school 0.0296671 0.0019294 15.376 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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<hc0> in library <car> and <HC0> in library sandwich use the original White
formula. The <hc1> <HC1> multiply the variances with N

N−k . Using library
<Design>.

> library(Design, war, warn.conflicts = FALSE)

> f1 <- formula(log(wage) ~ female + school)

> fm1 <- robcov(ols(f1, x = TRUE, y = TRUE))

7.3 Group-wise non-constant error variance

This uses the library <Design> and account for non-constant error variance
when data is clustered across sectors indicated by the variable <industry>

> robcov(ols(f1, x = TRUE, y = TRUE), cluster = industry)

Linear Regression Model

ols(formula = f1, x = TRUE, y = TRUE)

n Model L.R. d.f. R2 Sigma
2249 530.5 2 0.2101 0.2621

Residuals:
Min 1Q Median 3Q Max

-1.46436 -0.15308 -0.01852 0.13542 1.10402

Coefficients:
Value Std. Error t Pr(>|t|)

Intercept 4.08773 0.036285 112.66 0
female -0.19111 0.016626 -11.49 0
school 0.02967 0.002806 10.57 0

Residual standard error: 0.2621 on 2246 degrees of freedom
Adjusted R-Squared: 0.2094

When the number of groups M are small, you can correct the standard errors
as follows:

> library(Design)

> f1 <- formula(log(wage) ~ female + school)

> M <- length(unique(industry))

> N <- length(industry)

> K <- lm(f1)$rank

> cl <- (M/(M - 1)) * ((N - 1)/(N - K))

> fm1 <- robcov(ols(f1, x = TRUE, y = TRUE), cluster = industry)

> fm1$var <- fm1$var * cl

> coeftest(fm1)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
Intercept 4.0877297 0.0222033 184.104 < 2.2e-16 ***
female -0.1911092 0.0110662 -17.270 < 2.2e-16 ***
school 0.0296671 0.0017827 16.641 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7.4 F-test

Estimate the restricted (restricting some (or all) of slope coefficients to be zero)
and the unrestricted model (allowing non-zero as well as zero coefficients). You
can then use anova() to test the joint hypotheses defined as in the restricted
model.

> mod.restricted <- lm(log(wage) ~ 1)

> mod.unrestricted <- lm(log(wage) ~ female + school)

> anova(mod.restricted, mod.unrestricted)

Analysis of Variance Table

Model 1: log(wage) ~ 1
Model 2: log(wage) ~ female + school
Res.Df RSS Df Sum of Sq F Pr(>F)

1 2248 195.338
2 2246 154.291 2 41.047 298.76 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Under non-constant error variance, we use the White variance-Covariance ma-
trix and the model F-value is as follows. The <-1> in the codes below remove
related row/column for the intercept

> library(car)

> COV <- hccm(mod.unrestricted, "hc1")[-1, -1]

> beta <- matrix(coef(mod.unrestricted, , 1))[-1,

+ ]

> t(beta) %*% solve(COV) %*% beta/(lm(f1)$rank -

+ 1)

[,1]
[1,] 253.1234
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8 Time-series

Data in rows

Time-series data often appear in a form where series are in rows. As an example
I use data from the Swedish Consumer Surveys by the National Institute of
Economic Research containing three series: consumer confidence index, a macro
index and a micro index.

First I saved the original data in a file in text-format. Before using the data as
input in R I used a text editor and kept only the values for the first three series
separated with spaces. The series are in rows. The values of the three series are
listed in separate rows without variable names.

To read this file <macro.txt>, the following code puts the data in a matrix of
3 columns and 129 rows with help of <scan> and <matrix> before defining a
time-series object starting in 1993 with frequency 12 (monthly). The series are
named as <cci>,<macro.index> and <micro.index>. Notice that <matrix>
by default fills in data by columns.

> FILE <- "http://people.su.se/~ma/R_intro/macro.txt"

> macro <- ts(matrix(scan(FILE), 129, 3), start = 1993,

+ frequency = 12, names = c("cci", "macro.index",

+ "micro.index"))

Here I give an example for creating lag values of a variable and adding it to a
time-series data set. See also <diff> for computing differences.

Let us create a new time series data set, with the series in the data frame
<macro> adding lagged <cci> (lagged by 1 month). The function <ts.union>
puts together the series keeping all observations while <ts.intersect> would
keep only the overlapping part of the series.

> macro2 <- ts.union(macro, l.cci = lag(macro[,

+ 1], -1))

You can use the function aggregate to change the frequency of you time-series
data. The following example converts the frequency data. nfrequency=1 yields
annual data. FUN=mean computes the average of the variables over time. The
default is <sum>.

> aggregate(macro, nfrequency = 1, FUN = mean)

Time Series:
Start = 1993
End = 2002
Frequency = 1

cci macro.index micro.index
1993 -19.7583333 -33.3833333 -13.241667
1994 -0.2916667 14.1666667 -5.158333
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1995 -10.8583333 -3.7250000 -10.250000
1996 -7.9166667 -20.5500000 -3.866667
1997 3.5333333 0.7833333 2.141667
1998 11.9083333 16.3500000 7.250000
1999 17.6083333 20.6083333 11.891667
2000 26.2666667 40.4083333 14.925000
2001 3.4583333 -13.7083333 9.608333
2002 7.2166667 -7.3250000 10.125000

8.1 Durbin Watson

<dwtest> in the package <lmtest> and <durbin.watson> in the package <car>
can be used. See also <bgtest> in the package <lmtest> for Breusch-Godfrey
test for higher order serial correlation.

> mod1 <- lm(cci ~ macro.index, data = macro)

> library(lmtest)

> dwtest(mod1)

Durbin-Watson test

data: mod1
DW = 0.063, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0

9 Graphics

9.1 Save graphs in postscript

postscript("myfile.ps")

hist(1:10)

dev.off()

9.2 Save graphs in pdf

pdf("myfile.pdf")

hist(1:10)

dev.off()
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9.3 Plotting the observations and the Regression line

Plot the data and the regression line. Plot <school> against <log(wage)>

> X.LABEL = "Years of schooling"

> Y.LABEL = "Log hourly wage in SEK"

> TITLE <- "Figure 1: Scatterplot and the Regression line"

> SubTitle <- "Source: Level of Living Surveys, LNU, 1991"

> plot(school, log(wage), pch = ".", main = TITLE,

+ sub = SubTitle, xlab = X.LABEL, ylab = Y.LABEL)

> abline(lm(log(wage) ~ school))

> abline(v = mean(school), col = "red")

> abline(h = mean(log(wage)), col = "red")
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Figure 1: Scatterplot and the Regression line

Source: Level of Living Surveys, LNU, 1991
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9.4 Plotting time series

Start by reading a time-series data set. For details see section 8.

Plot series in one diagram

> TITLE <- "Figure 2: Consumer confidence index in Sweden"

> SubTitle <- "Source: Swedish Consumer Surveys"

> X.LABEL <- "Year"

> COLORS = c("red", "blue", "black")

> ts.plot(macro, col = COLORS, main = TITLE, sub = SubTitle,

+ xlab = X.LABEL)

> legend("bottomright", legend = colnames(macro),

+ lty = 1, col = COLORS)

Figure 2: Consumer confidence index in Sweden

Source: Swedish Consumer Surveys
Year
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<plot.ts(macro)> plots series separately.
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10 Writing functions

The syntax is: myfunction <- function(x, a, ...) \{...\} The argu-
ments for a function are the variables used in the operations as specified in
the body of the function i.e. the codes within { }. Once you have written a
function and saved it, you can use this function to perform the operation as
specified in { ...} by referring to your function and using the arguments relevant
for the actual computation.

The following function computes the squared of mean of a variable. By defining
the function <ms> we can write <ms(x)> instead of <(mean(x))^2)> every time
we want to compute the square of mean for a variable <x>.

> ms <- function(x) {

+ (mean(x))^2

+ }

> a <- 1:100

> ms(a)

[1] 2550.25

The arguments of a function:

The following function has no arguments and prints the string of text, <Welcome>

> welc <- function() {

+ print("Welcome")

+ }

> welc()

[1] "Welcome"

This function takes an argument x. The arguments of the function must be
supplied.

> myprog.no.default <- function(x) print(paste("I use",

+ x, "for statistical computation."))

If a default value is specified, the default value is assumed when no arguments
are supplied.

> myprog <- function(x = "R") {

+ print(paste("I use", x, "for statistical computation."))

+ }

> myprog()

[1] "I use R for statistical computation."

> myprog("R and sometimes something else")

[1] "I use R and sometimes something else for statistical computation."
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10.1 A function for computing Clustered Standard Errors

Here follows a function for computing clustered-Standard Errors. (See also the
function robcov in the library Design discussed above.) The arguments are a
data frame <dat>, a model formula<f1>, and the cluster variable <cluster>.

clustered.standard.errors <- function(dat,f1, cluster){

attach(dat, warn.conflicts = FALSE)

M <- length(unique(cluster))

N <- length(cluster)

K <- lm(f1)$rank

cl <- (M/(M-1))*((N-1)/(N-K))

X <- model.matrix(f1)

invXpX <- solve(t(X) %*% X)

ei <- resid(lm(f1))

uj <- as.matrix(aggregate(ei*X,list(cluster),FUN=sum)[-1])

sqrt(cl*diag(invXpX%*%t(uj)%*%uj%*%invXpX)) }

Notice that substituting the last line with
sqrt( diag(invXpX %*%t(ei*X)%*%(X*ei)%*%invXpX) )

would yield White’s standard errors.

11 Miscellaneous hints

Income Distribution see ineq.
Logit <glm(formula, family=binomial(link=logit))>.

See <?glm> & <?family>.
Negative binomial <?negative.binomial or ?glm.nb> in MASS, VR.
Poisson regression <glm(formula, family=poisson(link=log))>.

See <?glm> & <?family>.
Probit <glm(formula,family=binomial(link=probit))>.

See <?glm> & <?family>.
Simultaneous Equations see sem, systemfit.
Time Series see <?ts> tseries, urca and strucchange.
Tobit see <?tobin> in survival.
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