
import numpy as np
import MetaTrader5 as mt5
import pandas as pd
from datetime import datetime, timedelta
from qiskit import QuantumCircuit, transpile, QuantumRegister, ClassicalRegister
from qiskit_aer import AerSimulator
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import warnings
warnings.filterwarnings('ignore')

class MT5DataLoader:
    def __init__(self, symbol="EURUSD", timeframe=mt5.TIMEFRAME_H1):
        if not mt5.initialize():
            raise Exception("MetaTrader5 initialization failed")
        
        self.symbol = symbol
        self.timeframe = timeframe
    
    def get_historical_data(self, lookback_bars=1000):
        current_time = datetime.now()
        rates = mt5.copy_rates_from(self.symbol, self.timeframe, current_time, lookback_bars)
        
        if rates is None:
            raise Exception(f"Failed to get data for {self.symbol}")
            
        df = pd.DataFrame(rates)
        df['time'] = pd.to_datetime(df['time'], unit='s')
        return df

class EnhancedQuantumPredictor:
    def __init__(self, num_qubits=8):  # Уменьшаем число кубитов для стабильности
        self.num_qubits = num_qubits
        self.simulator = AerSimulator()
        self.scaler = MinMaxScaler()
        
    def create_qpe_circuit(self, market_data, current_price):
        """Создание упрощенной квантовой схемы"""
        qr = QuantumRegister(self.num_qubits, 'qr')
        cr = ClassicalRegister(self.num_qubits, 'cr')
        qc = QuantumCircuit(qr, cr)
        
        # Нормализуем данные
        scaled_data = self.scaler.fit_transform(market_data.reshape(-1, 1)).flatten()
        
        # Создаем суперпозицию
        for i in range(self.num_qubits):
            qc.h(qr[i])
        
        # Применяем рыночные данные как фазы
        for i in range(min(len(scaled_data), self.num_qubits)):
            angle = float(scaled_data[i] * np.pi)  # Преобразуем в float
            qc.ry(angle, qr[i])
        
        # Создаем запутанность
        for i in range(self.num_qubits - 1):
            qc.cx(qr[i], qr[i + 1])
        
        # Применяем текущую цену
        price_angle = float((current_price % 0.01) * 100 * np.pi)  # Используем только последние 2 знака
        qc.ry(price_angle, qr[0])
        
        # Измеряем все кубиты
        qc.measure(qr, cr)
        
        return qc
    
    def predict(self, market_data, current_price, features=None, shots=2000):
        """Упрощенное предсказание"""
        # Обрезаем входные данные
        if market_data.shape[0] > self.num_qubits:
            market_data = market_data[-self.num_qubits:]
        
        # Создаем и выполняем схему
        qc = self.create_qpe_circuit(market_data, current_price)
        compiled_circuit = transpile(qc, self.simulator, optimization_level=3)
        job = self.simulator.run(compiled_circuit, shots=shots)
        result = job.result()
        counts = result.get_counts()
        
        # Анализируем результаты
        predictions = []
        total_shots = sum(counts.values())
        
        for bitstring, count in counts.items():
            # Используем количество единиц в битстроке для определения направления
            ones = bitstring.count('1')
            direction = ones / self.num_qubits  # Нормализованное направление
            
            # Предсказываем изменение не более чем на 0.1%
            price_change = (direction - 0.5) * 0.001
            predicted_price = current_price * (1 + price_change)
            predictions.extend([predicted_price] * count)
        
        predicted_price = np.mean(predictions)
        up_probability = sum(1 for p in predictions if p > current_price) / len(predictions)
        
        confidence = 1 - np.std(predictions) / current_price
        

        
        return {
            'predicted_price': predicted_price,
            'up_probability': up_probability,
            'down_probability': 1 - up_probability,
            'confidence': confidence
        }

class MarketPredictor:
    def __init__(self, symbol="EURUSD", timeframe=mt5.TIMEFRAME_H1, window_size=14):
        self.symbol = symbol
        self.timeframe = timeframe
        self.window_size = window_size
        self.quantum_predictor = EnhancedQuantumPredictor()
        self.data_loader = MT5DataLoader(symbol, timeframe)
    
    def prepare_features(self, df):
        """Подготовка технических индикаторов"""
        df['sma'] = df['close'].rolling(window=self.window_size).mean()
        df['ema'] = df['close'].ewm(span=self.window_size).mean()
        df['std'] = df['close'].rolling(window=self.window_size).std()
        df['upper_band'] = df['sma'] + (df['std'] * 2)
        df['lower_band'] = df['sma'] - (df['std'] * 2)
        df['rsi'] = self.calculate_rsi(df['close'])
        df['momentum'] = df['close'] - df['close'].shift(self.window_size)
        df['rate_of_change'] = (df['close'] / df['close'].shift(1) - 1) * 100
        
        features = df[['sma', 'ema', 'std', 'upper_band', 'lower_band', 
                      'rsi', 'momentum', 'rate_of_change']].dropna()
        return features
    
    def calculate_rsi(self, prices, period=14):
        delta = prices.diff()
        gain = (delta.where(delta > 0, 0)).ewm(alpha=1/period).mean()
        loss = (-delta.where(delta < 0, 0)).ewm(alpha=1/period).mean()
        rs = gain / loss
        return 100 - (100 / (1 + rs))
    
    def predict(self):
        # Получаем данные
        df = self.data_loader.get_historical_data(self.window_size + 50)
        features = self.prepare_features(df)
        
        if len(features) < self.window_size:
            raise ValueError("Недостаточно данных")
        
        # Получаем последние данные для прогноза
        latest_features = features.iloc[-self.window_size:].values
        current_price = df['close'].iloc[-1]
        
        # Делаем прогноз, теперь передаем features как DataFrame
        prediction = self.quantum_predictor.predict(
            market_data=latest_features,
            current_price=current_price,
            features=features.iloc[-self.window_size:]  # Передаем последние записи
        )
        
        prediction.update({
            'timestamp': datetime.now(),
            'current_price': current_price,
            'rsi': features['rsi'].iloc[-1],
            'sma': features['sma'].iloc[-1],
            'ema': features['ema'].iloc[-1]
        })
        
        return prediction

def evaluate_model(symbol="EURUSD", timeframe=mt5.TIMEFRAME_H1, test_periods=100):
    """Оценка точности модели"""
    predictor = MarketPredictor(symbol, timeframe)
    predictions = []
    actual_movements = []
    
    # Получаем исторические данные
    df = predictor.data_loader.get_historical_data(test_periods + 50)
    
    for i in range(test_periods):
        try:
            temp_df = df.iloc[:-(test_periods-i)]
            predictor_temp = MarketPredictor(symbol, timeframe)
            features_temp = predictor_temp.prepare_features(temp_df)
            
            # Получаем данные для прогноза
            latest_features = features_temp.iloc[-predictor_temp.window_size:].values
            current_price = temp_df['close'].iloc[-1]
            
            # Делаем прогноз с передачей всех необходимых параметров
            prediction = predictor_temp.quantum_predictor.predict(
                market_data=latest_features,
                current_price=current_price,
                features=features_temp.iloc[-predictor_temp.window_size:]
            )
            
            predicted_movement = 1 if prediction['up_probability'] > 0.5 else 0
            predictions.append(predicted_movement)
            
            actual_price_next = df['close'].iloc[-(test_periods-i)]
            actual_price_current = df['close'].iloc[-(test_periods-i)-1]
            actual_movement = 1 if actual_price_next > actual_price_current else 0
            actual_movements.append(actual_movement)
            
        except Exception as e:
            print(f"Error in evaluation: {e}")
            continue
    
    if len(predictions) > 0:
        metrics = {
            'accuracy': accuracy_score(actual_movements, predictions),
            'precision': precision_score(actual_movements, predictions),
            'recall': recall_score(actual_movements, predictions),
            'f1': f1_score(actual_movements, predictions)
        }
    else:
        metrics = {
            'accuracy': 0,
            'precision': 0,
            'recall': 0,
            'f1': 0
        }
    
    return metrics

if __name__ == "__main__":
    if not mt5.initialize():
        print("MetaTrader5 initialization failed")
        mt5.shutdown()
    else:
        try:
            symbol = "EURUSD"
            timeframe = mt5.TIMEFRAME_H1
            
            print("\nТестирование модели...")
            metrics = evaluate_model(symbol, timeframe, test_periods=100)
            
            print("\nМетрики качества модели:")
            print(f"Точность (Accuracy): {metrics['accuracy']:.2%}")
            print(f"Точность прогнозов (Precision): {metrics['precision']:.2%}")
            print(f"Полнота (Recall): {metrics['recall']:.2%}")
            print(f"F1-мера: {metrics['f1']:.2%}")
            
            print("\nТекущий прогноз:")
            predictor = MarketPredictor(symbol, timeframe)
            df = predictor.data_loader.get_historical_data(predictor.window_size + 50)
            features = predictor.prepare_features(df)
            latest_features = features.iloc[-predictor.window_size:].values
            current_price = df['close'].iloc[-1]
            
            prediction = predictor.predict()  # Теперь этот метод правильно передает все параметры
            
            print(f"Предсказанная цена: {prediction['predicted_price']:.5f}")
            print(f"Вероятность роста: {prediction['up_probability']:.2%}")
            print(f"Вероятность падения: {prediction['down_probability']:.2%}")
            print(f"Уверенность в прогнозе: {prediction['confidence']:.2%}")
            print(f"Текущая цена: {prediction['current_price']:.5f}")
            print(f"RSI: {prediction['rsi']:.2f}")
            print(f"SMA: {prediction['sma']:.5f}")
            print(f"EMA: {prediction['ema']:.5f}")
            
        finally:
            mt5.shutdown()
