

 3
 QUIK User’s Manual, Section 8: QPILE Language

Section 8. QPILE Language

8.1 General .. 4

8.2 Working with QPILE Tables .. 4

8.3 Program file structure .. 8

8.4 QPILE Language Constructs .. 12

8.5 General Functions ... 21

8.6 Mathematical Functions ... 22

8.7 Functions for working with collections (COLLECTION) .. 24

8.8 Functions for working with associative arrays (MAP) ... 26

8.9 Functions for accessing rows in arbitrary QUIK tables .. 28

8.10 Functions for Accessing a List of Available Parameters ... 49

8.11 Functions for Handling Programmable Tables ... 51

8.12 Functions for Getting Values from the Quotes Table... 54

8.13 Functions for Retrieving Values from the Level II Quotes Table 62

8.14 Functions for Retrieving Values from the Securities Limits Table 62

8.15 Functions for Retrieving Values from the Cash Limits Table .. 64

8.16 Functions for the Calculation of Margin Positions .. 66

8.17 Functions for Retrieving Values from the Client Portfolio and Buy / Sell Tables 67

8.18 File Handling Functions .. 74

8.19 String Handling Functions ... 76

8.20 Chart Handling Functions .. 77

8.21 Order Handling Functions .. 81

8.22 Label Handling Functions .. 82

8.23 Service Functions .. 85

8.24 QPILE Program Debugging .. 88

APPENDIX 1. QPILE Command Syntax ... 90

APPENDIX 2. Recommendations for Writing Programs in QPILE ... 92

 4
 QUIK User’s Manual, Section 8: QPILE Language

This section describes the use of QPILE, an algorithmic language built into QUIK system

workstations. The first part of the section reviews main functions of the client terminal that are

intended for work with programmable tables. In this document, users interested in developing

their own programs can find the descriptions of QPILE constructs and built-in functions, as well as

implementation examples (calculation of margin lending according to the guidelines of Federal

Financial Market Service).

8.1 General

8.1.1 Purpose

The QPILE (QUIK Programmable Interface and Logic Environment) language is a set of instructions

interpreted on the QUIK workstation.

QPILE is intended for creation of new tables for real-time calculation of the user's individual

indicators based on information obtained from other tables.

This functionality is primarily useful for brokers, because each broker uses his or her own strategy

for calculating client's position indicators. A built-in language allows for implementation of

virtually any algorithm.

QPILE application examples:

1. Dynamic revaluation of client assets at the broker's workstation.

2. Dynamic revaluation of assets in the client portfolio and their total value.

3. Calculation of indicators not available in QUIK or in the exchange trading system using custom

algorithms.

4. Calculation of margin lending parameters in compliance with the standards currently in effect.

5. Programming of a trading strategy that would generate signals for changing positions of

instruments.

The primary QPILE application is to calculate portfolio values; that is why the term

‘portfolio’ will be frequently used in the description of table types.

8.1.2 QPILE Operation Mode

1. The table structure (the function of columns and rows, and formulas for calculation of

parameters) is described in the form of a QPILE program. The formulas for calculation allow the

use of standard mathematical and logic operations, variables and data arrays, as well as data

obtained from other QUIK tables.

2. The program code can be obtained from the QUIK server (server code) or from the user's drive

(local code). The QPILE language interpreter processes this code on the QUIK workstation and

recalculates formula values at regular intervals. This provides an internal data source for the

values to be displayed in tables. Multiple tables can use one data source based on the same

program. In this way, redundant calculations degrading system performance can be avoided.

 5
 QUIK User’s Manual, Section 8: QPILE Language

3. The tables created in a program have the functions of standard QUIK tables.

4. A QUIK workstation has a built-in QPILE code debugger that allows single-step debugging and

inspecting current variable values. For detailed information, see sub-section 8.24.

Rows in the QPILE tables are numbered starting from one, while characters in the

strings in QPILE are numbered starting from zero.

8.1.3 Basic Capabilities

QPILE basic functions are listed below:

1. Describing new tables of arbitrary structure;

2. Calculating table fields using mathematical formulas and Boolean expressions;

3. Highlighting table cells with different colours depending on the value;

4. Audio and text notifications.

A QPILE table supports all basic table operations available in QUIK:

• Editing, including selecting parameters to be displayed and their priority order;

• Hotkeys;

• Placement on screen tabs;

• Lookup of values in table cells;

• Table printout with preview;

• Copying data into the Windows Clipboard;

• Exporting data into Excel;

• Exporting data via ODBC.

Information from QUIK charts and tables listed below can be used as source data for calculating

table parameters:

No. Table

1 Quotes table

2 Time and Sales table

3 Orders table

4 Stop orders table

5 Trades table

6 Securities limits

7 Cash limits

8 Client account positions

No. Table

9 Client account limits

10 Negdeal orders

11 Trades for execution

12 Order reports for NDM trades table

13 Client portfolio table

14 Buy / Sell tables

15 Table of cash positions

16 Current positions for securities

 4
 QUIK User’s Manual, Section 8: QPILE Language

No. Table

17 Current positions for accounts

No. Table

18 Table created during calculation of the

program

8.1.4 Functional constraints

The current version of QPILE and the tables created using this version do not support the following

operations:

• Sorting in tables;

• Filters;

• Using the table as a data source for constructing charts;

• Saving table data into a text file using a shortcut menu;

• Exporting data into technical analysis systems.

8.2 Working with QPILE Tables

8.2.1 Loading a program

At this stage, the descriptions of user tables are added to the list of available types. If table

descriptions will be handled on the server, this part can be skipped.

To load the program code, select Tables / Portfolios / Load portfolio, or press CTRL+F10.

1. Click Read from file and select the file on the drive to read the program from. The files have a

standard extension .QPL. The table name will appear in the Available Portfolios list.

2. While the file is read, the program is checked for correctness. If the program contains errors, the

system notifies the user in the Message Window. The error message shows the file name and

the line number of the error.

3. If the file is read successfully, relevant parameters are shown in the table fields as follows:

Field Purpose

Current portfolio Table name

Total parameters The number of parameters (columns) described in the table structure

Total clients The number of available client codes from those listed in the table structure.

This parameter is not applicable in the new version of the language

Firms The list of firm identifiers used in the trading system (values corresponding to

the Dealer field in the Orders or Trades tables)

Clients The list of client identifiers to be shown in the table

Portfolio parameters The list of described parameters and detailed information about them

 4
 QUIK User’s Manual, Section 8: QPILE Language

Field Purpose

Calculation formula Program source code in QPILE

4. Click Load locally to load the table that was read from a local file.

5. Click Load to server to load the program to the server, where it will be available to all server

users. The permission to upload programs to the server is granted by the QUIK administrator.

When loaded locally, the code is executed on the current workstation, and the table based on the

code can be viewed on this workstation only.

It is strongly recommended that you first load each new description locally, and

only after reviewing it and verifying that it works and that the parameter are

calculated correctly, upload it to the server.

8.2.2 Setting program parameters

At this stage, the list of processed programs and the periodicity of calculations is determined. If the

programs were loaded locally, they are automatically selected.

To select available programs with descriptions of table type, select Tables / Portfolios / Available

portfolios or press CTRL+F11.

 5
 QUIK User’s Manual, Section 8: QPILE Language

1. The Available portfolios... list shows all programs that can be used to create tables, available

both on the local machine and from the server. Select a program from the list by checking its

checkbox. The fields in this dialogue window will display parameters related to the structure of

the table being programmed.

2. Set calculation period for the table. If the program to be executed involves a large number of

calculations, it is recommended that the calculation period be set to a minimum of 5-10

seconds.

3. Save the settings by clicking the Export button.

4. Click Delete to delete a selected item from the list. A table that is loaded from the server

cannot be deleted.

5. Click Formula to open the window containing the program source code and the description of

the table (shown as an example).

6. Click OK to close the window and save the settings. Click Cancel button to close the window

without saving any changes.

Settings made at this stage also apply to all previously created programmable

tables. This stage can be used to enable/disable calculations in tables and to

adjust the data update intervals.

Applying settings to existing tables:

• How can recalculation of table values be disabled?

— Select Suspend calculation from the shortcut menu or press CTRL+F11 and clear the

checkbox of the required table type. The table will show the last calculated values;

— If more than one table was generated based on one program, the calculation will be

disabled for all these tables;

— Press CTRL+F11 and clear all checkboxes to disable recalculation in all tables.

 6
 QUIK User’s Manual, Section 8: QPILE Language

• How the calculation interval in an existing table can be modified?

— Select Portfolio settings from the shortcut menu or press CTRL+F11, then, change the

value of Calc. timeout (sec) and click OK.

8.2.3 Creating a table

At this stage, a table based on a program is created. One program can be used to as a basis for

several tables for convenient display of these tables on the screen.

To create a programmable table, select Tables / Portfolios / View portfolio in the menu or press

CTRL+F12.

1. Select a program from the Available portfolios list. Table structure data will be shown in the

fields of the Current portfolio section.

2. If required, use the Clients filter to limit the number of displayed rows in the table.

3. Create a list of table columns selecting them from the available parameters and specify the

order in which they will be displayed in the table. The Parameter description field contains a

note describing the selected parameter in detail.

4. Click OK to create a table.

The created table has the same control functions as other QUIK tables. For

example, the user can click on the toolbar or press CTRL+E to edit the table.

RECOMMENDATIONS: Table parameters are calculated based, among other things,

on the Quotes table. Ensure that data required for calculating parameters can be

received from the server (that they are not filtered out from the list of received

parameters and instruments).

 7
 QUIK User’s Manual, Section 8: QPILE Language

8.2.4 Functions available for a table

Table data can be copied, exported to Excel, or exported via ODBC.

Functions available from the table's shortcut menu:

• Suspend calculation suspends calculation of the table's parameters (with the last calculated

data shown in the table);

• Restart calculation clears all values and starts the calculation anew;

• Start calculation in debug mode clears all values, opens the debug window, and starts the

calculation anew;

• Save description to file saves the program that describes the table to a text file;

• View source displays the table's program code in a window;

• Portfolio settings opens a window that shows the program parameters including the calculation

interval in seconds.

EXAMPLE: Local loading of a program that calculates margin lending parameters according to the

FFMS guidelines.

This example can be found in the archive containing this User Manual, in the qpile folder.

Before loading the example file, replace the trader code in lines 4 and 60 with the

code of your broker's firm.

1. Press CTRL+F10 to open the window in which you can select the file (in this example, it is

fkcb.qpl) and then click Open.

2. Click the Load locally button. A message window shows a notification that the file has been

read. Click to exit.

3. Skip the next step, because table descriptions loaded locally are automatically marked as

available for creating tables.

4. Press CTRL+F12 to open the window for creating a table. Create a Column headers list by

selecting parameters from those available.

5. Click OK to create a table containing a list of available client accounts, with the following

parameters displayed in the columns:

Field Name Description

Owed to broker The amount of cash or securities owed by the client to the broker in terms of

money

Only client's money Total amount of all current cash balances of the client

Estimate Total amount of all current credit balances for securities of the client in

terms of money

 8
 QUIK User’s Manual, Section 8: QPILE Language

Field Name Description

Rouble funds Available equity of the client

All funds Current value of the client's equity (the sum of Estimate and Rouble funds)

Margin ratio Current margin ratio estimated according to the FFMS guidelines

Status A text comment explaining the meaning of the margin ratio

The table cells will display data, which are recalculated at the specified regular intervals.

If no data is displayed in the table, this, most likely, means that the program code contains

incorrect firm identifiers, instrument codes, or client codes.

If required, the user can change the calculation interval or filter the list of client codes by selecting

Portfolio settings from the shortcut menu or by pressing CTRL+F11.

8.3 Program file structure

A program code file is a text file encoded with in CP-1251 encoding. A single file describes one

particular type of table. The files have standard extension .QPL.

The description consists of three parts:

1. The ‘Header’ contains the table name and the description of basic parameters;

2. The ‘Program body’ contains the program code;

3. The ‘Description of table columns’ contains the names of table columns and format definition

for the relevant table cells.

All parts are mandatory and must follow strictly in the specified order. Each file must always begin

with a header and end with the string END_PORTFOLIO (END_PORTFOLIO_EX is used in the new

version of the language).

Examples of files see in the QPILE folder that comes with the User Manual.

8.3.1 File Header

The file header contains basic parameters of the table:

Parameter Purpose

PORTFOLIO

PORTFOLIO_EX

A table name: an alphanumerical identifier in Latin letters without spaces.

‘PORTFOLIO’ is a parameter used in the first version of the language,

‘�PORTFOLIO_EX’ is a program name for the extended language version (starting

from QUIK 4.09)

DESCRIPTION Text description of the table

 9
 QUIK User’s Manual, Section 8: QPILE Language

Parameter Purpose

* CLIENTS_LIST A comma-separated list of client codes for which table values are calculated.

ALL_CLIENTS means that all client codes are selected.

Each table row contains values for a separate client account.

FIRMS_LIST A comma-separated list of firm (trader) identifiers whose clients have access to the

table

* – this parameter is used in the previous version of the language and is not required in the current version.

Each parameter must be described in a separate line and end with a semicolon (;).

Example of a header:

PORTFOLIO AVAILABLE_MONEY;

DESCRIPTION Available cash of the client;

CLIENTS_LIST ALL_CLIENTS;

FIRMS_LIST MC0012300000;

This table will be shown under name AVAILABLE_MONEY in the list of available tables. When

available table descriptions are selected, the ‘Current portfolio’ field shows ‘Available cash of the

client’. The same name will be used as a default caption for the table. The parameters are

calculated for all client accounts with the firm code MC0012300000 that are available for the user

in the tables of limits.

8.3.2 Program Body

This section contains the program code for calculation of values in table cells. The section begins

with the string PROGRAM and ends with the string END_PROGRAM. To exit from the program body

the RETURN statement is used.

1. The character case (upper or lower) in instructions is ignored by the

interpreter. All string constants are automatically converted to uppercase.

However, if necessary, the automatic conversion of characters to uppercase

can be disabled. To do so, the following string has to be inserted between the

header and the program body:

USE_CASE_SENSITIVE_CONSTANTS

Once this key is added, string variables will not be converted to upper case.

2. The interpreter ignores multiple spaces, except for those inside string

variables.

3. Long strings that do not fit into one line are split using combination

‘<space>_’. For example:

CLIENTS_LIST 0001, 0002, 0003, 0004, 0005, 0006, 0007, 0008, 0009, 0010, _

 10
 QUIK User’s Manual, Section 8: QPILE Language

0011, 0012, 0013, 0014, 0015;

4. A single quotation mark (’) is used to mark comments. A comment is effective

to the end of the line.

5. Statements are separated by a carriage return. That is, each statement is

described in an individual line.

6. The characters in a string are numbered beginning with 0.

Program example:

PROGRAM

 FirmCode = "MC0012300000"

 CurrentBalance = MONEY_CURRENT_BALANCE(ROWNAME, FirmCode, "EQTV", "SUR")

 CurrentLimit = MONEY_CURRENT_LIMIT(ROWNAME, FirmCode, "EQTV", "SUR")

 Locked = MONEY_LIMIT_LOCKED(ROWNAME, FirmCode, "EQTV", "SUR")

 AvailableMoney = MoneyCurrentBalance + MoneyCurrentLimit – MoneyLocked

 If AvailableMoney > 0

 Status = "Orders available"

 Else

 Status = "Orders unavailable"

 SET_ROW_COLOR(ROWNAME, "RGB(255,138,138)", "DEFAULT_COLOR")

 End If

END_PROGRAM

This example relates to the creation of the Available cash of the client table. The created table

partially duplicates the fields from the Cash Limits table and contains two calculated fields as well.

8.3.3 Definition of table columns

In order for the table to display calculated values, its columns must be described and the format of

cells in each column defined. This is what this file section is intended for.

Each individual column of the table is described using the set of parameters given below:

Parameter Purpose

PARAMETER Name of the program variable whose value will be shown in the given column

(maximum length is 31 characters)

PARAMETER_TITLE Column name shown in the table (maximum length is 32 characters)

PARAMETER_DESCRIPTION Expanded description of a parameter (maximum length is127 characters)

 11
 QUIK User’s Manual, Section 8: QPILE Language

Parameter Purpose

PARAMETER_TYPE The data type of the cells in this column. Two data types can be used:

 NUMERIC(<number_of_digits>, <number_of_digits_after_the

point>) – double with floating point;

 STRING(<string_length>) – string.

The description of each parameter ends with END.

The description of parameters must be followed by END_PORTFOLIO (in the first version of the

language) or END_PORTFOLIO_EX (in the new version).

Example of description:

PARAMETER AvailableMoney;

PARAMETER_TITLE Available;

PARAMETER_DESCRIPTION Available cash of the client;

PARAMETER_TYPE NUMERIC(10,2);

END

The values of the variable ‘AvailableMoney’ will be shown in the Available column. During

configuration, the Parameter description field shows ‘Available cash of a client’. The column values

will be displayed as numbers with two decimals. The same format is recommended for exporting

data from the table via ODBC.

8.3.4 Including additional files

The section INCLUDE is used to include additional files with functions to the program. This section

is located between the header and the body of the program and is described as follows:

INCLUDE file1, file2, …, fileN;

where file1, file2, …, fileN are relative or full paths to the files containing descriptions of

functions (separated by commas).

Example of description:

INCLUDE C:/Program Files/ADDITION/object_1, C:/Program Files/ADDITION/object_2;

 12
 QUIK User’s Manual, Section 8: QPILE Language

8.4 QPILE Language Constructs

8.4.1 Data Types

1. The following data types are used:

— STRING – string data;

‘Total bid’

— DOUBLE – real or double data. Floating-point numbers accurate to 15 decimal places,

but no more than 8 digits after the decimal point;

1234567.89

— COLLECTION – collection;

Collection is a list of objects indexed using an integer key (starting from 0).

0 1 2 3

«HYDR» 12 7.890 «BUY»

— MAP – associative array of data;

Associative Array (MAP) is a sequence of [key, value] pairs that allows for retrieving

values by the key. Each key corresponds to only one value or, in other words, each key in

an associative array is unique. A key is always a string.

NUMBER TIME OPERATION

67890 ‘12:34:56’ BUY

2. The COLLECTION and MAP data types are structural. They can:

— Be heterogeneous, that is, contain values of different types;

— Contain values of any types including COLLECTION and MAP variables.

3. All variables, except for formal parameters, have global scope defined by the execution context.

If a variable was assigned a value in the process of execution, it will be considered as defined

until the end of the program execution.

Variables retaining their values across program calculation intervals are called global. Global

variables are described by the function NEW_GLOBAL () (see 8.5.1).

4. The number of variables in a program cannot exceed 1000.

8.4.2 Typecasting

1. Language variables have no types and can change the data type at runtime.

 13
 QUIK User’s Manual, Section 8: QPILE Language

2. Applying operators ‘+’, ‘-’, ‘*’, ‘/’ to string variables coverts them into real values. If the strings

cannot be converted to real, the real value is assumed to be 0.0. The result of applying these

operations to structural variables is undefined.

3. The comparison operation for real and string variables is allowed only for variables holding

values of the same type. The result of comparison operation is not defined for COLLECTION and

MAP variables.

4. The result of concatenating (operator &) real variables is a string.

5. Argument type conversion is always performed when external functions are called.

6. Values of structural type variables can be accessed and changed using special functions

described in sections 8.7–8.8.

8.4.3 Expressions

1. Mathematical operations (‘+’, ‘-’, ‘*’, ‘/’, and unary ‘-‘) are performed with a standard priority.

2. Boolean operations have equal priority (except AND and OR) and are executed from left to right.

AND and OR operations are executed last, from left to right.

A < B or A = C is equivalent to (A < B) or (A = C)

3. Parentheses can be used in expressions and comparisons.

Admissible expressions:

Operation Description

Mathematical

+ Addition

- Subtraction

* Multiplication

/ Division

Unary ‘-’ Value sign inversion

D or E Exponential notation, 3D2 is equivalent to 3*10^2

Boolean

== Equality

= Equality, similar to the previous one

> Greater than

< Less than

>= Greater than or equal

 14
 QUIK User’s Manual, Section 8: QPILE Language

Operation Description

<= Less than or equal

!= Not equal

<> Not equal, similar to the previous one

AND Boolean AND

OR Boolean OR

String

& Joining or concatenation of strings

Type casting must be used when assigning values to variables. For example,

A="3E2"+0 assigns number 300 to the variable, whereas A="5E3" assigns the

string value "5E3".

8.4.4 Conditional statements

Conditional statement syntax:

IF condition

 Sequence of instructions

ELSE

 Sequence of instructions

END IF

A condition is a logical expression. The nesting depth of conditional statements is not restricted.

The END IF statement can contain only a single space.

Example:

IF DealerMoney = 0

 Margin = 100

ELSE

 Margin=0

END IF

 15
 QUIK User’s Manual, Section 8: QPILE Language

8.4.5 Loops

Loop statement syntax:

1. Executes a sequence of instructions for each variable value from the list of values. The List of

values is defined by a STRING variable with a comma-separated list of values.

FOR variable IN list of values

 Sequence of instructions

END FOR

2. Executes a sequence of instructions for each variable value in a range between ‘value1’ and

‘value2’ which can be represented by mathematical expressions, with a step equal to 1. If

‘value2’ < ‘value1’, the cycle is not processed.

FOR variable FROM value1 TO value2

 Sequence of instructions

END FOR

The nesting depth of loop statements is not restricted. The END FOR statement can contain

only a single space.

Example:

FkcbSecsList = "HYDR,SBER,MSNG,LKOH,YUKO,RTKM"

FOR Sec IN FkcbSecsList

 DCPos = DEPO_CURRENT_BALANCE(ROWNAME, FirmList, Sec, DefDepoAcc)

 DCLim = DEPO_CURRENT_LIMIT(ROWNAME, FirmList, Sec, DefDepoAcc)

 DOLim = DEPO_OPEN_LIMIT(ROWNAME, FirmList, Sec, DefDepoAcc)

 SecPos = DCPos + DCLim – DOLim

 SecPos = SecPos * GET_PARAM(ClassCode, Sec, "LAST") * GET_PARAM(ClassCode, Sec,

"LOTSIZE")

 DepoPos = DepoPos + ignore_negative(SecPos)

 DealerMoney = DealerMoney + dealer(SecPos)

END FOR

This loop searches through all instruments from the «FkcbSecsList» list of securities and processes

the limit for each instrument for the current client being estimated.

The BREAK statement is used to break the loop before its end. It breaks the execution of FOR and

transfers control to the next statement.

 16
 QUIK User’s Manual, Section 8: QPILE Language

 The CONTINUE statement transfers execution control to the next iteration of FOR. In the FOR

statement, the next iteration begins with evaluation of the FOR loop conditional expression.

Following the evaluation of the conditional expression, the execution of the statement is either

terminated or the statement's body is executed, depending on the computation result.

8.4.6 Functions

General:

1. Descriptions of functions may be located anywhere in the program.

2. All functions must have unique names, no overload by types or number of parameters is

allowed.

3. Functions may return the value using a variable named RESULT.

4. All parameters are passed to functions by value.

5. A function may be a procedure. In this case, the returned value is not used at the place such

function is called, so assigning the RESULT variable inside the function is not necessary.

6. The RETURN statement can be used to exit from the function's body.

1. In the description of the syntax of functions returning or accepting a variable

of any type, the type ANY is used for designation.

2. A table created in program calculation is designated as OWN.

User-defined functions have the following syntax:

FUNC function (list of arguments)

 Sequence of instructions

END FUNC

The END FUNC statement can contain only a single space.

Example:

FUNC ignore_negative(x)

 If x > 0

 RESULT = x

 Else

 RESULT = 0

 End If

END FUNC

 17
 QUIK User’s Manual, Section 8: QPILE Language

8.4.7 QPILE functions

Standard QPILE-language functions are intended for working with structural variables and

obtaining values from the QUIK tables.

Function Purpose

NEW_GLOBAL Initialises a global variable

MESSAGE Outputs text in the Message Box

Mathematical Functions

ABC Module

ACOS Arc cosine

ASIN Arc sine

ATAN Arc tangent

CEIL Rounding up

COS Cosine

EXP Exponent

FLOOR Rounding down

LOG Logarithm

POW Raising to a power

RAND Random number

RANDOMIZE Random number generation

SIN Sine

SQRT Square root

TAN Tangent

Functions for working with collections (COLLECTION)

CREATE_COLLECTION Defines a collection

GET_COLLECTION_COUNT Returns the number of collection items

REMOVE_COLLECTION_ITEM Removes a collection item

INSERT_COLLECTION_ITEM Inserts a collection item

SET_COLLECTION_ITEM Replaces the value of a collection item

 18
 QUIK User’s Manual, Section 8: QPILE Language

Function Purpose

GET_COLLECTION_ITEM Reads the value of a collection item

Functions for working with associative arrays (MAP)

CREATE_MAP Defines an array

SET_VALUE Adds a new element to the array

GET_VALUE Reads an element from the array

Functions for accessing rows in arbitrary QUIK tables

GET_ITEM Returns the row with the specified number from a QUIK table

GET_NUMBER_OF Returns the number of records in the specified QUIK table

Functions for Accessing a List of Available Parameters

GET_CLASSES_LIST Returns a list of class codes available in the current session

GET_CLASS_SECURITIES Returns a list of securities codes for the specified list of classes

GET_SECURITY_INFO Returns information for a security with the specified code from

the specified class

Functions for Handling Programmable Tables

ADD_ITEM Adds a new row to the table

MODIFY_ITEM Modifies the specified table row

DELETE_ITEM Deletes the specified table row

DELETE_ALL_ITEMS Deletes all values in the table

SET_ROW_COLOR Sets the highlighting colour for the table row

SET_ROW_COLOR_EX Sets the background and font colour for a table row

Functions for Getting Values from the Quotes Table

GET_PARAM* Returns values from the Quotes table

GET_PARAM_EX Returns all values from the Quotes table

 19
 QUIK User’s Manual, Section 8: QPILE Language

Function Purpose

Functions for Retrieving Values from the Level II Quotes Table

GET_QUOTES_II_LEVEL_DATA Returns values from the Level II Quotes table

Functions for Retrieving Values from the Securities Limits Table*

DEPO_OPEN_BALANCE Opening securities balance

DEPO_OPEN_LIMIT Opening securities limit

DEPO_CURRENT_BALANCE Current securities balance

DEPO_CURRENT_LIMIT Current securities limit

DEPO_LIMIT_AVAILABLE Number of available securities

DEPO_LIMIT_LOCKED Number of securities lots locked

DEPO_LIMIT_LOCKED_BUY Number of securities lots locked to buy

DEPO_LIMIT_LOCKED_BUY_VALUE Value of securities locked to buy

Functions for Retrieving Values from the Cash Limits Table*

MONEY_OPEN_BALANCE Opening cash balance

MONEY_OPEN_LIMIT Opening cash limit

MONEY_CURRENT_BALANCE Current cash balance

MONEY_CURRENT_LIMIT Current cash limit

MONEY_LIMIT_AVAILABLE Available cash

MONEY_LIMIT_LOCKED Amount of cash locked in buy orders

Functions for the Calculation of Margin Positions

SHORT_VALUE Value of all short positions

LONG_VALUE Value of all long positions

Functions for Retrieving Values from the Client Portfolio and Buy / Sell Tables

GET_CLIENT_MARGINAL_PORTFOLIO_INFO Returns values of parameters in the Client Portfolio table

GET_CLIENT_MARGINAL_BUY_SELL_INFO Return values of parameters in the Buy/Sell table

File Handling Functions

%20#_Functions_for_obtaining_table_values
%20#_Functions_for_obtaining_table_values

 20
 QUIK User’s Manual, Section 8: QPILE Language

Function Purpose

CLEAR_FILE Clears file

WRITE Writes a string at the end of the file

WRITELN Writes a string with a carriage return at the end of file

GET_FILE_LEN Returns the number of rows in the file

READ_LINE Reads the line with the specified number from the file

String Handling Functions

LEN Returns the number of characters in the string

TRIM Trims spaces at the end of the string

SUBSTR Returns a substring

FIND Finds the substring position in the string

Chart Handling Functions

GET_CANDLE Return values of the candle prices, volumes and indicators

(OHLCV) on the chart

GET_CANDLE_EX Returns values of the candle prices, volumes and indicators

(OHLCV) in the chart

Order Handling Functions

SEND_TRANSACTION Entry of a new order

Label Handling Functions

ADD_LABEL Adds a label

DELETE_LABEL Deletes a label

DELETE_ALL_LABELS Deletes all labels

GET_LABEL_PARAMS Returns label parameters

SET_LABEL_PARAMS Sets label parameters

Service Functions

GET_TRADE_DATE Returns the date of the current trading session

GET_DATETIME Returns the current date and time

 21
 QUIK User’s Manual, Section 8: QPILE Language

Function Purpose

APPLY_SCALE Rounds with the specified accuracy

IS_CONNECTED Determines the status of the connection between the client

terminal and the server

GET_INFO_PARAM Returns parameters for the information window (Connection /

Information window)

BREAKPOINT Breaks program execution and calls the Debug window

* - functions from the previous version of the QPILE language retained for backward compatibility. Values

returned by these functions can also be obtained by using function GET_ITEM to read a table row and

function GET_VALUE to obtain a value from it.

Functions from the previous versions no longer supported:

• MONEY_LIMIT_LOCKED_NONMARGINAL_VALUE.

8.5 General Functions

8.5.1 NEW_GLOBAL

This function is intended for initialization of a global variable. A global variable retains its value

across iterations of table values calculations. The initialization is performed by a variable of any

type and results in a global variable of the corresponding type.

NEW_GLOBAL (STRING Name, ANY InitValue)

Parameters:

No. Parameter Type Description

1 Name STRING String name of the created variable

2 INITVALUE ANY Value for initialization of a global variable

A string constant or a variable with a string value can be used as the first parameter. In the latter

instance, the created global variable has the same name as the value of the string variable.

Example:

‘

NEW_GLOBAL("GLOBAL","MyFirstGlobal")

NEW_GLOBAL(Global,1)

‘

 22
 QUIK User’s Manual, Section 8: QPILE Language

Executing these two lines creates two global variables: A string variable named GLOBAL that has

value MyFirstGlobal and a real type variable named MyFirstGlobal that has value 1.

8.5.2 MESSAGE

This function displays a Message Box with the specified text.

MESSAGE (STRING Text, DOUBLE Msg_type)

Parameters:

No. Parameter Type Description

1 TEXT STRING Message text

2 MSG_TYPE DOUBLE A message type defining the type of icon in the Window

and a tone signal. Possible values are:

 1 – Information;

 2 – Attention;

 3 – Error

Example:

‘

MESSAGE ("Hello!",1)

‘

8.6 Mathematical Functions

8.6.1 ABS

Returns the absolute value of the number

DOUBLE ABS (DOUBLE Value)

8.6.2 ACOS

Returns the value of the argument's arc cosine.

DOUBLE ACOS (DOUBLE Value)

8.6.3 ASIN

Returns the value of the argument's arc sine.

DOUBLE ASIN (DOUBLE Value)

 23
 QUIK User’s Manual, Section 8: QPILE Language

8.6.4 ATAN

Returns the value of the argument's arc tangent.

DOUBLE ATAN (DOUBLE Value)

8.6.5 CEIL

Returns the nearest integer greater than the argument.

DOUBLE CEIL (DOUBLE Value)

8.6.6 COS

Returns the value of the argument's cosine.

DOUBLE COS (DOUBLE Value)

8.6.7 EXP

Returns the argument's exponent.

DOUBLE EXP (DOUBLE Value)

8.6.8 FLOOR

Returns the nearest integer, smaller than the argument.

DOUBLE FLOOR (DOUBLE Value)

8.6.9 LOG

Returns the natural logarithm of the argument

DOUBLE LOG (DOUBLE Value)

8.6.10 POW

Raises the argument to a power.

DOUBLE POW (DOUBLE Value, DOUBLE Power)

8.6.11 RAND

Returns a random integer value in the range from 0 to 32767.

DOUBLE RAND ()

8.6.12 RANDOMIZE

Generation of random numbers.

DOUBLE RANDOMIZE ()

 24
 QUIK User’s Manual, Section 8: QPILE Language

Initialises the random number generator to define a random sequence of the generated numbers.

Function RANDOMIZE () must be called before the RAND() function is used.

8.6.13 SIN

Returns the value of the argument's sine.

DOUBLE SIN (DOUBLE Value)

8.6.14 SQRT

Returns the value of the argument's square root.

DOUBLE SQRT (DOUBLE Value)

8.6.15 TAN

Returns the value of the argument's tangent.

DOUBLE TAN (DOUBLE Value)

Example:

'

MESSAGE ("ACOS 0.5 – " & acos(0.5),1)

MESSAGE ("ASIN 0.5 – " & asin(0.5),1)

MESSAGE ("ATAN 2 – " & atan(2),1)

MESSAGE ("CEIL 2.2 – " & ceil(2.2),1)

MESSAGE ("COS 0.5 – " &cos(0.5),1)

MESSAGE ("EXP 2 – " &exp(2),1)

MESSAGE ("FLOOR 4.5 – " &floor(4.5),1)

MESSAGE ("LOG 0.5 – " &log(0.5),1)

MESSAGE ("POW 2,3 – " &pow(2,3),1)

MESSAGE ("RAND – " &rand(),1)

MESSAGE ("SIN 0.5 – " &sin(0.5),1)

MESSAGE ("SQRT 2 – " &sqrt(2),1)

MESSAGE ("TAN 0.5 – " &tan(0.5),1)

'

When the example is executed, a Message Box appears on the screen showing the function and the

result of calculation of its value.

 25
 QUIK User’s Manual, Section 8: QPILE Language

8.7 Functions for working with collections

(COLLECTION)

Functions from this group are intended for working COLLECTION-type variables.

Collection is a list of objects indexed using an integer key (starting from 0). A collection may

contain elements of any type including COLLECTION-type variables. A collection may be non-

homogeneous, that is, contain objects of different types. In the current implementation, a

collection element identified by an index is accessed in linear time.

8.7.1 CREATE_COLLECTION

The first function creates an empty collection and the second one is a copy constructor.

COLLECTION CREATE_COLLECTION ()

COLLECTION CREATE_COLLECTION (COLLECTION IntValue)

8.7.2 GET_COLLECTION_COUNT

Returns the number of elements in the collection.

DOUBLE GET_COLLECTION_COUNT (COLLECTION Name)

8.7.3 REMOVE_COLLECTION_ITEM

Removes the element indexed with index from the Name collection.

COLLECTION REMOVE_COLLECTION_ITEM (COLLECTION Name, DOUBLE index)

8.7.4 INSERT_COLLECTION_ITEM

Inserts variable value as an element indexed with index.

COLLECTION INSERT_COLLECTION_ITEM (COLLECTION Name, DOUBLE index, ANY value)

When the element indexed with "index" is inserted, the existing collection element indexed with

"index" is shifted into the place of the element indexed with "index+1", and so on for all existing

elements with indices equal to or greater than the value of the insertion index. See example in

8.7.6.

8.7.5 SET_COLLECTION_ITEM

Replaces the value of the element indexed with "index" with the "value".

COLLECTION SET_COLLECTION_ITEM (COLLECTION Name, DOUBLE index, ANY value)

8.7.6 GET_COLLECTION_ITEM

Returns the value of the element indexed with "index".

 26
 QUIK User’s Manual, Section 8: QPILE Language

ANY GET_COLLECTION_ITEM (COLLECTION Name, DOUBLE index)

Parameters:

No. Parameter Type Description

1 INTVALUE COLLECTION Collection for initialization of a newly created object

2 Name STRING Collection name

3 INDEX DOUBLE Index for addressing a collection. It must have an integer value

4 VALUE ANY An arbitrary type value for inclusion in the collection

Example:

‘

col=CREATE_COLLECTION()

FOR i FROM 0 TO 9

 col=INSERT_COLLECTION_ITEM(col,0,0)

 col=SET_COLLECTION_ITEM(col,0,i)

END FOR

s = GET_COLLECTION_ITEM(col,5)

len = GET_COLLECTION_COUNT(col)

‘

An empty collection is created. Then, a null element with value "0" is inserted 10 times in the

collection and immediately its value changes to the value of the loop variable. As a result, a

collection of 10 elements is created. Upon execution of the program, "s"=4, "len"=10, and "col" has

the following form:

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 0

8.8 Functions for working with associative arrays

(MAP)

Functions from this group are intended for working with MAP-type variables.

Associative Array (MAP) is a sequence of [key, value] pairs used to get values by the key. Only a

single value corresponds to each key. An associative array may contain elements of any type

including structural variables as well. Different elements of such array may contain various types of

 27
 QUIK User’s Manual, Section 8: QPILE Language

objects as values. A key is always a string. In the current implementation, access by a key to a

collection element is performed in linear time.

8.8.1 CREATE_MAP

The first function creates an empty array and the second one is a copy constructor.

MAP CREATE_MAP ()

MAP CREATE_MAP (MAP IntValue)

8.8.2 SET_VALUE

This function adds the element having a value and a key named "Value" and "Key", respectively, to

the array "Name." If the array contains an element with the key named "Key," the value of such

element will be changed to "Value." The function returns a modified array.

MAP SET_VALUE(MAP Name, STRING Key, ANY Value)

8.8.3 GET_VALUE

This function returns the value of the element with a key named "Key" from the array "Name." If the

element is not found, the function returns an empty string.

STRING GET_VALUE(MAP Name, STRING Key)

Parameters:

No. Parameter Type Description

1 INTVALUE MAP Array for initializing the created object

2 NAME STRING Array name

3 KEY STRING Value of the key used to insert or access an element in the array

4 VALUE ANY An arbitrary value for inclusion into the array

Example:

‘

map=CREATE_MAP ()

FOR i FROM 0 TO 9

 map=SET_VALUE(map, "key" & i, i)

END FOR

s = GET_VALUE(map, "key5")

‘

 28
 QUIK User’s Manual, Section 8: QPILE Language

An empty array is created. Then, in a loop, elements that have the value equal to the loop variable

and the key of the "'key' & i" type are inserted into the array. After the program executes, "s"=5.

This function returns a STRING value, unless it is not explicitly converted into a

DOUBLE-type value.

For example:

RES=0+GET_VALUE

8.9 Functions for accessing rows in arbitrary QUIK

tables

Functions from this group are intended for accessing data in QUIK workstation tables.

8.9.1 GET_ITEM

This function returns an associative array (MAP) containing data from the string with the number

"Index" from the table named TableName.

MAP GET_ITEM(STRING TableName,DOUBLE Index)

The returned array contains values of table cells from the client terminal's table as its elements,

whose keys are the names of the columns. Possible values of the TableName field and the keys are

shown in tables below. Values of the keys for the programmable table OWN correspond to the

names of columns specified in the parameter description section.

8.9.2 GET_NUMBER_OF

This function returns the number of records in the TableName table.

DOUBLE GET_NUMBER_OF(STRING TableName)

Parameters:

No. Parameter Type Description

1 TABLENAME STRING QUIK table name

2 INDEX DOUBLE Index for addressing a collection. It must have an integer value

Example:

‘

n=GET_NUMBER_OF("ALL_TRADES")

 29
 QUIK User’s Manual, Section 8: QPILE Language

value=0

FOR i FROM 1 to n

 trade = GET_ITEM ("ALL_TRADES ", i)

 value = value + GET_VALUE (trade, "VALUE")

END FOR

‘

In this example, first the number of records in the Time and Sales table (anonymous trades) is

queried, then a loop is executed in which a corresponding MAP is created for each record from

which a value identified by the VALUE key is retrieved. As a result, the variable named "value"

contains the total volume of anonymous trades for the moment.

8.9.3 Descriptions of tables and parameters

1. Tables used in the GET_NUMBER_OF and GET_ITEM functions:

Table Name Table

ORDERS Table of orders

STOP_ORDERS Table of stop orders

TRADES Table of trades

ALL_TRADES Anonymous trades

MONEY_LIMITS Cash limits

DEPO_LIMITS Limits for securities

FUTURES_CLIENT_HOLDINGS Positions of client accounts (futures)

FUTURES_CLIENT_LIMITS Client account limits (futures)

NEG_DEALS Table of negdeal orders

NEGOTIATION_TRADES Table of trades for execution

NEG_DEAL_REPORTS Table of negotiated deal orders / reports

POSITIONS Table of cash positions

FIRM_HOLDING Current positions for securities

ACCOUNT_BALANCE Current positions for accounts

OWN Table created by program calculations

2. Description of parameters from the Orders Table returned by GET_ITEM:

 30
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Number of the order in the

trading system

2 EXCHANGE_CODE STRING Exchange code in the trading

system

3 DATE DOUBLE Date of order entry

4 TIME DOUBLE Time of order entry

5 ACTIVATION_TIME DOUBLE Time of activation

6 WITHDRAW_TIME DOUBLE Order kill time

7 SECURITY STRING Short name of the instrument

8 SECCODE STRING Instrument code in the order

9 CLASS STRING Short name of the instrument

class

10 CLASSCODE STRING Order class code

11 OPERATION STRING Operation SELL or BUY

12 ACCOUNT STRING Trading account

13 PRICE DOUBLE Price

14 QUANTITY DOUBLE Quantity in lots

15 BALANCE DOUBLE Balance

16 VALUE DOUBLE Value in cash

17 TRADE_CURRENCY STRING Order currency

18 YIELD DOUBLE Yield

19 ACCRUEDINT DOUBLE Accrued coupon income

20 USERID STRING Trader's ID

21 FIRMID STRING Firm ID

22 CLIENTCODE STRING Client code

23 COMMENT STRING Comment

24 STATUS STRING Order status ACTIVE, KILLED or FILLED

 31
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

25 TYPE STRING Order type Sequence of three characters:

 1st: L - limit or M –

market;

 2nd: S - settlement at

any price or O -

settlement at one

price;

 3rd: N - fill or kill, W -

withdraw / kill

balance, or <space> -

unconditional

26 TRANS_ID DOUBLE Transaction ID

27 SETTLECODE STRING Settlement code

28 PRICE2 DOUBLE Buyback price

29 IS_MARKET_MAKER_

ORDER

STRING Order of a market maker YES or <space>

30 SESSION_DATE DOUBLE Date of the current trading

session

31 TIME_MICROSEC DOUBLE Number of microseconds in the

order placement period

32 WITHDRAW_DATE DOUBLE Order kill date

33 WITHDRAW_TIME_M

ICROSEC

DOUBLE Number of microseconds in the

order kill period

34 PERIOD DOUBLE Trading session period  0 – opening;

 1 – regular;

 2 – closing

35 VISIBLE_QUANTITY DOUBLE Visible quantity. This parameter is

used for “Iceberg” type orders.

36 LINKED_ORDER DOUBLE Order number in the trading

system

37 SEC_CURRENCY STRING Settlement currency

38 EXPIRE_DATE DOUBLE Term

39 UID DOUBLE UID

 32
 QUIK User’s Manual, Section 8: QPILE Language

3. Description of parameters from the Trades Table returned by GET_ITEM:

№ Parameter Type Description Possible values

1 NUMBER DOUBLE Number of the trade in the trading

system

2 EXCHANGE_CODE STRING Exchange code in the trading

system

3 DATE DOUBLE Execution date

4 TIME DOUBLE Execution time

5 ORDER_NUMBER DOUBLE Number of the order in the

trading system

6 SECURITY STRING Short name of the instrument

7 SECCODE STRING Instrument code

8 CLASS STRING Short name of the class

9 CLASSCODE STRING Class code

10 OPERATION STRING Operation SELL or BUY

11 TYPE STRING Type of trade MARGIN - margin trade

12 ACCOUNT STRING Trading account

13 PRICE DOUBLE Price

14 QUANTITY DOUBLE Quantity in lots

15 VALUE DOUBLE Value in cash

16 TRADE_CURRENCY STRING Currency

17 SETTLE_CURRENCY STRING Settlement currency

18 SETTLE_CODE STRING Settlement code

19 YIELD DOUBLE Yield

20 ACCRUEDINT DOUBLE Accrued coupon income

21 USERID STRING Trader's ID

22 STATION_ID STRING Workstation ID

23 FIRMID STRING Dealer's ID

24 FIRMNAME STRING Trader's firm's ID

25 CLIENTCODE STRING Client code

 33
 QUIK User’s Manual, Section 8: QPILE Language

№ Parameter Type Description Possible values

26 COMMENT STRING Comment

27 PARTNER_FIRMID STRING Partner's firm's ID

28 PARTNER_FIRM_NAM

E

STRING Partner's firm's name

29 PRICE2 DOUBLE Buyback price

30 REPORATE DOUBLE REPO rate (%)

31 TS_COMISSION DOUBLE Trading system commission

32 CLEARING_

COMISSION

DOUBLE Clearing commission (MOEX)

33 EXCHANGE_

COMISSION

DOUBLE Stock exchange commission

(MOEX)

34 TECH_CENTER_

COMISSION

DOUBLE Technical center commission

(MOEX)

35 ACCRUED2 DOUBLE Accrued interest (%) at the date of

buyback

36 REPOVALUE DOUBLE REPO value

37 REPO2VALUE DOUBLE REPO buyback value

38 REPOTERM DOUBLE REPO term

39 START_DISCOUNT DOUBLE Initial discount (%)

40 LOWER_DISCOUNT DOUBLE Lower discount (%)

41 UPPER_DISCOUNT DOUBLE Upper discount (%)

42 BLOCK_SECURITIES STRING Locked collateral YES or NO

43 SESSION_DATE DOUBLE Date of the current trading

session

44 TIME_MICROSEC DOUBLE Number of microseconds in the

order execution period

45 PERIOD DOUBLE Trading session period  0 – opening;

 1 – regular;

 2 – closing

 34
 QUIK User’s Manual, Section 8: QPILE Language

№ Parameter Type Description Possible values

46 KIND DOUBLE Type of trade  1 – regular;

 2 – targeted;

 3 – initial placement;

 4 – cash / securities

transfer;

 5 – targeted trade of

the first REPO leg;

 6 – swap transaction

settlement trade;

 7 – OTC swap

transaction

settlement trade;

 8 – dual currency

basket settlement

trade;

 9 – OTC dual

currency basket

settlement trade;

 10 – CC REPO

transaction trade;

 11 – first leg of a CC

REPO transaction

trade;

 12 – second leg of a

CC REPO transaction

trade;

 13 – CC REPO

transaction targeted

trade;

 14 – first leg of a CC

REPO transaction

targeted trade

 15 – second leg of a

CC REPO transaction

targeted trade;

 16 – CC REPO

transaction asset

returning technical

trade;

 35
 QUIK User’s Manual, Section 8: QPILE Language

4. Description of parameters from the Time and Sales Table retrieved by GET_ITEM:

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Number for the transaction in the

trading system

2 DATE DOUBLE Date of order entry

3 TIME DOUBLE Time of order entry

4 SECURITY STRING Short name of the instrument

5 SECCODE STRING Instrument code

6 CLASS STRING Short name of the class

7 CLASSCODE STRING Class code

8 PRICE DOUBLE Price

9 QUANTITY DOUBLE Quantity in lots

10 VALUE DOUBLE Value in cash

11 OPERATION STRING Direction of operation SELL or BUY

12 ACCRUEDINT DOUBLE Accrued coupon income

13 YIELD DOUBLE Yield

14 SETTLE_CODE STRING Settlement code

15 REPORATE DOUBLE REPO rate (%)

16 REPOVALUE DOUBLE REPO value

17 REPO2VALUE DOUBLE REPO buyback value

18 REPOTERM DOUBLE REPO term

19 SESSION_DATE DOUBLE Date of the current trading

session

20 TIME_MICROSEC DOUBLE Number of microseconds in the

order execution period

21 PERIOD DOUBLE Trading session period  0 – opening;

 1 – regular;

 2 – closing

 36
 QUIK User’s Manual, Section 8: QPILE Language

5. Description of parameters from the Stop Orders Table returned by GET_ITEM:

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Registration number of the

stop order on the QUIK server

2 DATE DOUBLE Date of order entry

3 TIME DOUBLE Time of order entry

4 WITHDRAW_TIME DOUBLE Order kill time

5 STOP_ORDER_TYPE DOUBLE Stop order type  1 – stop limit;

 2 – stop price for a

different instrument;

 3 – contingent order;

 6 – take profit;

 7 – ‘if done’ stop

limit;

 8 – ‘if done’ take

profit;

 9 - take profit and

stop limit

6 TYPE STRING Order type Sequence of three characters:

 1st: L - limit or M –

market;

 2nd: S - settlement at

any price or O -

settlement at one

price;

 3rd: N - fill or kill, W -

withdraw / kill

balance, or <space> -

unconditional

7 SECURITY STRING Short name of the instrument

8 SECCODE STRING Instrument code

9 CLASS STRING Short name of the class

10 CLASSCODE STRING Class code

11 OPERATION STRING Operation SELL or BUY

12 ACCOUNT STRING Trading account

 37
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

13 CONDITION_SECURI

TY

STRING Stop price instrument

14 CONDITION_SECCO

DE

STRING Stop-price instrument code

15 CONDITION_CLASS STRING Class of the stop price

16 CONDITION_

CLASSCODE

STRING Class code for the stop price

17 CONDITION STRING Stop price direction LESS_OR_EQUAL_VALUE or

GREATER_OR_EQUAL_VALUE

18 CONDITION_PRICE DOUBLE Stop price

19 CONDITION2 STRING Stop limit price direction (for

take profit and stop limit

orders)

LESS_OR_EQUAL_VALUE or

GREATER_OR_EQUAL_VALUE

20 CONDITION_PRICE2 DOUBLE Stop limit price (for take profit

and stop limit orders)

21 PRICE DOUBLE Price

22 MARKET_STOP_LIMI

T

STRING Stop limit order settlement at

market price (for take profit

and stop limit orders)

YES or <space>

23 QUANTITY DOUBLE Quantity in lots

24 BALANCE DOUBLE Active volume

25 FILLED_VOLUME DOUBLE Volume filled

26 FIRMID STRING Dealer

27 UID DOUBLE UID

28 CLIENTCODE STRING Client code

29 COMMENT STRING Comment

30 LINKED_ORDER DOUBLE Number in the trading system

for an order placed after the

stop price condition occurs

31 ALL_TRADE_NUMBE

R

DOUBLE Conditional trade

32 EXPIRE_DATE DOUBLE Term

 38
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

33 EXPIRY_DATE_IS_

TODAY

STRING Expiry term is ‘Today’

34 ACTIVE_IN_TIME_

INTERVAL

STRING Take profit and stop limit

orders active during a time

interval

YES or <space>

35 ACTIVE_FROM_TIME DOUBLE Beginning of the time interval

for a take profit or stop limit

order

36 ACTIVE_TO_TIME DOUBLE End of the time interval for a

take profit or stop limit order

37 USE_BASE_ORDER_

BALANCE

STRING Use the primary order balance

for an entered stop order (for ‘if

done’ orders)

YES or <space>

38 KILL_IF_LINKED_OR

DER_PARTLY_FILLED

STRING Cancel a stop order if the

contingent order is partially

filled (for ‘if done’ orders)

YES or <space>

39 ACTIVATE_IF_BASE_

ORDER_PARTLY_FILL

ED

STRING Enable if the primary order is

partially filled (for ‘if done’

orders)

YES or <space>

40 TYPE_DESCRIPTION STRING Type

41 STATUS STRING Order status ACTIVE, KILLED or FILLED

42 RESULT_DESCRIPTI

ON

STRING Result  Rejected by TS;

 Limit check failed;

 Contingent order

killed;

 Contingent order

filled;

 Calculate min /

max;

 Awaiting

activation;

 Calculate min /

max and await

activation;

 Killed;

 Order sent to TS

43 СO_ORDER_NUMBER DOUBLE Contingent order

 39
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

44 CO_ORDER_PRICE DOUBLE Price of contingent order

45 TRANS_ID DOUBLE Transaction ID

46 OFFSET DOUBLE Offset from min / max

47 OFFSET_UNITS STRING Offset units % or M

48 SPREAD DOUBLE Protective spread

49 USE_SPREAD_AS_

PERCENTS

STRING Protective spread as a

percentage

YES or <space>

50 MARKET_TAKE_PRO

FIT

STRING Take profit order settlement at

market price (for take profit

and stop limit orders)

YES or <space>

51 CO_ORDER_NUMBER DOUBLE Primary order

52 OWNER_SERVER STRING Server Other or Current

6. Description of parameters from the Cash Limit Table returned by GET_ITEM:

No. Parameter Type Description

1 FIRMID STRING Firm ID

2 CURRCODE STRING Currency code

3 TAG STRING Calculation tag

4 CLIENT_CODE STRING Client code

5 OPEN_BALANCE DOUBLE Opening cash balance

6 OPEN_LIMIT DOUBLE Opening cash limit

7 CURRENT_BALANCE DOUBLE Current cash balance

8 CURRENT_LIMIT DOUBLE Current cash limit

9 LOCKED DOUBLE Locked value

10 AVAILABLE DOUBLE Available value

11 LOCKED_VALUE DOUBLE Cash value locked for the purchase of non-margin

securities

12 LIMIT_KIND DOUBLE Type of limit

 40
 QUIK User’s Manual, Section 8: QPILE Language

7. Description of parameters from the Table of Limits for Securities returned by GET_ITEM:

No. Parameter Type Description

1 FIRMID STRING Firm ID

2 SECCODE STRING Security code

3 TRDACCID STRING Depo account

4 CLIENT_CODE STRING Client code

5 OPEN_BALANCE DOUBLE Opening balance for securities

6 OPEN_LIMIT DOUBLE Opening limit for securities

7 CURRENT_BALANCE DOUBLE Current balance for securities

8 CURRENT_LIMIT DOUBLE Current limit for securities

9 LOCKED_SELL DOUBLE Locked value

10 AVAILABLE DOUBLE Available quantity

11 WA_POSITION_PRICE DOUBLE Purchase price

12 LIMIT_KIND DOUBLE Type of limit

8. Description of parameters from the Table of Limits for Client Accounts retrieved by GET_ITEM:

No. Parameter Type Description Possible values

1 FIRMID STRING Firm ID

2 TRDACCID STRING Trading account

3 TYPE STRING Type of limit Cash, Deposited cash or

Total

4 LIQUIDITY_COEFF DOUBLE Liquidity ratio

5 CBP_PREV_LIMIT DOUBLE Previous limit for open

positions

6 CBPLIMIT DOUBLE Limit for open positions

7 CBPLUSED DOUBLE Current net positions

8 CBPLUSED_FOR_

ORDERS

DOUBLE Current net positions (for

orders)

9 CBPLUSED_FOR_

POSITIONS

DOUBLE Current net positions (for

open positions)

 41
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

10 CBPLPLANNED DOUBLE Planned net positions

11 VARMARGIN DOUBLE Variation margin

12 ACCRUEDINT DOUBLE Accrued interest

13 OPTIONS_PREMIUM DOUBLE Options premium

14 TS_COMISSION DOUBLE Exchange fees

15 KGO DOUBLE Client's collateral

coefficient

9. Description of parameters from the Client Account Positions Table returned by GET_ITEM:

No. Parameter Type Description Possible values

1 FIRMID STRING Firm ID

2 TRDACCID STRING Trading account

3 SECCODE STRING Futures contract code

4 SEC_SHORT_NAME STRING Short name of the contract

5 TYPE STRING Type of limit Main account, Clients and

additional accounts, All

traders’ accounts, or

<space>

6 START_BUY DOUBLE Opening long positions

7 START_SELL DOUBLE Opening short positions

8 START_NET DOUBLE Opening net positions

9 TODAY_BUY DOUBLE Current long positions

10 TODAY_SELL DOUBLE Current short positions

11 TOTAL_NET DOUBLE Current net positions

12 OPEN_BUYS DOUBLE Open buys

13 OPEN_SELLS DOUBLE Open sells

14 CBPLUSED DOUBLE Estimate of current net

positions

15 CBPLPLANNED DOUBLE Planned net positions

 42
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

16 VARMARGIN DOUBLE Variation margin

17 AVRPOSNPRICE DOUBLE Effective price of positions

18 POSITIONVALUE DOUBLE Position value

10. Description of parameters from the Table of negotiated deal orders returned by GET_ITEM:

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Number

2 QUOTENO DOUBLE Non-addressed counter

order

3 DATE STRING Order entry date

4 TIME STRING Order entry time

5 ACTIVATION_DATE DOUBLE Order activation date

6 ACTIVATION_TIME DOUBLE Order activation time

7 SECURITY STRING Short name of the security

8 SECCODE STRING Instrument code

9 CLASS STRING Class

10 CLASSCODE STRING Class code

11 OPERATION STRING Operation Buy or Sell

12 ACCOUNT STRING Account

13 PRICE DOUBLE Price

14 QUANTITY DOUBLE Quantity

15 USERID STRING Trader

16 FIRMID STRING Dealer ID

17 FIRMNAME STRING Trader's firm's ID

18 UID DOUBLE UID

19 CPUSERID STRING Partner’s trader

20 CPFIRMID STRING Partner’s ID

21 CPFIRMNAME STRING Partner firm

 43
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

22 CLIENTCODE STRING Client code

23 COMMENT STRING Comment

24 MATCH_REFERENCE STRING Reference

25 STATUS STRING Status Active, Filled or Killed

26 SETTLE_CODE STRING Settlement code

27 DIRECTION STRING Direction Sent, Received, or Sent and

received

28 YIELD DOUBLE Yield

29 VALUE DOUBLE Value

30 ACCRUEDINT DOUBLE Coupon %

31 PRICE2 DOUBLE Coupon yield

32 REFUNDRATE DOUBLE Refund rate (%)

33 REPORATE DOUBLE Repo rate (%)

34 TRANS_ID DOUBLE Transaction ID

35 REPOVALUE DOUBLE REPO value

36 REPO2VALUE DOUBLE REPO buyback value

37 REPOENTRY STRING REPO order entry type Price1 + Rate, Rate + Price2,

Price1 + Price2, REPO total +

Volume, REPO total +

Discount, Volume +

Discount, REPO Total,

Volume

38 REPOTERM DOUBLE REPO term

39 START_DISCOUNT DOUBLE Initial discount (%)

40 LOWER_DISCOUNT DOUBLE Lower discount (%)

41 UPPER_DISCOUNT DOUBLE Upper discount (%)

42 BLOCK_SECURITIES STRING Locked security Yes or No

43 ORIG_REPOVALUE DOUBLE Original REPO value

44 ORIG_VOLUME DOUBLE Original volume

45 ORIG_DISCOUNT DOUBLE Original discount

 44
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

46 WITHDRAW_TIME DOUBLE Order kill time

47 BALANCE DOUBLE Balance

48 SETTLE_CURRENCY STRING Settlement currency

11. Description of parameters from the Table of Trades for Execution returned by GET_ITEM:

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Number

2 ORDER_NUMBER DOUBLE Order number

3 DATE STRING Trading date

4 SETTLEDATE STRING Settlement date

5 CLASS STRING Class

6 CLASSCODE STRING Class code

7 SECCODE STRING Instrument code

8 SECURITY STRING Short name of the security

9 OPERATION STRING Operation Buy or Sell

10 CLIENTCODE STRING Client code

11 COMMENT STRING Comment

12 FIRMID STRING Dealer ID

13 FIRMNAME STRING Trader's firm ID

14 ACCOUNT STRING Depo account

15 CPFIRMNAME STRING Partner’s name

16 CPFIRMID STRING Partner’s ID

17 CPACCOUNT STRING Partner's depo account

18 PRICE DOUBLE Price

19 QUANTITY DOUBLE Quantity

20 VALUE DOUBLE Volume

 45
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

21 STATUS STRING Status  FILLED – executed;

 NOT FILLED – not

executed;

 INCLUDE IN REPORT

– items included in

the report

22 ACCRUEDINT DOUBLE Coupon yield

23 PRICE1 DOUBLE Price of the first part of

REPO

24 PRICE2 DOUBLE Buyback price

25 REPORTTRADENO DOUBLE Number of the trade for the

first part of REPO

26 REPORATE DOUBLE REPO rate (%)

27 SETTLE_CODE STRING Settlement code

28 REPORT_NUM DOUBLE Report

29 CPREPORT_NUM DOUBLE Partner's report

30 TS_COMISSION DOUBLE Trading system commission

31 BALANCE DOUBLE Balance

32 SETTLETIME STRING Settlement time

33 AMMOUNT DOUBLE Amount of liability

34 REPOVALUE DOUBLE REPO value

35 REPOTERM DOUBLE REPO term

36 REPO2VALUE DOUBLE REPO buyback value

37 RETURN_VALUE DOUBLE REPO return value

38 DISCOUNT DOUBLE Discount (%)

39 LOWER_DISCOUNT DOUBLE Lower discount (%)

40 UPPER_DISCOUNT DOUBLE Upper discount (%)

41 BLOCK_SECURITIES STRING Locked security Yes or No

42 URGENCY_FLAG STRING Fill Yes or No

 46
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

43 TRADE_TYPE STRING Type  Negotiated deal;

 First part of REPO

deal;

 Second part of REPO

deal;

 Compensation

payment

44 TRADE_OPERATION_

TYPE

STRING Direction Deposit or Withdraw

45 EXPECTED_DISCOUNT DOUBLE Discount after depositing

(%)

46 EXPECTED_QUANTITY DOUBLE Quantity after depositing

47 EXPECTED_

REPOVALUE

DOUBLE REPO value after depositing

48 EXPECTED_

REPO2VALUE

DOUBLE Buyback value after

depositing

49 EXPECTED_RETURN_

VALUE

DOUBLE Return value after

depositing

50 REPORT_TRADE_DATE DOUBLE Trade date

51 STATE_OF_CLEARING STRING Clearing status  Processed;

 Not processed;

 Is processing

52 TYPE_OF_CLEARING STRING Clearing type  Not set;

 Simple;

 Multilateral

53 REPORT_COMISSION DOUBLE Report fee

54 COUPON_PAYMENT DOUBLE Coupon payment

55 COUPON_PAYMENT_

DATE

DOUBLE Coupon payment date

56 PRINCIPAL_PAYMENT DOUBLE Payment of principal

57 PRINCIPAL_PAYMENT

_DATE

DOUBLE Principal payment date

 47
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description Possible values

58 SETTLE_CURRENCY STRING Settlement currency

12. Description of parameters from the Table of Negotiated Trade Orders / Reports returned by

GET_ITEM:

No. Parameter Type Description Possible values

1 NUMBER DOUBLE Number

2 DATE STRING Date

3 TIME STRING Order entry time

4 CLASS STRING Class

5 SECCODE STRING Instrument code

6 SECURITY STRING Short name of the security

7 USERID STRING Trader ID

8 FIRMID STRING Dealer ID

9 FIRMNAME STRING Trader's firm ID

10 ACCOUNT STRING Depo account

11 CPFIRMNAME STRING Partner’s name

12 CPFIRMID STRING Partner's ID

13 CPACCOUNT STRING Partner's depo account

14 QUANTITY DOUBLE Quantity

15 VALUE DOUBLE Value

16 COMISSION DOUBLE Commission

17 DIRECTION STRING Direction Sent or Received

18 STATUS STRING Status Awaiting execution, killed

or filled

19 REPORT_TYPE STRING Report type EXECUTION or CANCEL

EXECUTION

20 REPORT_KIND STRING Type of report

 48
 QUIK User’s Manual, Section 8: QPILE Language

13.Description of parameters from the Cash Positions Table returned by GET_ITEM:

No. Parameter Type Description Possible values

1 FIRMID STRING Firm

2 CURRCODE STRING Currency

3 TAG STRING Group

4 DESCRIPTION STRING Description

5 OPENBAL DOUBLE Opening balance

6 CURRENTPOS DOUBLE Current position

7 PLANNEDPOS DOUBLE Planned position

8 LIMIT1 DOUBLE External limit

9 ORDERBUY DOUBLE Buy value (in orders)

10 ORDERSELL DOUBLE Sell value (in orders)

11 NETOBLIGATION DOUBLE Net liability

12 PLANNEDBAL DOUBLE Check position

13 BANK_ACC_ID STRING Account ID

14. Description of parameters from the Table of Current Positions for Securities returned by

GET_ITEM:

No. Parameter Type Description Possible values

1 FIRMID STRING Firm

2 SEC_SHORT_NAME STRING Security name

3 SECCODE STRING Security code

4 OPENBAL DOUBLE Opening

5 CURRENTPOS DOUBLE Current

6 PLANNEDPOSBUY DOUBLE Planned buy value

7 PLANNEDPOSSELL DOUBLE Planned sell value

8 USQTYB DOUBLE Quantity bought

9 USQTYS DOUBLE Quantity sold

 49
 QUIK User’s Manual, Section 8: QPILE Language

15. Description of parameters from the Table of Current Positions for Accounts returned by

GET_ITEM:

No. Parameter Type Description Possible values

1 SECCODE STRING Instrument code

2 SEC_SHORT_NAME STRING Instrument name

3 FIRMID STRING Firm ID

4 TRDACCID STRING Trading account

5 DEPACCID STRING Depo account

6 OPENBAL DOUBLE Opening balance

7 CURRENTPOS DOUBLE Current position

8 PLANNEDPOSBUY DOUBLE Planned buy value

9 PLANNEDPOSSELL DOUBLE Planned sell value

10 PLANBAL DOUBLE Check position

11 USQTYB DOUBLE Quantity bought

12 USQTYS DOUBLE Quantity sold

13 PLANNED DOUBLE Planned position

8.10 Functions for Accessing a List of Available

Parameters

8.10.1 GET_CLASSES_LIST

This function is used to obtain a list of class codes received from the server during the current

session. The list of class codes is comma "," separated.

GET_CLASSES_LIST ()

Example:

‘

ClassesList = GET_CLASSES_LIST ()

‘

 50
 QUIK User’s Manual, Section 8: QPILE Language

The list of available classes, e.g., TQBR, TQBS, TQNL, TQOB, TQOS, TQNO, is assigned to the variable

ClassesList.

8.10.2 GET_CLASS_SECURITIES

This function is used to obtain a list of instrument codes for the list of classes set by the list of

class codes. The list of securities' codes is comma "," delimited.

GET_CLASS_SECURITIES (STRING)

Example:

‘

SecuritiesList = GET_CLASS_SECURITIES ("TQBR,GKO")

‘

The list of codes for all available securities for classes A1 Shares and GKO is assigned to the

variable SecuritiesList.

8.10.3 GET_SECURITY_INFO

This function retrieves information about a security with a specific code ("sec_code") from a

particular class ("class_code"). If "class_code" is set to <space>, the function performs a search in all

classes until the first item is found.

MAP GET_SECURITY_INFO (STRING class_code, STRING sec_code)

Parameters:

No. Parameter Type Description

1 CODE STRING Instrument code

2 NAME STRING Instrument name

3 SHORT_NAME STRING Short name

4 CLASS_CODE STRING Class code

5 CLASS_NAME STRING Class name

6 FACE_VALUE DOUBLE Face value

7 FACE_UNIT STRING Face value currency code

8 SCALE DOUBLE Number of digits after the decimal point

9 MAT_DATE STRING Expiry date

10 LOT_SIZE DOUBLE Lot size

 51
 QUIK User’s Manual, Section 8: QPILE Language

Example:

‘

SecInfo = GET_SECURITY_INFO("","YUKO")

Lot = GET_VALUE (SecInfo, "LOT_SIZE")

‘

The variable "SecInfo" is assigned the parameter values for the YUKO security. The variable "Lot"

contains the number of securities in one lot of YUKO.

8.11 Functions for Handling Programmable Tables

This set of functions can only be used to handle the table "OWN" created when the program is

calculated. This table is available not only when using the standard functions GET_ITEM and

GET_NUMBER_OF, but also allows for specific modifications using the functions described below.

8.11.1 ADD_ITEM

This function inserts a line labeled "Index" into the "OWN" table. An associative array "table_string" is

used for the initialization of table columns with values. "Table_string" should contain elements

with keys equal to the column names.

ADD_ITEM (DOUBLE Index, MAP table_string)

8.11.2 MODIFY_ITEM

This function modifies an existing line labeled "Index" using the array "table_string".

MODIFY_ITEM (DOUBLE Index, MAP table_string)

8.11.3 DELETE_ITEM

This function is used to delete the line labeled "Index".

DELETE_ITEM (DOUBLE Index)

8.11.4 DELETE_ALL_ITEMS

This function is used to completely clear the "OWN" table.

DELETE_ALL_ITEMS()

 52
 QUIK User’s Manual, Section 8: QPILE Language

Parameters:

№ Parameter Type Description

1 INDEX DOUBLE Index referring to a collection, which must contain an integer value

2 TABLE_STRING MAP Array containing the values for the columns of the modified row

Example:

‘

st=CREATE_MAP()

st=SET_VALUE(st, "Value",10)

ADD_ITEM(1,st)

st=GET_ITEM ("OWN",1)

value=GET_VALUE(st,"Value")

DELETE_ALL_ITEMS()

‘

This example is only available for a table containing a single column with the heading "Value". First,

an array containing an element with the value "10" and the key "Value" is created. Then, a line with

an index of "1" and the value for the "Value" column set to "10" is created in the table.

Subsequently, the line with the index "1" is read back into the array, and the value of the element

with the "Value" key is included in the variable "value". Finally, all table lines are deleted with the

command "DELETE_ALL_ITEMS()".

8.11.5 SET_ROW_COLOR

This function assigns a color to the specified row of the table. This feature applies the language

from the previous version and is retained for the purpose of compatibility.

SET_ROW_COLOR (STRING client_code, STRING background_color,

STRING selected_background_color)

Parameters:

№ Parameter Type Description

1 CLIENT_CODE STRING Client code. Once this parameter is set in "ROWNAME", the

currently calculated client is highlighted

2 BACKGROUND_COLOR STRING Background color of the highlighted row

3 SELECTED_BACKGROUND_COLOR STRING Color of highlighting

 53
 QUIK User’s Manual, Section 8: QPILE Language

The background / highlighting color is set by the macro RGB(<red>, <green>, <blue>). If, for example,

the string "RGB(255, 0, 0)" is transferred to the function as the color parameter, the color of

highlighting is red. The background color is set using the string "DEFAULT_COLOR".

Example:

‘

SET_ROW_COLOR (ROWNAME, "RGB(0,255,0)", "DEFAULT_COLOR")

‘

Here, the background color for the currently calculated client is set to green, while the color of

highlighting is set by default.

8.11.6 SET_ROW_COLOR_EX

This function assigns the background and font color to the specified row of the table.

SET_ROW_COLOR_EX (DOUBLE row_number, STRING background_color, STRING

selected_background_color, STRING font_color, STRING selected_font_color)

Example:

№ Parameter Type Description

1 ROW_NUMBER DOUBLE Number of the row to be highlighted

2 BACKGROUND_COLOR STRING Background color of the row

3 SELECTED_BACKGROUND_COLOR STRING Background color of the row selected using the

cursor

4 FONT_COLOR STRING Basic color of the font in a row

5 SELECTED_FONT_COLOR STRING Font color of the row selected using the cursor

The background / highlighting color is set by the macro "RGB(<red>, <green>, <blue>)". If, for

example, the string "RGB(255, 0, 0)" is transferred to the function as the color parameter, the color

of highlighting is red. The background color is set using the string “DEFAULT_COLOR”.

Example:

‘

SET_ROW_COLOR_EX (10, "DEFAULT_COLOR", "DEFAULT_COLOR", "RGB(0,255,0)",

"RGB(0,0,255)")

‘

 54
 QUIK User’s Manual, Section 8: QPILE Language

The background color of the font for the 10th row of the table is set to green. When the row is

highlighted by the cursor, the font color becomes blue.

8.12 Functions for Getting Values from the Quotes

Table

8.12.1 GET_PARAM

This function is used to obtain exchange information parameters. Using this function, it is possible

to retrieve data from the Quotes Table for preset class and instrument codes.

GET_PARAM (STRING classcode_list, STRING seccode, STRING param_name)

Parameters:

№ Parameter Type Description

1 CLASSCODE_LIST STRING The list of instrument class codes separated by commas in which the

security is searched. If, for example, the string "TQBR,TQBS,TQNL" is

transferred to the function, the security is searched for in the A1 Shares,

A2 Shares and B Shares classes.

2 SECCODE STRING Instrument code

3 PARAM_NAME STRING Parameter ID

Example:

‘

LastPrice = GET_PARAM ("TQBR", "HYDR", "last")

‘

The variable “LastPrice” is assigned the value of the last trade's price in RusHydro shares for class

A1 Shares of MOEX.

8.12.2 GET_PARAM_EX

This function is used to obtain the values of all exchange information parameters from the Quotes

Table. Using this function, it is possible to retrieve any value from the Quotes Table for preset class

and instrument codes.

MAP GET_PARAM_EX (STRING classcode, STRING seccode, STRING param_name)

If the command USE_CASE_SENSITIVE_CONSTANTS (see 8.3.2) is used in the program code, then the

values of parameters “classcode”, and “seccode” should be specified in register corresponding to

Quotes table register, and the value of parameter “param.name” should be specified in upper case.

file:///C:/Documents%20and%20Settings/elza/Local%20Settings/Temp/8%20Язык%20QPILE%20english.doc%23_Тело_программы%23_Тело_программы
file:///C:/Documents%20and%20Settings/elza/Local%20Settings/Temp/8%20Язык%20QPILE%20english.doc%23_Тело_программы%23_Тело_программы

 55
 QUIK User’s Manual, Section 8: QPILE Language

Parameters:

No. Parameter Type Description

1 CLASSCODE STRING Class code (for example, EQBR)

2 SECCODE STRING Instrument code (for example, LKOH)

3 PARAM_NAME STRING Parameter ID (for example, PRICE)

The MAP has the following structure:

No. Parameter Type Description

1 RESULT DOUBLE The result of completing an operation, where 0 represents an error and 1

represents a found parameter

2 PARAM_TYPE DOUBLE The type of parameter data used in the Quotes Table.

The list of possible values includes:

 1 – DOUBLE;

 2 – LONG;

 3 – CHAR;

 4 – enumerated type;

 5 – time;

 6 – date

3 PARAM_VALUE DOUBLE Parameter value. For param_type = 3, the value equals ‘0’. For enumerated

types, the value is equal to the ordinal value of the enumeration.

4 PARAM_IMAGE STRING The string value of a parameter similar to its representation in the table. The

string representation includes separators of the digit positions and those

between the integer and the fractional part. For enumerated types, the relevant

string values are derived

Example:

‘

Param=GET_PARAM_EX("TQBR","RTKM","WAPRICE")

WAPRICE=GET_VALUE(PARMAP, "PARAM_VALUE")

 56
 QUIK User’s Manual, Section 8: QPILE Language

The variable “WAPRICE” is assigned the value of the volume-weighted average price for ordinary

Rostelecom shares of class A1 Shares of MOEX.

8.12.3 Function parameter values

The list of possible securities class codes ("classcode_list") are as follows:

Class

code Name

TQBR MOEX SM: T+ А1 Shares, pays and

RDR

TQBS MOEX SM: T+ A2 Shares and pays

TQNL MOEX SM: T+ B Shares and pays

TQOB MOEX SM: T+ A1 Bonds

TQOS MOEX SM: T+ A2 Bonds

TQNO MOEX SM: T+ B Bonds

PSEQ Negotiated deal mode: A1 Shares

and pays

PSES Negotiated deal mode: A2 Shares

and pays

PSNL Negotiated deal mode: B Shares and

pays

PSOB Negotiated deal mode: А1 Shares

PSNO Negotiated deal mode: B Bonds

PSAU MOEX SM: NDM: Initial placement

(bonds)

AUCT MOEX SM: Auction (Shares)

MAIN MOEX Government securities

MAIC Government securities: closing

period

Class

code Name

BOBR OBR (Bank of Russia Bonds)

FUOP MOEX Futures

GAZP Gazprom Bonds

INDX MOEX SM: Indices

GTS RTS: SGK

GAZ RTS: Gazprom shares

QUADRO RTS-SGK (Trading in currency)

RTS10 RTS10

RTSIDX RTS indices

RTSIND RTS (Indices)

SES2 Government securities: Large-scale

lots

SPBFUT Futures on FORTS

SPBOPT Options on FORTS

SPBSPT St. Petersburg SPOT

SPBGKO МKО

SPBCEX GGKO on the SPCEX

SPCGKO Test system on the SPCEX

EQBREMU Top-tier shares (Emulator)

USDRUB FORTS USD/RUB exchange rate

 57
 QUIK User’s Manual, Section 8: QPILE Language

List of possible parameter identifiers:

No. Parameter Type Description

1 STATUS STRING Status

2 LOTSIZE NUMERIC Lot size

3 BID NUMERIC Highest bid price

4 BIDDEPTH NUMERIC Bid volume at the best price / bid depth

5 BIDDEPTHT NUMERIC Total bid

6 NUMBIDS NUMERIC Number of bids

7 OFFER NUMERIC Lowest offer price

8 OFFERDEPTH NUMERIC Offer volume at the best price / offer depth

9 OFFERDEPTHT NUMERIC Total offer

10 NUMOFFERS NUMERIC Number of offers

11 OPEN NUMERIC Opening price

12 HIGH NUMERIC Highest trade price

13 LOW NUMERIC Lowest trade price

14 LAST NUMERIC Last trad price

15 CHANGE NUMERIC Price difference between the last and the preceding session

16 QTY NUMERIC Quantity in the last trade

17 TIME STRING Time of the last trade

18 VOLTODAY NUMERIC Volume of anonymous trades

19 VALTODAY NUMERIC Value in cash

20 TRADINGSTATUS STRING Trading session status

21 VALUE NUMERIC Cash value of the last trade

22 WAPRICE NUMERIC Volume-weighted average price

23 HIGHBID NUMERIC Highest bid price for today

24 LOWOFFER NUMERIC Lowest offer price for today

25 NUMTRADES NUMERIC Number of trades for today

26 PREVPRICE NUMERIC Closing price

27 PREVWAPRICE NUMERIC Previous price

 58
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

28 CLOSEPRICE NUMERIC Closing period price

29 LASTCHANGE NUMERIC Percentage change from the closing time

30 PRIMARYDIST STRING Placement / primary distribution

31 ACCRUEDINT NUMERIC Accrued coupon income

32 YIELD NUMERIC Yield from the last trade

33 COUPONVALUE NUMERIC Coupon value

34 YIELDATPREVWAPRICE NUMERIC Yield according to the previous estimate

35 YIELDATWAPRICE NUMERIC Estimated yield

36 PRICEMINUSPREVWAPRICE NUMERIC Difference between the last estimate and the previous one

37 CLOSEYIELD NUMERIC Yield at closure

38 CURRENTVALUE NUMERIC Current value of MOEX indices

39 LASTVALUE NUMERIC Value of MOEX indices on the last day's closing

40 LASTTOPREVSTLPRC NUMERIC Price difference between the last and the preceding session

41 PREVSETTLPRICE NUMERIC Previous settlement price

42 PRICEMVTLIMIT NUMERIC Price movement limit

43 PRICEMVTLIMITT1 NUMERIC Price movement limit T1

44 MAXOUTVOLUME NUMERIC Maximum volume / limit of active orders (in contracts)

45 PRICEMAX NUMERIC Maximum possible price

46 PRICEMIN NUMERIC Minimum possible price

47 NEGVALTODAY NUMERIC Value of negotiated trades in cash

48 NEGNUMTRADES NUMERIC Number of negotiated trades for today

49 NUMCONTRACTS NUMERIC Number of open positions

50 CLOSETIME STRING Closing time of previous trading session (for RTS indices)

51 OPENVAL NUMERIC RTS index value at the time of opening

52 CHNGOPEN NUMERIC Difference between the current RTS index and that at the time

of opening

53 CHNGCLOSE NUMERIC Difference between the current RTS index and that at the time

of closing

54 BUYDEPO NUMERIC Seller's collateral

 59
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

55 SELLDEPO NUMERIC Buyer's collateral

56 CHANGETIME STRING Time of the last change

57 SELLPROFIT NUMERIC Profit from sales

58 BUYPROFIT NUMERIC Profit from buys

59 TRADECHANGE NUMERIC Price difference between the last trade and the previous

one (FORTS, St. Petersburg Stock Exchange, SPCEX)

60 FACEVALUE NUMERIC Face value (for SPCEX securities)

61 MARKETPRICE NUMERIC Yesterday's market price

62 MARKETPRICETODAY NUMERIC Today's market price

63 NEXTCOUPON NUMERIC Date of coupon yield payment

64 BUYBACKPRICE NUMERIC Buyback price

65 BUYBACKDATE NUMERIC Buyback date

66 ISSUESIZE NUMERIC Issue size

67 PREVDATE NUMERIC Date of previous trading day

68 DURATION NUMERIC Duration

69 LOPENPRICE NUMERIC Official opening price

70 LCURRENTPRICE NUMERIC Official current price

71 LCLOSEPRICE NUMERIC Official closing price

72 QUOTEBASIS STRING Quote basis / price type

73 PREVADMITTEDQUOT NUMERIC Admitted quote for the previous day

74 LASTBID NUMERIC Best bid price at closing

75 LASTOFFER NUMERIC Best offer price at closing

76 PREVLEGALCLOSEPR NUMERIC Closing price from the previous day

77 COUPONPERIOD NUMERIC Coupon period

78 MARKETPRICE2 NUMERIC Market price 2

79 ADMITTEDQUOTE NUMERIC Admitted quote

80 BGOP NUMERIC BGO for covered positions

81 BGONP NUMERIC BGO for uncovered positions

 60
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

82 STRIKE NUMERIC Strike price

83 STEPPRICET NUMERIC Price step value

84 STEPPRICE NUMERIC Price step value (for new FORTS and RTS Standard contracts)

85 SETTLEPRICE NUMERIC Settlement price

86 OPTIONTYPE STRING Option type

87 OPTIONBASE STRING Underlying asset

88 VOLATILITY NUMERIC Option volatility

89 THEORPRICE NUMERIC Theoretical price

90 PERCENTRATE NUMERIC Aggregated rate

91 ISPERCENT STRING Futures price type

92 CLSTATE STRING Clearing status

93 CLPRICE NUMERIC Last clearing quote

94 STARTTIME STRING Main session starting time

95 ENDTIME STRING Main session closing time

96 EVNSTARTTIME STRING Evening session starting time

97 EVNENDTIME STRING Evening session ending time

98 MONSTARTTIME STRING Morning session starting time

99 MONENDTIME STRING Morning session ending time

100 CURSTEPPRICE STRING Price step currency

101 REALVMPRICE NUMERIC Current market quote

102 MARG STRING Provided with margin

103 EXPDATE NUMERIC Instrument expiration date

104 CROSSRATE NUMERIC Cross rate

105 BASEPRICE NUMERIC Underlying rate

106 HIGHVAL NUMERIC Maximum value (RTSIND)

107 LOWVAL NUMERIC Minimum value (RTSIND)

108 ICHANGE NUMERIC Change (RTSIND)

109 IOPEN NUMERIC Opening value (RTSIND)

 61
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

110 PCHANGE NUMERIC Percentage change (RTSIND)

111 OPENPERIODPRICE NUMERIC Price during the pre-trading period

112 MIN_CURR_LAST NUMERIC Minimum current price

113 SETTLECODE STRING Default settlement code

114 STEPPRICECL DOUBLE Clearing price step value

115 STEPPRICEPRCL DOUBLE Price step value for intermediate clearing

116 MIN_CURR_LAST_TI STRING Time of changes in the minimum current price

117 PREVLOTSIZE NUMERIC Previous value for the lot size

118 LOTSIZECHANGEDAT NUMERIC Date of the last changes to the lot size

119 CLOSING_AUCTION_PRICE NUMERIC Post-trading auction price

120 CLOSING_AUCTION_VOLUME NUMERIC Volume of trades for the post-trading auction

List of identifiers of additional parameters available for the function GET_PARAM_EX:

No. Parameter Type Description

1 LONGNAME STRING Full name of the security

2 SHORTNAME STRING Short name of the security

3 CODE STRING Instrument code

4 CLASSNAME STRING Class name

5 CLASS_CODE STRING Class code

6 TRADE_DATE_CODE DOUBLE Trading date

7 MAT_DATE DOUBLE Expiry date

8 DAYS_TO_MAT_DATE DOUBLE Number of days to the expiry date

9 SEC_FACE_VALUE DOUBLE Face value of the security

10 SEC_FACE_UNIT STRING Face value currency unit

11 SEC_SCALE DOUBLE Price accuracy

12 SEC_PRICE_STEP DOUBLE Minimum price step

13 SECTYPE STRING Instrument type

 62
 QUIK User’s Manual, Section 8: QPILE Language

8.13 Functions for Retrieving Values from the Level II

Quotes Table

8.13.1 GET_QUOTES_II_LEVEL_DATA

This function is used to retrieve the values for instrument quotes. Using this function, it is possible

to obtain data from the Level II Quotes Table for preset class and instrument codes.

MAP GET_QUOTES_II_LEVEL_DATA (STRING ClassCode, STRING SecCode)

This function retrieves a "MAP" that has the following structure:

No. Parameter Type Description

1 BID_COUNT DOUBLE Number of bid quotes

2 OFFER_COUNT DOUBLE Number of offer quotes

3 BID COLLECTION Bid / buying quotes

4 OFFER COLLECTION Offer / selling quotes

"BID" and "OFFER" collections have the following structure:

No. Parameter Type Description

1 PRICE DOUBLE Offer / bid price

2 QUANTITY DOUBLE Quantity in lots

8.14 Functions for Retrieving Values from the

Securities Limits Table

These functions are used to obtain the table values for a preset client code, firm code, instrument

code, and depo account.

8.14.1 DEPO_OPEN_BALANCE

This function returns the value for the "Opening balance for securities".

DEPO_OPEN_BALANCE (STRING client_code, STRING firmid, STRING seccode, STRING account)

8.14.2 DEPO_OPEN_LIMIT

This function returns the value for the "Opening limit for securities".

 63
 QUIK User’s Manual, Section 8: QPILE Language

DEPO_OPEN_LIMIT (STRING client_code, STRING firmid, STRING seccode, STRING account)

8.14.3 DEPO_CURRENT_BALANCE

This function returns the value for the "Current balance for securities".

DEPO_CURRENT_BALANCE (STRING client_code, STRING firmid, STRING seccode,

STRING account)

8.14.4 DEPO_CURRENT_LIMIT

This function returns the value for the "Current limit for securities".

DEPO_CURRENT_LIMIT (STRING client_code, STRING firmid, STRING seccode, STRING account)

8.14.5 DEPO_LIMIT_AVAILABLE

This function returns the value for the available limit for securities.

DEPO_LIMIT_AVAILABLE (STRING client_code, STRING firmid, STRING seccode, STRING

account)

8.14.6 DEPO_LIMIT_LOCKED

This function returns the value for the "Number of locked securities".

DEPO_LIMIT_LOCKED (STRING client_code, STRING firmid, STRING seccode, STRING account)

8.14.7 DEPO_LIMIT_LOCKED_BUY

This function returns the value for the "Number of lots of securities locked for buying".

DEPO_LIMIT_LOCKED_BUY (STRING client_code, STRING firmid, STRING seccode, STRING

account)

8.14.8 DEPO_LIMIT_LOCKED_BUY_VALUE

This function returns the value for the "Value of securities locked for buying".

DEPO_LIMIT_LOCKED_BUY_VALUE (STRING client_code, STRING firmid, STRING seccode,

STRING account)

Parameters:

No. Parameter Type Description

1 client_code STRING Client code

2 firmid STRING Firm ID

3 seccode STRING Instrument code

4 account STRING Depo account

 64
 QUIK User’s Manual, Section 8: QPILE Language

The parameter “account” is case sensitive (upper / lower case characters).

Example:

‘

ClDepoOB = DEPO_OPEN_BALANCE ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoOL = DEPO_OPEN_LIMIT ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoСB = DEPO_CURRENT_BALANCE ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoCL = DEPO_CURRENT_LIMIT ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoAV = DEPO_LIMIT_AVAILABLE ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoLCK = DEPO_LIMIT_LOCKED ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoLCKBuy = DEPO_LIMIT_LOCKED_BUY ("1075", "NC0080000000", "HYDR", "L01-00000F00")

ClDepoLCKBuyValue = DEPO_LIMIT_LOCKED_BUY_VALUE ("1075", "NC0080000000", "HYDR",

"L01-00000F00")

 ‘

The example shows the assignment of values for the variables from the Securities Limits Table

(ordinary shares of "RusHydro") for the client code "1075":

• The variable "ClDepoOB" is set to the value of the opening balance;

• The variable "ClDepoOL" is set to the value of the opening limit;

• The variable "ClDepoCB" is set to the value of the current balance;

• The variable "ClDepoCL" is set to the value of the current limit;

• The variable "ClDepoAV" is set to the value of the number of available securities;

• The variable "ClDepoLCK" is set to the value of the number of locked securities;

• The variable "ClDepoLCKBuy" is set to the value of the number of lots locked for buying;

• The variable "ClDepoLCKBuyValue" is set to the value of securities locked for buying.

8.15 Functions for Retrieving Values from the Cash

Limits Table

These functions are used to retrieve table values for a preset client code, firm code, calculation tag,

and currency code.

8.15.1 MONEY_OPEN_BALANCE

This function returns the value for "Opening cash balance".

MONEY_OPEN_BALANCE (STRING client_code, STRING firmid, STRING tag, STRING curr_code)

8.15.2 MONEY_OPEN_LIMIT

This function returns the value for the "Opening cash limit".

 65
 QUIK User’s Manual, Section 8: QPILE Language

MONEY_OPEN_LIMIT (STRING client_code, STRING firmid, STRING tag, STRING curr_code)

8.15.3 MONEY_CURRENT_BALANCE

This function returns the value for the "Current cash balance".

MONEY_CURRENT_BALANCE (STRING client_code, STRING firmid, STRING tag, STRING

curr_code)

8.15.4 MONEY_CURRENT_LIMIT

This function returns the value for the "Current cash limit".

MONEY_CURRENT_LIMIT (STRING client_code, STRING firmid, STRING tag, STRING curr_code)

8.15.5 MONEY_LIMIT_AVAILABLE

This function returns the value for the "Available cash limit".

MONEY_LIMIT_AVAILABLE (STRING client_code, STRING firmid, STRING tag, STRING curr_code)

8.15.6 MONEY_LIMIT_LOCKED

This function returns the value for the "Value of locked cash".

MONEY_LIMIT_LOCKED (STRING client_code, STRING firmid, STRING tag, STRING curr_code)

Example:

‘

ClMoneyOB = MONEY_OPEN_BALANCE ("1075", "NC0080000000", "EQTV", "SUR")

ClMoneyOL = MONEY_OPEN_LIMIT ("1075", "NC0080000000", "EQTV", "SUR")

ClMoneyCB = MONEY_CURRENT_BALANCE ("1075", "NC0080000000", "EQTV", "SUR")

ClMoneyCL = MONEY_CURRENT_LIMIT ("1075", "NC0080000000", "EQTV", "SUR")

ClMoneyAV = MONEY_LIMIT_AVAILABLE ("1075", "NC0080000000", "EQTV", "SUR")

ClMoneyLCK = MONEY_LIMIT_LOCKED ("1075", "NC0080000000", "EQTV", "SUR")

‘

The example shows the assignment of values for variables from the Cash Limits Table for the MOEX

Stock Market for the client "1075":

• The variable "ClMoneyOB" is set to the value of the opening cash balance;

• The variable "ClMoneyOL" is set to the value of the opening cash limit;

• The variable "ClMoneyCB" is set to the value of the current cash balance;

• The variable "ClMoneyCL" is set to the value of the current cash limit;

• The variable "ClMoneyAV" is set to the value of the amount of available cash;

• The variable "ClMoneyLCK" is set to the value of amount of locked cash.

 66
 QUIK User’s Manual, Section 8: QPILE Language

8.16 Functions for the Calculation of Margin Positions

These functions are used to obtain the values of margin positions for a preset client code, firm

code, class code, depo account, and parameter for the price at which the cost is calculated (for

example, "OPEN" is used for the opening price, "LAST" is used for the last trade price, etc.).

8.16.1 SHORT_VALUE

This function returns the "Value of all short positions".

SHORT_VALUE (STRING client_code, STRING firmid, STRING seccode, STRING class_code,

STRING account, STRING price_param_code)

8.16.2 LONG_VALUE

This function returns the "Value of all long positions".

LONG_VALUE (STRING client_code, STRING firmid, STRING seccode, STRING class_code,

STRING account, STRING price_param_code)

Parameters:

No. Parameter Type Description

1 CLIENT_CODE STRING Client code

2 FIRMID STRING Firm ID

3 SECCODE STRING Instrument code

4 CLASS_CODE STRING Class code

5 ACCOUNT* STRING Depo account

6 PRICE_PARAM_CODE STRING Price parameter code

(*) This parameter is case sensitive (upper / lower case characters).

Example:

‘

ClShortsValue = SHORT_VALUE ("1075", "NC0080000000", "HYDR", "TQBR", "L01-00000F00",

"LAST")

ClLongsValue = LONG_VALUE ("1075", "NC0080000000", "HYDRR", "TQBR", "L01-00000F00",

"OPEN")

‘

 67
 QUIK User’s Manual, Section 8: QPILE Language

The variable “ClShortsValue” is set to the value of all short positions for the client code "1075" with

respect to the "RusHydro" instrument from class A1 Shares for the account L01-00000F00 adjusted

to the last trade price.

The variable “ClLongsValue” is set to the value of all long positions for the client code "1075" with

respect to the "RusHydro" instrument from class A1 Shares for the account L01-00000F00 adjusted

to the opening price.

8.17 Functions for Retrieving Values from the Client

Portfolio and Buy / Sell Tables

These functions are used to obtain values from the tables mentioned above. The table values are

calculated on the QUIK client workstation at the intervals specified in the settings (menu item

Settings / General, tab Trading / Client Portfolio, checkbox "Refresh portfolio each ... seconds").

8.17.1 GET_CLIENT_MARGINAL_PORTFOLIO_INFO

This function retrieves an associative array (MAP) with the parameters of the Client Portfolio table

corresponding to the trading participant's ID ("firmid") and the client code ("client_code").

MAP GET_CLIENT_MARGINAL_PORTFOLIO_INFO (STRING firmid, STRING client_code)

Parameters:

No. Parameter Type Description

1 IS_LEVERAGE STRING

(12)

Attribute of monitoring positions type. Possible

values include:

 MLim: scheme of monitoring a position

“by leverage” is used, the leverage is

calculated based on the Incoming limit

value;

 MP: scheme of monitoring a position “by

leverage” is used when the leverage is

expressly stated;

 Mpos: positions monitoring scheme “open

position limit” is used;

 <blank>: positions monitoring scheme “by

limit” is used

Client type

2 IN_ASSETS DOUBLE Value of the client's equity before the trading

session begins

Opening assets

3 LEVERAGE DOUBLE Leverage. If not set explicitly, this is calculated as

the ratio of the opening limit to opening assets.

Leverage

 68
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

4 OPEN_LIMIT DOUBLE Maximum value of borrowed assets before the

beginning of the trading session

Opening limit

5 VAL_SHORT DOUBLE Value of short positions, which is always negative Short positions

6 VAL_LONG DOUBLE Value of long positions Long positions

7 VAL_LONG_MARGIN DOUBLE Value of long positions for margin securities

accepted as collateral

Long positions

for margin

securities

8 VAL_LONG_ASSET DOUBLE Value of long positions for non-margin securities

accepted as collateral

Long positions

for non-margin

securities

9 ASSETS DOUBLE Value of the client's equity with reference to

current positions and prices

Portfolio value

10 CUR_LEVERAGE DOUBLE Current leverage Current

leverage

11 MARGIN DOUBLE Margin as a percentage Margin

12 LIM_ALL DOUBLE Current maximum value of borrowed assets Current limit

13 AV_LIM_ALL DOUBLE Value of borrowed assets available for the further

opening of positions

Available

current limit

14 LOCKED_BUY DOUBLE Value of assets in buy orders Locked buying

15 LOCKED_BUY_MARGIN DOUBLE Value of assets in orders to buy securities accepted

as collateral

Locked buying

of margin

securities

16 LOCKED_BUY_ASSET DOUBLE Value of assets in orders to buy non-margin

securities accepted as collateral

Locked buying

of collateral

17 LOCKED_SELL DOUBLE Value of assets in orders to sell margin securities Locked selling

18 LOCKED_VALUE_COEF DOUBLE Value of assets in orders to buy non-margin

securities

Locked buying

of non-margin

securities

19 IN_ALL_ASSETS DOUBLE Value of all client positions adjusted to the closing

prices from the preceding trading session

including positions for non-margin securities

Opening assets

20 ALL_ASSETS DOUBLE Current value of all client positions Current assets

21 PROFIT_LOSS DOUBLE Magnitude of change in the value of all client

positions

Profit / loss

22 RATE_CHANGE DOUBLE Relative change in the value of all client positions Rate of change

 69
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

23 LIM_BUY DOUBLE Value of cash assets available for buying margin

securities

Limit to buy

24 LIM_SELL DOUBLE Value of margin securities available for selling Limit to sell

25 LIM_NON_MARGIN DOUBLE Value of cash assets available for buying non-

margin securities

Limit to buy

non-margin

securities

26 LIM_BUY_ASSET DOUBLE Value of cash assets available for buying securities

admitted as collateral

Limit to buy

securities for

collateral

27 VAL_SHORT_NET DOUBLE Value of short positions. Not used in the

calculation of the discount rate*.

Short (net)

28 VAL_LONG_NET DOUBLE Value of long positions. Not used in the calculation

of the discount rate*.

Long (net)

29 TOTAL_MONEY_BAL DOUBLE Total cash balance for all limits not including

assets blocked under the fulfillment of liabilities

expressed in the selected settlement currency

calculation.

Total money

balance

30 TOTAL_LOCKED_MON

EY

DOUBLE Total amount of blocked assets in all of a client's

cash limits recalculated at the server into the

settlement currency via exchange cross rates.

Total locked

money

31 HAIRCUTS DOUBLE Total discounts on the value of long (only for

collateral securities) and short security positions,

discounts of the correlation between instruments,

as well as discounts on owed currencies not

covered by security collateral in the same

currencies.

Haircuts

32 ASSETS_WITHOUT_HC DOUBLE Total amount of cash balances, values of long

collateral security positions, and values of short

positions without discount factors, without

security value netting within the scope of the

unified security position, and without the

correlation between instruments.

Assets without

HC

33 STATUS_COEF DOUBLE The ratio of the total discounts to the current

assets excluding discounts

Status

coeffficent

34 VARMARGIN DOUBLE Current variation margin for a client's positions for

all instruments

Variation

margin

35 GO_FOR_POSITIONS DOUBLE The amount of cash assets paid for all open

positions on the futures market

Current clear

positions

 70
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

36 GO_FOR_ORDERS DOUBLE Value of assets for futures market orders Current clear

orders

37 RATE_FUTURES DOUBLE Ratio of the portfolio liquidation value to collateral

in the futures market

Assets /

Current clear

positions

38 IS_QUAL_CLIENT STRING Attribute of a “qualified” client, which is permitted

credit through borrowed assets with a leverage of

1:3. Possible values are: HighRisk – qualified or

<empty> - no.

HighRisk

39 IS_FUTURES STRING Client account in FORTS if there is a joint position;

otherwise, the field is left empty

Futures trade

account

40 CURR_TAG STRING Actual current calculation parameters for the

specified row in the format “<Currency> - <Trading

session ID>”. Example: “SUR-EQTV”

Parameters

calculation

(*) For detailed information about discount factors, see Section 7 of the Dealer

Library settings Administrator’s manual.

Example:

‘

GET_CLIENT_MARGINAL_PORTFOLIO_INFO ("NC0080000000", "1")

‘

8.17.2 GET_CLIENT_MARGINAL_PORTFOLIO_INFO_EX

This function returns an associative array (MAP) containing the parameters of the Client Portfolio

Table corresponding to a trader’s ID (“firmid”), client code (“client_code”), and type of limit

(“limit_kind”).

MAP GET_CLIENT_MARGINAL_PORTFOLIO_INFO_EX (STRING firmid, STRING client_code,

DOUBLE limit_kind)

For a description of the returned parameters, see sub-section 8.17.1.

 71
 QUIK User’s Manual, Section 8: QPILE Language

The following parameters are returned additionally:

№ Parameter Type Description

1 INIT_MARGIN DOUBLE Value of the initial margin. The field is

filled for MD clients

Initial margin

2 MIN_MARGIN DOUBLE Value of the minimum margin. The field is

filled for MD clients

Minimum

margin

3 CORRECTED_MARGIN DOUBLE Value of the corrected vatgin. The field is

filled for MD clients

Corrected

margin

4 CLIENT_TYPE DOUBLE Client type Client type

5 PORTFOLIO_VALUE DOUBLE Portfolio value.

For MD clients the value for rows with the

maximum limit kind is returned

Portfolio value

Example:

‘

GET_CLIENT_MARGINAL_PORTFOLIO_INFO_EX ("NC0080000000", "1", "0")

‘

8.17.3 GET_CLIENT_MARGINAL_BUY_SELL_INFO

This function returns an associative array (MAP) with the parameters of the Buy / Sell Table referring

to the opportunity to buy or sell a specific instrument (“sec_code”) from a particular class

(“class_code”) identified by client (“client_code”), trading firm (“firmid”), and a preset price (“price”).

If the price is set to "0", the best bid / offer values are used.

MAP GET_CLIENT_MARGINAL_BUY_SELL_INFO (STRING firmid, STRING client_code, STRING

class_code, STRING sec_code, DOUBLE price)

Parameters:

No. Parameter Type Description

1 IS_MARGIN_SEC DOUBLE Marginality identifier of the instrument. Possible values include 1

for margin or 0 for non-margin

For MD clients the field is not filled

2 IS_ASSET_SEC DOUBLE List of securities belonging to an instrument which are accepted

as collateral. Possible values include 1 for accepted as collateral

and 0 for not accepted as collateral

For MD clients the field is not filled

 72
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

3 BALANCE DOUBLE Current position of the instrument in lots

4 CAN_BUY DOUBLE Estimated number of lots available for buying at a specific price*

5 CAN_SELL DOUBLE Estimated number of lots available for selling at a specific price*

6 POSITION_VALUATI

ON

DOUBLE Position value in cash for an instrument at bid / offer prices

7 VALUE DOUBLE Estimated value of the position at the last trade price

8 OPEN_VALUE DOUBLE Estimated value of the client's position calculated from the

closing price during the preceding trading session

9 LIM_LONG DOUBLE The maximum limit of the position for a specific instrument

accepted as collateral for long positions

10 LONG_COEF DOUBLE The discount factor applied to long positions for a specific

instrument

11 LIM_SHORT DOUBLE The maximum limit of short positions for a specific instrument

12 SHORT_COEF DOUBLE The discount factor applied to short positions for a specific

instrument

13 VALUE_COEF DOUBLE Estimated value of a position at the last trade price with discount

factors applied

14 OPEN_VALUE_COEF DOUBLE Estimated value of the client's position calculated using discount

factors to the closing price from the preceding trading session

15 SHARE DOUBLE Percentage ratio of the position value for a specific instrument to

the value of all of the client's assets calculated at current prices

16 SHORT_WA_PRICE DOUBLE Volume-weighted average price for short instrument positions

17 LONG_WA_PRICE DOUBLE Volume-weighted average price for long instrument positions

18 PROFIT_LOSS DOUBLE The difference between the volume-weighted average purchase

price of securities and their market price

19 SPREAD_HC DOUBLE The correlation coefficient between instruments

20 CAN_BUY_OWN DOUBLE Maximum possible number of shares in orders for purchase for an

instrument in a specific class in a client's asset portfolio based on

the best offer price

21 CAN_SELL_OWN DOUBLE Maximum possible number of shares in orders for sale for an

instrument in a specific class in a client's asset portfolio based on

the best bid price

 73
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

22 IS_REST_SHORT_SEC DOUBLE Attribute of a security allowed to be sold on borrowed funds. Valid

values:

1 – allowed, 0 – not allowed.

For MD clients the field is not filled

(*) Depending on the QUIK server settings, the value may be expressed in lots or

pieces. Specify the unit of measure with the broker.

Example:

‘

GET_CLIENT_MARGINAL_BUY_SELL_INFO ("NC0080000000", "1", "TQBR", "HYDR", 0)

‘

8.17.4 GET_CLIENT_MARGINAL_BUY_SELL_INFO_EX

This function returns an associative array (MAP) with the parameters from the Buy / Sell Table

referring to the opportunity to buy or sell a specific instrument (“sec_code”) from a particular class

(“class_code”) identified by client (“client_code”), trading firm (“firmid”), and a preset price (“price”).

If the price is set to “0”, the best bid / offer values are used.

MAP GET_CLIENT_MARGINAL_BUY_SELL_INFO_EX (STRING firmid, STRING client_code,

STRING class_code, STRING sec_code, DOUBLE price)

The description of the returned parameters are found in sub-section 8.17.3.

The following additional parameters are also returned:

No. Parameter Type Description

1 LIMIT_KIND DOUBLE Type of limit. The possible values are as follows:

 0 – T0;

 1 – T1;

 2 – T2

2 D_LONG DOUBLE Effective initial discount for a long position. Parameter is filled for MD

type clients

3 D_MIN_LONG DOUBLE Effective minimal discount for a long position. Parameter is filled for MD

type clients

 74
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

4 D_SHORT DOUBLE Effective initial discount for a short position. Parameter is filled for MD

type clients

5 D_MIN_SHORT DOUBLE Effective minimum discount for a short position. Parameter is filled for

MD type clients

6 CLIENT_TYPE DOUBLE Client type

7 IS_LONG_ALLOW

ED

DOUBLE Attribute of a security allowed to be bought on borrowed funds. Valid

values:

 1 – allowed;

 0 – not allowed

For MD clients the field is not filled

8 IS_SHORT_ALLO

WED

DOUBLE Attribute of a security allowed to be sold on borrowed funds. Valid

values:

 1 – allowed;

 0 – not allowed

For MD clients the field is not filled

Example:

‘

GET_CLIENT_MARGINAL_BUY_SELL_INFO_EX ("NC0080000000", "1", "TQBR", "HYDR", 0)

‘

8.18 File Handling Functions

This function is used to handle text files, and can be used to keep a program activity log, for

example. File names can contain a description of the file path (for example, C:/QUIK/log/new.log).

8.18.1 CLEAR_FILE

This function clears the specified file.

MAP CLEAR_FILE (STRING target_file)

 75
 QUIK User’s Manual, Section 8: QPILE Language

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 RESULT DOUBLE Result of performing an operation. Possible values are 1 for successful

execution and 0 for an error

2 DESCRIPTION STRING Operating system diagnostics in case of error

8.18.2 WRITE

This function writes a string ("string_to_write") at the end of the "target_file".

MAP WRITE (STRING target_file, STRING string_to_write)

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 RESULT DOUBLE Result of performing an operation. Possible values are 1 for

successful execution and 0 for an error

2 DESCRIPTION STRING Operating system diagnostics in the event of an error

8.18.3 WRITELN

This function writes the string "string_to_write" at the end of the "target_file" followed by a carriage

return.

MAP WRITELN (STRING target_file, STRING string_to_write)

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 RESULT DOUBLE Result of performing an operation. Possible values are 1 for

successful execution and 0 for an error

2 DESCRIPTION STRING Operating system diagnostics in the event of an error

Example:

‘

CLEAR_FILE ("new.log")

WRITE ("new.log","Hello, ")

 76
 QUIK User’s Manual, Section 8: QPILE Language

WRITELN ("new.log","world")

‘

8.18.4 GET_FILE_LEN

This function returns the number of strings in the "target_file". If such a file is not available, it

returns "-1".

DOUBLE GET_FILE_LEN (STRING target_file)

8.18.5 READ_LINE

This function reads the "target_file" and returns a string numbered as "line". The string length must

not exceed 1000 characters; longer strings will be truncated when read.

STRING READ_LINE (STRING target_file, DOUBLE line, DOUBLE error)

Here, "error" is the result of performing the operation. If the value is "0", the read was successful, "1"

refers to an error, and "2" means that the end of the file was reached.

Example:

‘

WRITELN ("new.log","Hello, world")

msg = READ_LINE ("new.log", GET_FILE_LEN("new.log"), error)

MESSAGE (msg,1)

‘

8.19 String Handling Functions

8.19.1 LEN

This function returns the length of the string variable "value".

DOUBLE LEN (STRING value)

8.19.2 TRIM

This function deletes any spaces at the end of a line.

STRING TRIM (STRING value)

This function returns the string without empty characters at the end of the line.

 77
 QUIK User’s Manual, Section 8: QPILE Language

8.19.3 SUBSTR

This function returns a sub-string from the string "value" beginning from the character having the

number "start" and length "len".

STRING SUBSTR (STRING value, DOUBLE start, DOUBLE len)

8.19.4 FIND

This function searches for the entry of a sub-string into a preset string.

DOUBLE FIND (STRING value, DOUBLE start, STRING sub)

This function returns the position of the first entry of the sub-string ("sub") into the string ("value")

starting from the position "start". If a sub-string is not found, the function returns the result "-1".

Example:

‘

stroka="anymessage"

stroka2=SUBSTR(stroka, FIND(stroka, 1, "message"), LEN("message"))

MESSAGE (stroka2,2)

‘

8.20 Chart Handling Functions

8.20.1 GET_CANDLE

This function is used to access the “candle” data in a chart and the values for the technical analysis

indicators.

MAP GET_CANDLE (STRING class_code, STRING sec_code, STRING parameter_name, STRING

interval, STRING graph_type, DOUBLE Date, DOUBLE Time)

This function returns an associative array (MAP) containing information about prices at a specific

point in time ["Date","Time"] for the chart created for an instrument with a specific code

("sec_code") from a particular class ("class_code") and time interval ("interval"). If "class_code" is set

to <space>, the function scans for "sec_code" in all classes until finding the first instance.

This type of chart is identified by the following codes:

Chart Type Code

PRICE 1

VOLUME 2

Chart Type Code

MOVING AVERAGE 3

PRICE OSCILLATOR 4

 78
 QUIK User’s Manual, Section 8: QPILE Language

Chart Type Code

MACD 5

STANDARD DEV 6

BOLLINGER LINES 7

STOCHASTIC 8

RSI 9

PARABOLIC SAR 10

SROC 11

MOM 12

ROC 13

MFI 16

WILLIAMS %R 17

Chart Type Code

ENVELOPS 18

VOLUME OSCILLATOR 19

BALANCE VOLUME 20

CUM AD 21

CHAIKIN OSCILLATOR 22

CUM WAD 23

ELDER FI 24

ELDER RAY 25

VERTICAL HORIZONTAL FILTER 26

CHAIKIN VOLATILITY 27

The value of the interval can be set using the following numeric values:

Interval

Length Value

Month month

-3

Week week

-2

Day day

-1

Tick 0

1 minute 1

2 minutes 2

3 minutes 3

Interval

Length Value

4 minutes 4

5 minutes 5

6 minutes 6

10 minutes 10

15 minutes 15

20 minutes 20

30 minutes 30

60 minutes 60

2 hours 120

4 hours 240

The value for "parameter_name" must correspond to one value of the parameter name from the

table in the current parameters. For the list of these, see sub-section 8.12. If "parameter_name" is

set to <space>, the search is carried out using data from the Time and Sales Table.

file:///C:/Documents%20and%20Settings/elza/Local%20Settings/Temp/8%20Язык%20QPILE%20english.doc%23_Функции_для_получения%23_Функции_для_получения
file:///C:/Documents%20and%20Settings/elza/Local%20Settings/Temp/8%20Язык%20QPILE%20english.doc%23_Функции_для_получения%23_Функции_для_получения

 79
 QUIK User’s Manual, Section 8: QPILE Language

The value for “Date” must adhere to the format “YYYYMMDD”. For example, 20050527 refers to May

27, 2005. The value for “Time” must adhere to the format “HHMMSS”. For example, 163500 refers

to16:35:00 (or 4:35 pm).

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 OPEN DOUBLE Opening price (the first transaction) for a specific time interval

2 CLOSE DOUBLE Closing price (the last transaction) within the interval

3 HIGH DOUBLE Highest trading price within the interval

4 LOW DOUBLE Lowest trading price within the interval

5 VOLUME DOUBLE Total volume of transactions within the interval

Example:

‘

msg = GET_CANDLE("TQBR", "HYDR", "", "5", "PRICE", 20101130, 103500)

MESSAGE(msg, 2)

‘

8.20.2 GET_CANDLE_EX

In some instances, when, for example, a technical analysis indicator consists of several lines, the

use of “GET_CANDLE” is impossible. In order to access such indicators using QPILE, the function

“GET_CANDLE_EX” is used.

MAP GET_CANDLE_EX (STRING Tag, DOUBLE Date, DOUBLE Time)

This function returns an associative array (MAP) containing data for a chart having a string

identifier tag for the “Date” and “Time” points. Thus, in order to address chart data, a preliminary

chart should be composed and assigned a unique string identifier (ID Tag). The ID Tag is set in the

Chart settings dialogue box under the Advanced tab (see sub-section 4.2.4 of Section 4: Working

With Graphs).

When using this function, the value for “Date” must adhere to the format “YYYYMMDD”. For

example, 20050527 refers to May 27, 2005. The value for “Time” must adhere to the format

“HHMMSS”. For example, 163500 refers to16:35:00 (or 4:35 pm). In addition, this function rounds the

parameter “Time” to the nearest lower unit of time within the chart interval. For example, if the

chart interval is set to 5 minutes and the value for “Time” is set to 163700, the function rounds the

 80
 QUIK User’s Manual, Section 8: QPILE Language

value for “Time” to 163500; if the interval is set to 60 minutes, the function rounds 163700 to

160000.

The associative array returned by the function contains the following fields:

No. Parameter Type Description

1 COUNT DOUBLE Number of lines in the indicator

2 TIME DOUBLE Precise time of the candle

3 LINES DOUBLE Collection of lines where each element contains an associative array

(MAP)

Each element of the collection contains an associative array (MAP) having the following

parameters:

No. Parameter Type Description

1 NAME STRING Name of the line (from the legend)

2 OPEN DOUBLE Opening price within the time interval

3 CLOSE DOUBLE Closing price within the time interval

4 HIGH DOUBLE Highest price within the time interval

5 LOW DOUBLE Lowest price within the time interval

6 VOLUME DOUBLE Total volume of transactions within the time interval

Example:

slice = Get_Candle_Ex ("all", 20070511, 170000)

LineCount = Get_Value (slice,"COUNT")

time = Get_Value (slice,"TIME")

lines = Get_Value (slice,"LINES")

FOR lineID FROM 0 TO LineCount-1

line = Get_Collection_Item (lines, lineID)

open = Get_Value (line,"OPEN")

line_name = Get_Value (line,"NAME")

volume = Get_Value (line,"VOLUME")

END FOR

 81
 QUIK User’s Manual, Section 8: QPILE Language

8.21 Order Handling Functions

These functions are used to create orders and send them to the trading system.

8.21.1 SEND_TRANSACTION

This function sends an order with the parameters shown in the array "trans_params" and, then,

waits for a response from the trading system within the period "wait_timeout_for_replay" (no less

than 5 seconds). Array elements "trans_params" are filled according to the rules for creating a string

to import transactions from a file (for further details, see Section 6: Working With Other Programs,

sub-section 6.11).

MAP SEND_TRANSACTION (DOUBLE wait_timeout_for_replay, MAP trans_params)

Transactions for the withdrawal of groups of orders are not supported:

• KILL_ALL_ORDERS - withdraws all orders from the trading system;

• KILL_ALL_STOP_ORDERS - withdraws all stop orders;

• KILL_ALL_NEG_DEALS - withdraws all orders for OTC and REPO trades.

This function returns an associative array (MAP) containing the results of processing an order:

No. Parameter Type Description

1 RESULT DOUBLE Result of performing an operation. Possible values are 1 for

successful execution and 0 for an error.

2 RESULT_EX STRING Advanced diagnostics of an operation. This can have the values

corresponding to the field "STATUS" in the ".tro" file when importing

transactions (see Section 6: Working With Other Programs, sub-

section 6.11.4).

3 ORDER_NUMBER STRING Registration number of the order in the trading system

4 DESCRIPTION STRING Text comment response from the QUIK server or trading system

Example:

‘

new_global("trans_params", "")

new_global("trans_result", "")

trans_params = CREATE_MAP ()

trans_params = set_value (trans_params, "TRANS_ID", "333")

trans_params = set_value (trans_params, "ACTION", "NEW_ORDER")

trans_params = set_value (trans_params, "CLASSCODE", "TQBR")

trans_params = set_value (trans_params, "SECCODE", "HYDR")

 82
 QUIK User’s Manual, Section 8: QPILE Language

trans_params = set_value (trans_params, "ACCOUNT", "L01-00000F00")

trans_params = set_value (trans_params, "OPERATION", "B")

trans_params = set_value (trans_params, "PRICE", "7.561")

trans_params = set_value (trans_params, "QUANTITY", "1")

trans_params = set_value (trans_params, "CLIENT_CODE", "")

trans_params = set_value (trans_params, "TYPE", "L")

trans_result = SEND_TRANSACTION (30, trans_params)

WRITELN ("qpile_trans.log", get_value (curr_datetime, "DATETIME") & ": " & "Result: "

& get_value (trans_result, "RESULT") & ", Result_ex: " & get_value (trans_result,

"RESULT_EX") & ", OrderNum: " & get_value (trans_result, "ORDER_NUMBER") & ",

Description: " & get_value (trans_result, "DESCRIPTION"))

‘

8.22 Label Handling Functions

These functions are used to create labels and assign them in a chart.

8.22.1 ADD_LABEL

This function adds a label with preset parameters.

DOUBLE ADD_LABEL (STRING tag, MAP label params)

A label is added to the window displaying the chart with the identifier "tag". If the addition has been

successfully completed, the function returns the tag identifier or (-1) when the added tag fails.

The MAP array format contains the following label parameters:

No. Parameter Type Description

1 TEXT STRING Label signature (if not required, this is an empty string)

2 IMAGE_PATH STRING Path to the image displayed as a label (if the image is

not required, this is an empty string)

3 ALIGNMENT STRING Text position relative to the image (four variants are

possible: LEFT, RIGHT, TOP, BOTTOM)

4 YVALUE DOUBLE Y-axis value of the parameter to which the label is

bound

5 DATE DOUBLE YYYYMMDD date format to which the label is bound

6 TIME DOUBLE HHMMSS time format to which the label is bound

7 R DOUBLE Red color component in RGB format, which is a number

within an interval [0;255]

 83
 QUIK User’s Manual, Section 8: QPILE Language

No. Parameter Type Description

8 G DOUBLE Green color component in RGB format, which is a

number within an interval [0;255]

9 B DOUBLE Blue color component in RGB format, which is a number

within an interval [0;255]

10 TRANSPARENCY DOUBLE Label transparency as a percentage. The value should

fall within a range [0; 100]

11 TRANSPARENT_BACKGROUND DOUBLE Market transparency. Possible values include 0 for

transparency disabled or 1 for transparency enabled.

12 FONT_FACE_NAME STRING Font name (e.g., Arial)

13 FONT_HEIGHT DOUBLE Font size

14 HINT STRING Popup hint

Example:

‘

label_params=create_map()

label_params=set_value(label_params,"TEXT", "Lable text")

label_params=set_value(label_params,"IMAGE_PATH", "image.bmp")

label_params=set_value(label_params,"ALIGNMENT", "LEFT")

label_params=set_value(label_params,"YVALUE", 2000)

label_params=set_value(label_params,"DATE", 20080616)

label_params=set_value(label_params,"TIME", 220000)

label_params=set_value(label_params,"R", 0)

label_params=set_value(label_params,"G", 0)

label_params=set_value(label_params,"B", 200)

label_params=set_value(label_params,"TRANSPARENCY", 10)

label_params=set_value(label_params,"FONT_FACE_NAME", "Tahoma")

label_params=set_value(label_params,"FONT_HEIGHT", 12)

label_params=set_value(label_params,"HINT", "Hint")

id=ADD_LABEL("ALL", label_params)

’

The result is represented as follows: a label with the parameters contained in the label_params

array is added to the chart with the identifier "ALL".

8.22.2 DELETE_LABEL

This function deletes a label with preset parameters.

 84
 QUIK User’s Manual, Section 8: QPILE Language

DOUBLE DELETE_LABEL(STRING tag, DOUBLE id)

Set to a preset identifier, this function deletes a label from the chart with the text identifier "tag". If

the deletion is successful, the function returns the value 1; if it fails, it returns the value 0.

Example:

‘

err=DELETE_LABEL("ALL", id)

’

This function results in the deletion of a label in the chart with the identifier "ALL".

8.22.3 DELETE_ALL_LABELS

This command deletes all labels in a selected chart.

DOUBLE DELETE_ALL_LABELS(STRING tag)

It deletes all labels set in the chart showing a diagram with the identifier tag. If this chart shows

diagrams with different identifiers, the command will result in deleting labels from all diagrams,

not only those with a specific value.

Example:

‘

err=DELETE_ALL_LABELS("ALL")

’

This function results in the deletion of all labels in the chart.

8.22.4 GET_LABEL_PARAMS

This instruction enables one to obtain the label parameters.

MAP GET_LABEL_PARAMS(STRING tag, DOUBLE id)

This function returns the parameters of a label with a preset identifier. If a label with the specified

identifier does not exist, then an empty MAP is returned.

• “tag” is the identifier for each indicator in the chart in which the mark is located;

• “id” is the code or serial number of the marker and starts with 1.

 85
 QUIK User’s Manual, Section 8: QPILE Language

Example:

‘

new_params=GET_LABEL_PARAMS("ALL", id)

’

This function enables one to obtain label data. If such a label does not exist, empty values are

returned.

8.22.5 SET_LABEL_PARAMS

This function sets the parameters for a label with a preset identifier.

DOUBLE SET_LABEL_PARAMS(STRING tag, DOUBLE id, MAP new label params)

This function enables one to set new parameters for a label. If the parameter renewal is successful,

the function returns a 1; if it fails, it returns a 0.

Example:

‘

err=SET_LABEL_PARAMS("ALL", id, label_params)

’

This function results in the replacement of existing parameters with those preset by the function.

8.23 Service Functions

8.23.1 GET_TRADE_DATE

This function retrieves the date of the current trading session.

MAP GET_TRADE_DATE ()

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 DATE STRING Trading date represented as a DD.MM.YYYY string

2 YEAR DOUBLE Year

3 MONTH DOUBLE Month

4 DAY DOUBLE Day

 86
 QUIK User’s Manual, Section 8: QPILE Language

Example:

‘

writeln(log_file_name, get_value(GET_TRADE_DATE(), "Date"))

’

It writes into a file the following string:

02.06.2004

8.23.2 GET_DATETIME

This function returns the current date and time.

MAP GET_DATETIME ()

This function returns an associative array (MAP) containing the following parameters:

No. Parameter Type Description

1 DATETIME STRING Trading date represented as a "DD.MM.YYYY HH:MM:SS.sss" string

where "sss" stands for milliseconds

2 YEAR DOUBLE Year

3 MONTH DOUBLE Month

4 DAY DOUBLE Day

5 DAYOFWEEK DOUBLE Serial number for the days in the week, where 0 is Sunday, 1 is Monday,

2 is Tuesday, 3 is Wednesday, 4 is Thursday, 5 is Friday, and 6 is

Saturday

6 HOUR DOUBLE Hour

7 MIN DOUBLE Minute

8 SEC DOUBLE Second

9 MILLISEC DOUBLE Millisecond

Example:

‘

writeln(log_file_name, get_value(GET_DATETIME(), "Datetime"))

’

 87
 QUIK User’s Manual, Section 8: QPILE Language

It writes into a file the following string:

02.06.2004 16:57:34.460

8.23.3 APPLY_SCALE

This function returns a string with a number obtained by approximating the number

"without_scale" to the size "scale".

STRING APPLY_SCALE (DOUBLE without_scale, DOUBLE scale)

8.23.4 IS_CONNECTED

This function is used to determine the status of the connection between the client terminal and

the server. If the client terminal is connected, it returns the value 1; if the connection fails, it

returns the value 0.

IS_CONNECTED ()

8.23.5 GET_INFO_PARAM

This function returns the values parameters in the information window (see Connection /

Information window in the menu).

STRING GET_INFO_PARAM (STRING param_name)

The parameter "param_name" can have the values shown in the table below.

Parameter Value Description

VERSION Program version

TRADEDATE Trading date

SERVERTIME Server time

LASTRECORDTIME Last record time

NUMRECORDS Number of records

LASTRECORD Last record

LATERECORD Late record

CONNECTION Connection

IPADDRESS IP address of the server

IPPORT Server port

Parameter Value Description

IPCOMMENT Connection description

SERVER Server description

SESSIONID Session identifier

USER User

USERID User ID

ORG Organization

MEMORY Memory used

LOCALTIME Current time

CONNECTIONTIME Connection time

MESSAGESSENT Messages sent

 88
 QUIK User’s Manual, Section 8: QPILE Language

Parameter Value Description

ALLSENT Total number of bytes

sent

BYTESSENT Useful bytes sent

BYTESPERSECSENT Bytes sent per second

MESSAGESRECV Messages received

BYTESRECV Useful bytes received

ALLRECV Total number of bytes

received

BYTESPERSECRECV Bytes received per

second

AVGSENT Average rate of transfer

Parameter Value Description

AVGRECV Average receive rate

LASTPINGTIME Time of last ping

LASTPINGDURATION Delay of data during

exchange with the

server

AVGPINGDURATION Average delay of data

MAXPINGTIME Maximum time of

delay

MAXPINGDURATION Maximum data delay

time

8.23.6 BREAKPOINT()

This function is used to interrupt the mode of calculation and display of the "Debug" window in

which the user can view the further operation of the program.

BREAKPOINT()

This instruction does not contain any parameters and results in stopping the program execution,

highlighting the next function in red, and calling up the "Debug" window in which the user can

view the execution of the script code. This command can be included in the code as many times if

necessary.

8.24 QPILE Program Debugging

The "Debug" window is used to check the execution of the script code stepwise, and allows for the

tracing of code execution for programs written in QPILE.

The window can be launched as described below:

• From the QPILE table, select an instruction from the “Start calculation in debug mode” shortcut

menu;

• From the program code, use the breakpoint() function.

The window contains two large fields:

• "Program code" displays the QPILE language code;

• "Values of variables" shows the variables and their values as two columns.

 89
 QUIK User’s Manual, Section 8: QPILE Language

Once the window is launched using the breakpoint() command, the next line in the program is

highlighted in red.

The "Debug" window contains the buttons listed below:

• "Next step" executes one operation in the code;

• "Continue execution" proceeds with executing the program until the "Stop calculation" button

is depressed, another breakpoint() command is found, or the end of program code is reached;

• "Stop execution" stops the program on the last executed statement.

The following functions are available:

• Hit F5 to proceed with execution of the program;

• Hit SHIFT+F5 to stop the program debug and close the window;

• Hit F10 to move to the next line.

 90
 QUIK User’s Manual, Section 8: QPILE Language

APPENDIX 1. QPILE Command Syntax

Program:

 Statement_List

Statement_List:

 Statement "\n"

 Statement_List "\n" Statement

Statement:

 NAME=Expression

 IFOperator

 FOROperator

 FUNCDescr

 CONTINUE //skips the execution of statements until the end of the current

Statement_List

 BREAK //starts the execution of the statement following the current Statement_List

 RETURN //exit from the current control block (body of a function or entire program)

IFOperator:

"IF" Condition "\n"

 Statement_List

"ELSE" "\n"

 Statement_List

"END IF"

Condition

 Condition "OR" Condition

 Condition "AND" Condition

 "("Condition") "

 PrimaryCondition

PrimaryCondition

 Expression "==" Expression

 Expression “=“ Expression //with the same semantics as “==”

 Expression ">=" Expression

 Expression "<=" Expression

 Expression ">"Expression

 Expression "<"Expression

 Expression "!=" Expression

 Expression “<>“ Expression //with the same semantics as “!=”

FOROperator:

 "FOR" NAME "IN" ArgList "\n"

 Statement_List

 "END FOR"

 91
 QUIK User’s Manual, Section 8: QPILE Language

 "FOR" NAME "FROM" Expression "TO" Expression "\n"

 Statement_List

 "END FOR"

ArgList

NAME // in this case the variable NAME should contain a value of ArgList1 type

 ArgList1

ArgList1:

 Expression

ArgList "," Expression

FUNCDescr

 "FUNC" NAME "(" FargList ")" "\n"

 Statement_List

 "END FUNC"

FArgList

NAME

FArgList "," NAME

Expression:

 Expression "+" Term

 Expression "–" Term

 Expression “&” Term //concatenation of strings

 Term

Term:

 Term "/" Primary

 Term "*" Primary

 Primary

Primary:

 NUMBER

 STRINGNAME //value for the variable NAME

 "-" Primary

"(" Expression ")"

FunctionCall

FunctionCall

FNAME "(" ArgList1 ")"

NUMBER:

 Digits

 Digits “.” DigitsSTRING: //defined in a standard way

 92
 QUIK User’s Manual, Section 8: QPILE Language

NAME: //defined in a standard way

Keywords = {IF, ELSE, FOR, IN, TO, FROM, AND, OR, RESULT, FUNC, END FUNC, END FOR,

END IF, CONTINUE, BREAK, RETURN}

APPENDIX 2. Recommendations for Writing Programs

in QPILE

1. Functions for handling structural variables such as "SET_VALUE", "ADD_COLLECTION_ITEM" and

"REMOVE_COLLECTION_ITEM" return a modified value for the collection or array. Since all

parameters are transferred to the function according to their values, the use of these functions

as procedures results in the loss of any changes made to them.

Example:

clientscol=INSERT_COLLECTION_ITEM(clientscol,0,initmap)

‘correct

INSERT_COLLECTION_ITEM(clientscol,0,initmap)

‘incorrect because, in this case, clientscol will contain the same value after

calling the function as before calling it

2. Values returned by these functions, even those representing a real number, may appear as

strings. In this case, the addition of "0" should be used to convert the result into a numeric

value. For example, to properly initialize a variable, formulate "v=GET_VALUE()" as

"v=0+GET_VALUE()". If this recommendation is followed, a real value for the variable is

guaranteed.

Similarly, linking an operation with an empty string as "v=””&GET_VALUE()" can be used to

convert a real value into a string.

3. Arbitrary user types can be formed by combining collections and associative arrays. If, for

example, a list of structures of the type:

c=strruct{

openbal:double

closebal:double

clientcode:string}

 93
 QUIK User’s Manual, Section 8: QPILE Language

is required, it can be represented as a collection of associative arrays, each of them having

three keys: "OPENBAL", "CLOSEBAL", and "CLIENTCODE". The code for initializing such a structure

is given below:

initmap=CREATE_MAP()

initmap=SET_VALUE(initmap,"OPENBAL",0)

initmap=SET_VALUE(initmap,"CLOSEBAL",0)

initmap=SET_VALUE(initmap,"CLIENTCODE","")

clientscol=CREATE_COLLECTION()

FOR i FROM 0 TO 10

 clientscol=INSERT_COLLECTION_ITEM(clientscol,0,initmap)

END FOR

After this, to access the field "OPENBAL" for the 5th client, write:

openbal = GET_VALUE(GET_COLLECTION_ITEM(clientscol,5),"OPENBAL")

If instead of a collection of such records an array with a key which is the client code is used, the

values for the client's structure can be accessed without specifying its index in the array, i.e.,

using only the client code:

clientsmap=CREATE_MAP()

FOR i FROM 0 TO 10

 clientsmap=SET_VALUE(clientsmap,"Q" & i, initmap)

END FOR

and the subsequent retrieval of the value for "OPENBAL" with client code "Q5":

openbal = GET_VALUE(GET_VALUE(clientsmap,"Q5"),"OPENBAL")

4. "MODIFY_ITEM" does not execute any action if the specified string is still missing from the table

"OWN". Therefore, it is necessary to first check the availability of that string.

When creating a user table for which each iteration includes changes, the following code will

be useful:

new_global("first_time_flag",0)

if first_time_flag==0

 add_item(1, SAMPLE)

 94
 QUIK User’s Manual, Section 8: QPILE Language

 first_time_flag=1

else

 modify_item(1, SAMPLE)

end if

When first launched, string number 1 is created which contains the values for fields from the

variable "SAMPLE" previously calculated. In subsequent iterations, string number 1 is modified.

